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Introduction
LOWESS is a powerful non parametric technique for fitting 

a smoothed line for a given data set either through univariate or 
multivariate smoothing [1]. It implements a regression on a collection 
of points in a moving range, and weighted according to distance, 
around abscissa values in order to calculate ordinal values. “LOWESS” 
and “LOESS” are acronym for “Locally Weighted Scatterplot Smooth” 
because, for data smoothing, locally weighted regression is used. 
Furthermore, a robust weight function can be used to compensate 
for undue influence of extreme points. Differentiation of a regression 
model depends on the way it is used: a linear polynomial is used for 
LOWESS whereas a quadratic polynomial is used for LOESS [2]. From 
the literature review, most authors consider LOWESS/LOESS same, 
but they are different. LOWESS is derived from term “locally weighted 
scatterplot smoothing” whereas according to Potts LOESS stands for 
“Locally Estimated Scatterplot Smoothing" [3].

LO(W)ESS is one of the most widely used method for data 
smoothing and trend estimation. Its graphical representation helps to 
visualize the overall trends in a time series and identify times of changes. 
As an example, in 2012 presidential elections [4], LOWESS fit is used to 
predict the presidential candidate. Moreover, Niblett [5] used LOWESS 
fit for the evolution of legal rules. There are many more other examples 
where LOWESS fit has been used for trend estimation. This is the easiest 
way to communicate trends especially for the non-technical people.

There are numerous techniques for data smoothing: splines, 
beziers, kernel and polynomial regression. Local regression provides 
some attractive features, according to Cleveland [6]. LOESS fit is 
extremely informative when the data set is very large [7]. Moreover, 
it is used to solve the problems of precision, noise filtering, and 
outliers and is known to adapt well to bias problems, as opposed to 
these other methods. Also, LO(W)ESS is computationally efficient [8]. 
Our experiments with polynomial regression and Bezier curves show 
that if we increase the degree of polynomial, it increases undulations 
in the curve fit being attempted, and we cannot estimate the actual 
picture. Moreover, increasing degree of polynomial often creates the 
problem of data over-smoothing. If outliers are present in the dataset, 
robust LOWESS/LOESS (rLOWESS, rLOESS) procedure is used to 
overcome the problem of distorted values. The presence of outliers 
can be detected using a Hampel identifier. It is considered to be the 

most efficient and robust method for identification of outliers [9]. A 
data point is considered as an outlier, based on Hample Identifier (HI), 
if it goes beyond ±3σ where the variance estimate σ is calculated by 
subtracting median absolute deviation and median. It signals the index 
of the outlier as the final outcome.

The selection of smoothing parameter, α, is often entirely based on a 
“repeated trial” basis. Some researchers argue that it should lie between 
0.2 and 0.8 while others consider 0.5 as an ideal parameter value [10]. 
There is no specific technique for selection of the exact value of α. 
Selection of α may lead to “over-smoothing” or “under-smoothing” of 
data, does not necessarily provide good information for LO(W)ESS 
fit. Figure 1 shows a sample LO(W)ESS fit using different smoothing 
parameters. The LO(W)ESS fit which follow the almost all the data 
points is called “under smoothing” or “over-fitting” whereas if does 
not follow the data and produce a smooth line is called “lack of fit” or 
“under-smoothing”.

For calculating smoothed values from the robust method, there 
are two extra steps; firstly, it requires the calculations of residuals from 
LOWESS/LOESS and then robust weight function is applied using 
the bisquare function [11]. Once the regression function values are 
calculated with flexible weights and polynomial degree, LOESS fit is 
complete [11]. Robust AIC (Akaike Information Criteria) is used for 
the selection of the best fitted smoothing parameter, α, and akaike 
weights are used to evaluate the best selected model [12]. Moreover, we 
can use the robust Pearson correlation coefficient for the selection of 
degree of polynomial, λ.

We have noted from the literature that there are nine different 
methods being used for selection of α in non-parametric regression, 
but, according to Aydin [13], Improved Akaike Information Criteria 
(AICc) and Generalized Cross Validation (GCV) are the best methods 
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based on small and large datasets [14,15]. The best model is selected 
is the one with the smallest AIC score. Tharmaratnam [16] proposed 
the robust version of AIC which produces promising results for model 
selection in the presence of outliers compared to non-robust AIC. We 
will be using AIC M-estimator, robust AIC, for α. The best selected 
model can be estimated using Akaike weights [12].

In this paper, we are using synthetic as well as real data [17], to 
illustrate the usefulness of our proposed method. 

Methods
LOWESS analysis for noisy synthetic linear data

We have generated noisy linear data using (1).

    Y X e= +                   (1)

An artificial dataset with 50 data points is generated for the 
experiment. Normally distributed noise, e, with zero mean and 0.01 
variance has been added to produce outliers in the linear data, whereas 
X is generated uniformly.

LOWESS/LOESS analysis for Rock Creek River

The data set used for our research analysis is from Heidelberg 
University [17]. It is collected from Rock Creek River for 10 different 
parameters and we will analyze “Suspended Solid” data collected hourly 
but intermittently between 1982-2013.

Calculating the mean of stratified samples does not necessarily 
provide an accurate picture of the data. Our data readings vary from 
hourly to daily data and therefore, weights should be considered to 
calculate average. We will reduce the values using Flow-Weighted Mean 
Concentration (FWMC) for accuracy and consistency which should 
give a clear picture of actual loadings.

The flow-weighted average is considered to be an accurate method for 
use in calculating average for stratified samples in which the readings have 

different time intervals, varying from hourly to daily readings [18,19]. 
These different weights should be considered for calculating average. 
Calculating FWMC does not have effect of missing data [19]. Equation (2) 
shows the formula to calculate flow-weighted average is [18,19].
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where qi=flow in the ith sample, ci=concentration of the ith sample, 
ti=time window for the ith sample

Proposed Methodology
The steps for appropriate selection of smoothing parameters for 

LO(W)ESS are shown in Figure 2. The experimental steps for selection 
of α and λ are as follows:

Analyze the presence of outliers in the data

In order to detect the presence of outliers, a Hample Identifier (HI) 
is employed.

Differentiate LO(W)ESS from rLO(W)ESS

If outliers are present in the data set rLO(W)ESS is used otherwise, 
LO(W)ESS is used for analysis. 

Examine the presence of a monotonic relationship

This step is extremely important to identify which degree of 
polynomial is used, linear or quadratic. If X and Y show a monotonic 
relationship, then λ=1 otherwise, λ=2 [11]. The strength of correlation 
can be measured based on values give in Table 1. For automatic selection 
of λ, weighted Pearson correlation, rw, or Mean Squared Error (MSE) 
can be used [20,21]. The best fit polynomial is considered to be the one 
for which MSE is less or having high rw value. The rw is more suitable 
for testing correlation compared to Pearson correlation [20]. The 
Pearson Correlation coefficient is calculated for the express purpose of 
identifying whether the data is monotonic. 

Figure 1: LOWESS with different values of α.
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Computational steps for LOWESS/LOESS

In the literature, the selection of smoothing parameter, α, is often 
entirely based on trial and basis. Some researchers argue that it should 
be between 0.2 and 0.8 while other considers 0.5 as an ideal starting 
point [10]. There is no specific technique for selection of the exact value 
of α. Random selection of α may lead to over-smoothing or under-
smoothing of data, which in turn does not provide good information 
for LOWESS fit. The LOWESS/LOESS fit which follow the almost all 
the data-point is called “under-smoothing” or “over-fitting” whereas if 
does not follow the data and produce a smooth line is called “lack of fit” 
or “under-smoothing”. The step by step calculation of LOWESS/LOESS 
and rLOWESS/rLOESS are as follows [1,10,22].

A: Compute tricube weights, equation 7, using scaled distance. 
These weights are calculated for set of numbers in local neighbourhood.
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B: Run weighted least square regression for those set of numbers.

C: If outliers are present in data; calculate residuals, median of 
residuals and robust weight, equation 8, using robust weight function.
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D. Run weighted least regression using robust weights.

E. Repeat step 3 and 4 until convergence criteria is met.

Scatterplot smoothing

For demonstration of the LOWESS procedure, we will first examine 
a synthetic dataset and finally real life data, the suspended solids 
parameter, from Rock Creek River.

Experiment using synthetic data: Figure 3 shows the scatterplot 
for our synthetic data. We will examine our dataset with the proposed 
methods, given in section on proposed methodology.

Step 1 Presence of outliers: The Hample Identifier (HI) detected 
two outliers at index 21 and 46.

Step 2 LO(W)ESS vs. rLO(W)ESS: Since two outliers are detected 

Equation (3) shows the formula to calculate MSE and Equation (4) 
for rw.
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where Y is observed values, Ŷ is the predicated values and n is the 
number of values. 
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where x, y are the set of variables, wi is the weight, wx  , wy are the 
weighted mean of x and y variables.

Differentiating LOWESS, LOESS, rLOWESS and rLOESS

The selection of best LO(W)ESS model can be performed as follows: 

a) Monotonic relationship without outliers: LOWESS 

b) Monotonic relationship with outliers: rLOWESS 

c) No monotonic relationship without outlier: LOESS 

d) No monotonic relationship with outlier: rLOESS

Select the best smoothing parameter using RobustAIC

Tharmaratnam [16] proposed the robust version of AIC, which 
produces promising results for model selection in the presence of 
outliers compared to non-robust AIC. RobustAIC score is computed 
for all the values of α between 0.1 and 1. The model with lowest AIC 
score is considered as the best value of α based on the dataset. Section 
below on Computational Steps for LOWESS/LOESS provides the details 
of computing LO(W)ESS/rLO(W)ESS fit based on the smoothing 
parameter. The best selected model can be estimated using Akaike 
weights [12]. The algorithm for calculating Akaike weights is as follows:

a. Calculate AIC for all the models and identify the best model, 
AICmin

b. Calculate the difference between AIC of every model and 
AICmin

( )  i i minAIC AIC AIC−∆ =                    (5)

c. Compute Akaike weights for each model and normalized 
relative likelihoods

Figure 2: Steps for automatic smoothing parameter selection: LO(W)ESS.

Relationship Very strong Strong Moderate Weak Very weak
Value 0.80-1.0 0.60-0.79 0.40-0.59 0.20-0.39 0.00-0.19

Table 1: Correlation coefficient.
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in the dataset, rLO(W)ESS is employed. The computational procedure 
for LO(W)ESS and rLO(W)ESS is given in section on Proposed 
Methodology.

Step 3 Identify monotonic relationships: The selection of 
appropriate α and λ is extremely important. Based on experimental 
results for linear data, the value of rw=0:896 whereas r=0.582. This 
indicates that there is strong relationship; therefore, λ=1 should be used 
for analysis. Similarly, the calculation value for MSE for λ=1 is 0.00184 
whereas for λ=2 is 0.00188. Again, MSE confirms that λ=1 is the best 
for analysis.

Step 4 Differentiating LOWESS, LOESS, rLOWESS and rLOESS: 
Since a monotonic relationship exists and presence of outliers is 
detected in Step 1, rLOWESS is chosen for the analysis.

Step 5 RobustAIC for parameter selection: Table 2 shows the 
RobustAIC score calculated from the equations given in section 
computational steps for LOWESS/LOESS robustAIC selects the best 
value for α based on the data. Based on Tharmaratnam robust AIC [16], 
Table 2 illustrates that α=0.3 is the smallest AIC score. Table 3 shows 
the best selected model using akaike weights, calculated from step 5 in 
section on proposed methodology.

Figure 4 shows the rLOWESS fit based on α=0.3, black line is the 
original data and blue is the rLOWESS fit. In this situation, the original data 
to which the noise was “added” is not recovered. This is an artificial dataset. 
The criteria do not recover the noise-free data, but rather they smooth the 
dataset according to the noisy data as presented, some of which began as an 
added noise, and which is retained in the smoothed line.

Experiment on real data: 

Step 1 Presence of outliers: Based on data set, HI detected 28 
outliers in the dataset

Step 2 LO(W)ESS vs. rLO(W)ESS: Since outliers are detected in 
the dataset, rLO(W)ESS is chosen.

Step 3 Identify monotonic relationships: Based on the analysis, the 
value of rw=0.0191 shows a very weak relationship; rLOESS is indicated.

Step 4 Differentiating LOWESS, LOESS, rLOWESS and rLOESS: 
Since monotonic relationship does not exist and presence of outliers is 
detected in Step 1, rLOESS is chosen for the analysis.

Step 5 RobustAIC for parameter selection: RobustAIC selects the 
best value for α based on the data, as described in section on experiment 

Figure 3: Scatterplot for linear data.

Smoothing parameter Robust AIC score
0.1 -323.061
0.2 -340.792
0.3 -347.394
l 0.4 -325.645
0.5 -320.392
0.6 -311.830
0.7 -309.811
0.8 -317.420
0.9 -306.575
1.0 -310.225

Table 2: Robust AIC score for different values of α.

Robust AIC δAI C wi(AI C )
-323.061 24.333 5.01685E-06
-340.792 6.602 0.035536013
-347.394 0 0.964439054
-325.645 21.749 1.82616E-05
-320.392 27.002 1.32088E-06
-311.830 35.564 1.82663E-08
-309.811 37.583 6.65626E-09
-317.420 29.974 2.98884E-07
-306.575 40.819 1.3199E-09
-310.225 37.169 8.18708E-09

Table 3: Best selected model using Akaike weights.
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using synthetic data based on tharmaratnam robust AIC [16], Table 
4 shows that α=0.8 is the smallest AIC score. Table 5 shows the best 
selected model using akaike weights (Figure 5).

Conclusion
LO(W)ESS is widely used in different application areas such as 

for normalization and accessing non-linear relationships between 
variables and considered as one of the important member of non-
parametric regression in statistical circle. It is unfortunate that despite 
its wide application area, the important parameters are selected on 

trial and error basis. Over-smoothing and under-smoothing is neither 
acceptable nor desirable in such situations. Over-smoothing divulges 
trend but ignores local variations whereas under-smoothing results in 
too many local variations.

An automatic approach for selection of smoothing parameters for 
LO(W)ESS fit has been proposed and tested. The degree of polynomial 
and presence of outliers is used to select the type of LO(W)ESS. Also, 
the best value of smoothing parameter is chosen based on the least 
value of AIC values. AIC with mm-estimator is employed for the 

Table 4: Robust AIC score for different values of α.

Figure 5: rLOWESS fit with α=0.8.
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selection of best model for smoothing parameters that works well in 
the presence of outliers. Also, weighted MSE is used for the estimation 
of best degree of polynomial. The accuracy of the aforementioned 
methodology has been tested and demonstrated using experimental 
results.

In the first experiment, an artificial data set has been generated 
to test if the proposed method works as per expectations. It is known 
in advance that the data is linear with the presence of outliers in it. A 
real data set from Rock Creek River is examined using the proposed 
method. Our proposed method is able to automate the smoothing 
parameter and degree of polynomial. At the same time, it eliminates 
the problem of over-smoothing and under-smoothing of data. The 
approach is flexible and easy to implement in a variety of situations.
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