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Abstract
Objective: Clinical exome sequencing produces between 90,000-100,00 variants per individual. Bottlenecks 

are manifested due to manual (operator based) interpretation of data. Given an increasing demand for genomic 
screening, automated computational methodologies are urgently required to meet both throughput and interpretation. 
Objective: determine if algorithms can be developed to identify and report specific pathogenic variants

Methods: Clinical exome sequencing was performed on 961 individuals presented for diagnostic analysis to 
King Fahad Medical City (KFMC). Variant Call Format (VCF 4.2) files from each patient were used for algorithm 
development. Perl (v5.28.1) was used as the construct language. 137 known pathogenic variants were used as a 
search test bed. A 10-step procedural workflow was implemented to automate the process of searching for targets. 
Where a positive identification was elicited, variants were annotated, merged with clinical data and output as a pdf 
report. Negative findings were output as a pdf report with clinical data onl .

Results: 961 VCF files were screened for 137 pathogenic variants of interest to KFMC. Target variants were 
compared against each variant within a patient’s VCF using logic operators. A total processing time including report 
production for 961 individuals was completed in 11.38 hours. 177 patients (18.4%) were positive for at least one 
variant and 15 patients had two variants (1.6%). All positive cases were verified manually in the originating VCF. The 
137-target list of variants were “spiked” into a negative control patient VCF to act as a positive control (sensitivity). All 
variants were detected by the algorithm. 10 negative finding patients were chosen at random and manually checked 
for the absence (specificity) of the 137 variants. No variants were detected

Conclusion: Automated searching and production of reports for specific pathogenic variants using computational 
searching is feasible for diagnostic laboratories undertaking clinical exome sequencing.
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Introduction
The advent of high throughput Next Generation Sequencing 

technologies (NGS) has facilitated a paradigm change for clinical 
diagnostic laboratories and translational genomics. The ability to rapidly 
survey the genomes of patients with suspected inherited germline 
disorders, identify causal pathogenic variants and report them to the 
treating physician has become standard practice. The American College 
of Medical Genetics and Genomics routinely publishes guidelines on 
how to standardise the classification of variants into five groups based 
upon the likely severity of the mutation upon protein function [1]. The 
organisation also provides an evidenced based rationale for clinical 
laboratories to screen specific genes for deleterious pathogenic variants 
not directly linked to the patient’s phenotype (under the “secondary 
findings” screening initiative) given that early medical intervention 
can lead to improved healthcare outcomes for these genetic classes 
[2]. Continued developments in sensitivity (quality scores and depth 
of sequence coverage) in addition to breadth of genomic interrogation 
(whole exome sequencing (WES); whole genome sequencing (WGS); 
targeted panels) serve to enhance the diagnostic rate for inherited 
conditions [3,4] including those disorders targeted within pre-natal 
screening programmes [5].

While the potential of DNA sequencing remains significant for 
clinical laboratories, there are still technological challenges that must 
be addressed. For example, NGS elicits tens of thousands of genetic 

variations during comparison to a standardised reference genome 
even though an exceptionally small number are likely to be causal for 
a patient’s clinical disorder [6]. Limitations still exist in bioinformatic 
pipelines used to identify pathogenic variants elicited from WES/
WGS analysis. Standard practice is the use of “truth sets” (i.e., high 
confidence variants) that can be used for statistical measures (e.g., 
sensitivity, specificity, positive predictive value, negative predictive 
value). Algorithms therefore benchmark against truth sets in order 
to measure their performance levels. Challenges are still pervasive 
however as exemplified by Krushe et al. who have shown that single-
nucleotide variant concordance using two different computational 
pipelines is 99.7% within high-confidence regions compared to 76.5% 
outside of these regions [7]. This may suggest that even the use of “truth 
sets” could lead to systematic bias during the establishment of threshold 
settings in the core alignment/variant calling algorithms.
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Limitations not only exist with respect to the production of the 
Variant Call Format (VCF) file for each patient as indicated above but 
also the subsequent downstream clinical interpretation of the variants 
themselves using software packages [8,9]. This phase of the service is 
conducted by clinical reporting teams who exploit both public [10,11] 
and proprietary [12] knowledgebases in order to identify known (or 
candidate) pathogenic variants using ACMG classification rules. 
Deleterious changes in genetic loci result in negative impact upon 
downstream biological pathways to which they are critically associated. 
It is through such associations that the phenotype (using standard 
ontologies [13]) of the patient can be linked directly to a specific 
genetic cause and thus elicit a clinical diagnosis [14]. The clinical 
reporter must therefore bring a diverse array of information together 
in an effective and co-ordinated manner to identify causal pathogenic 
variants for inherited genetic disorders. The transfer of medical records 
into a digitised format is greatly facilitating the construction of large-
scale datasets enabling genomic (and other laboratory test) data to 
be associated with particular clinical phenotypes. This is an essential 
step for personalised medicine (i.e., directing clinical management 
predicted upon defined genetic signatures) although it does not come 
without challenges regarding the management, curation and mining 
of information repositories. Automated algorithms capable of routine 
feature extraction are being developed to produce insights to assist in 
making pharmacogenomic recommendations for patients [15].

While exome analysis is making significant enhancements to the 
field of genomic medicine, it is also producing concomitant challenges 
for clinical laboratories with respect to service provision. For example, 
a patient VCF record can be reviewed several times if reported negative 
by the clinical laboratory. Negative reporting is multifactorial and can 
include for example insufficient evidence at the time of assessment 
regarding a variant’s pathogenic nature or even the fact that a laboratory 
has not updated its reference databases at the time of reporting [16]. 
For these reasons re-analysis of the data is routinely requested by 
ordering physicians in the anticipation that a positive causal variant 
can be identified. Recent publications suggest a period of 6–12 months 
might be suitable for a re-evaluation of historical data [16,17]. Several 
reports have indicated that re-analysis is producing dividends for the 
identification of pathogenic variants and thereby enabling a positive 
diagnosis to be made for the patient [18-20]. Re-analysis service 
requests by physicians do however have a potentially negative impact 
for diagnostic laboratories with respect to: a) increased workload for 
personnel having to deal with these cases and b) reduced time spent 
by the reporting team on each new sample entering the laboratory. 
As the costs of DNA sequencing continue to reduce, it is inevitable 
that the volume of diagnostic requests for clinical exome will rise 
commensurately. This will lead to stress points regarding both sample 
throughput and even the possibility that quality of reporting could be 
negatively impacted.

Given the bottlenecks outlined above (current and impending), 
clinical laboratories are now actively seeking solutions using 
computational algorithms in order to facilitate both variant screening 
and patient reporting. Such approaches will be at the core of this 
necessitated paradigm change from manual clinical reporting to more 
automated methodologies. Reports are now emerging from laboratories 
who have developed and implemented computational algorithms to 
support their clinical operations [21].

The results described within this manuscript report the 
development of computational algorithms capable of screening a 
cohort of VCF files derived from 961 clinical cases. The code (written in 

Perl 5) was designed to identify specific pathogenic variants of interest 
and to have the findings (whether negative or positive) exported into 
a fully annotated clinical report. Such methodologies will provide a 
key step towards enhancing the throughput of both primary patient 
exome reporting, meeting increased volume requirements due to 
cost reductions in genome sequencing and facilitate the reanalysis of 
historical negative cases.

Methodology
The Department of Pathology and Clinical Laboratory Medicine 

at King Fahad Medical City (KFMC) provides a full clinical exome 
sequencing and reporting service for patients with suspected inherited 
disorders. The laboratory is College of American Pathologists (CAP) 
accredited (7538102 AU-ID1607501). Institutional Review Board 
approval to conduct this retrospective study was obtained (IRB: 16-085 
and IRB: 16-247b).

Genomic DNA from each patient was extracted and quantitated 
using a Qubit Fluorimeter (Agilent). 1 ug of DNA was used for 
library preparation (Agilent SureSelect v5 AllExon 50 MB kit) and the 
constructs were sequenced on an Illumina 4000 at an average coverage 
of 150x. Quality control was conducted using FastQC (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) with alignment and 
variant calling being conducted using commercially available software 
(DNASTAR, USA) predicated upon the MAQ alignment and variant 
calling algorithm [22]. 961 VCFv4.2 (https://samtools.github.io/hts-
specs/VCFv4.2.pdf) files were taken for algorithm development and 
testing.

137 variants observed within KFMC patients and/or the wider 
Saudi patient population were used as a target panel for this proof-of-
concept study. Variants were only considered when their quality score, 
Q=-10 log10 P was 20 or higher and this was built into the coding during 
variant selection and extraction as part of the re-formatting of the 
original VCFv4.2 file.

Development of the source code was carried out using Geany IDE 
1.34.1 (https://www.geany.org/). Scripts were written in Perl 5 using 
Strawberry Perl (64-bit) 5.28.1.1-64 bit (http://strawberryperl.com/) 
with modules being downloaded from the CPAN (Comprehensive 
Perl Archive Network https://www.cpan.org/). The operating system 
was Windows 10 Pro. The coding was modularised as follows: STDIN 
requests from the user for the pathlength to: a) the directory containing 
patient VCF files and b) the csv file encompassing clinical information. 
The VCF file was formatted so that variant information only contained 
the following data values:

(i) Chromosome, (ii) Position, (iii) Reference base, (iv) Alternate 
base, (v) Zygosity.

True (input scalar values=non-zero) and false (input scalar 
values=zero) were used to annotate the clinical report as to whether a 
pathological variant had/had not been identified respectively. Regular 
expressions (regex) linking patient medical record number (MRN) 
from the variant file to the identical MRN within the clinical data were 
utilised in order to combine variant results to medical information. 
Annotation of variants (e.g., NM_code; amino acid change; clinical 
disorder) was achieved using standard key: value (hash) combinations. 
PDF clinical reports were produced from the resulting data files 
containing both medical information and any (annotated) variant 
identified within a patient VCF file.

Hardware specification: Quad core (Intel i7-6700k CPU @4.0 GHz); 
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screen for. One or more of the 137 variants was positioned in each of the 
22 human autosomes (i.e., chromosomes 1-22) in order to reduce the 
risk of potential systematic bias of variant discovery being chromosome 
dependent by the search algorithms.

Performance characteristics of the algorithm were initiated by 
sensitivity testing i.e., confirming its ability to detect all variants derived 
from the panel of 137 targets (true positives). One patient VCF was 
selected at random (negative for all 137 target panel variants) and 
“spiked” with the full list of 137 variant target co-ordinate search strings 
(chromosome number, position, reference base, alternative base) for 
each target variant. The variants were added as a single group within 
the patient VCF and the algorithm applied to search the VCF. All 137 
targets were successfully detected across all 22 chromosomes (data not 
shown). To confirm that the algorithm could detect all target variants 
no matter where their location within a patient VCF file, the panel of 
137 targets were sort-ordered based upon their chromosome number 
followed by base position within each respective chromosome. All 137 
variants were correctly identified suggesting that detection of a variant 
was not biased towards the order in which a target is presented to 
the algorithm nor which chromosome location the target variant was 
positioned (data not shown). Regarding specificity of detection (i.e., 
true negative VCF files), 10 patient VCF files (reported as negative by 
the search algorithm during screening) were searched manually for all 
137 target variants. No variants were detected within these 10 patient 
VCF files suggesting that the algorithm is specific for the target variant 
search strings.

Given an average of 98,177 variants per individual, the number of 
comparative analyses needed to be completed by the search algorithm 

64 GB RAM; 4 TB SSD (Samsung EVO 850); EVOC High Performance 
Systems chassis (HIDevolution, USA).

Discussion
Clinical exome sequencing was performed on a consecutive 

series of patients/families whom presented to King Fahad Medical 
City (KFMC) for diagnosis over a two-year period. The cohort of 961 
cases included 25 families (80 individuals consisting of 25 probands 
and 55 parents/affected siblings). Summary statistics regarding age, 
gender and reason for referral (for a subset of conditions but does not 
represent an exhaustive list) are presented in Tables 1a-1c. The sample 
set was considered a representative test-bed in which to undertake 
computational analysis given the breadth of clinical indications 
presented to KFMC for genetic analysis during the course of two years.

Each individual had their exome sequenced to an average coverage 
of 150x. Raw fastq files were quality controlled using FastQC, aligned 
against GRCh37.p13 and genotyped using MAQ [22] according the 
laboratory’s standard operating procedure. VCFv4.2 files derived from 
each exome sequencing analysis had an average of 98,177 variants 
(range 89,216–114,476) per patient.

To test the ability of computational algorithms to search for 
variants of interest within a series of VCFv4.2 files, a Perl 5 script was 
constructed (see below) to identify a group of 137 variants. These 
targets were chosen as a proof-of-principle panel given that many 
variants have been routinely reported as pathogenic both at KFMC 
and/or external organisations nationally and internationally. Variants 
included both SNV (single nucleotide variants n=106) and indel 
(insertion/deletion n=31) producing a total of 137 targets in which to 

Min (Years) Max (Years) Average (Years) Standard Deviation (Years) Number of Individuals

Age 0 66 8 11 961

Table 1a: Age distribution of individuals submitted for clinical exome analysis. The average is 8 years old due to the fact that the predominating cases KFMC treats are 
paediatric patients.

Gender Total Percent (%) of Total

Female 443 46

Male 497 52

Unknown 21 2

Table 1b: Gender distribution of patients used within the analysis. Unknown cases are patients whom died before confirmation of gender could be established

Clinical indications of patients submitted for sequencing

Epilepsy

Mitochondrial disorders

Developmental delay and intellectual disability

Metabolic disorders

Muscle disorders

Hydrops fetalis

Skeletal dysmorphic features

Retinitis pigmentosa

Ataxia

Table 1c: A representative sample of phenotypes listed by physicians at the time of patient clinical presentation.
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for 961 VCF files is equivalent to approximately 12.9 billion (98,177 
patient variants × 137 target variants × 961 total individuals). To explore 
the feasibility of automating variant identification and reporting, a script 
was constructed in Perl 5 (Strawberry Perl 5.28.1.1-64 bit environment/
package manager). The proof-of-concept script was designed to address 
the following limitations:

i) Variant identification from using a pre-defined panel,
ii) Consistency for detection,
iii) Annotation (e.g., NM code; amino acid change; genetic disorder),
iv) Production of clinical reports.

In order to achieve these goals, a 10-stage automated process 
preceded by two user input requests was implemented (Table 2):

(i) User request 1: The user is requested to input the pathlength of 
the folder containing the VCF files that will be searched against using 
the variant panel.

(ii) User request 2: The second user is requested is to input the 
pathlength of the file (.csv) containing the clinical information that 
will be used to populate the clinical report (e.g., ordering physician; 
patient medical record number; patient name; gender etc.). This file is 
formatted in a manner to allow specific column data to be extracted by 
the coding and to populate specific fields of the final pdf report for each 
individual patient.

Once the user has input the required pathlengths, the algorithm 
proceeds in a fully automated manner without any further input from 
the clinical reporting team. This consequently minimises the amount of 
direct hands-on-time required by laboratory staff. As each phase of the 
pipeline is completed (Stage 1-Stage 10) a notification is sent to the user 
via the STDOUT of the terminal keeping the operator informed of how 
the analysis is proceeding.

Table 2 highlights the key aspects of the methodological workflow 
and the time taken to complete each phase with respect to variant 
identification, annotation and production of the final clinical report. 
The run takes approximately 11.38 hours (real-time) to complete the 
process of searching 961 VCFv4.2 files for 137 target variants which 
equates to the production of 1.4 clinical reports per minute. The 
physical hardware resources used during processing were considered to 
be minimal with approximately 15%-20% CPU demand and less than 
10 GB RAM (data not shown). The physical file size for 961 VCFv4.2 
files was 7.2 GB hard disc space and a total output file size (temporary 

files and final pdf reports) of 3.6 GB hard disc space. As a result, these 
authors would contend that implementing scripts such as the one 
described in this manuscript could be easily done within any clinical 
laboratory using minimal computing resources.

Once the computational pipeline was completed, a total 961 
pdf reports had been produced containing full clinical information 
pertaining to the patient in question and any variant findings (Figure 
1 presents the first two-pages of an example output report). A built-in 
script simultaneously exports to the STDOUT and a logfile text report 
for any patient where more than one variant (either in the heterozygous 
or homozygous state) is identified.

Table 3 shows the results derived from the variant identification 
and annotation process for 177 patients (18.4% of the total population) 
where a positive detection occurred for at least one variant. 15 patients 
were identified with two variants (1.6% of the total population). In 
order to confirm accuracy with respect to the specific variant identified 
by the coding and its zygosity (i.e., heterozygous or homozygous), all 
177 VCFv4.2 files for each patient were manually checked with respect 
to correct chromosome number, position, reference base, alternate base 
and zygosity. All 177 results were concordant with the output report 
of the algorithm even for patients where more than one variant was 
detected.

From the total panel of 137 target variants, 55 (40%) were detected 
within the VCFv4.2 files of the 961 patients while 82 variants from the 
panel were not detected. Three patients were noted to be homozygous 
for two pathogenic variants (i.e., the patient was diagnosed with two 
inherited disorders). Dual and higher order diagnosis in a single patient 
are not uncommon in highly consanguineous populations such as 
Saudi Arabia [23].

In summary this proof-of-concept study indicates that 
computational algorithms can be used to good effect to assist clinical 
genomic laboratories in the identification, annotation and production 
of patient clinical reports for pre-defined panels of variants. This study 
would also suggest that sensitivity and specificity of detection are 
high. Due to minimal hardware requirements these algorithms can 
be easily deployed in hospital/commercial laboratory environments 
with minimum specification to analyse the VCFv4.2 file of a single or 
batch of patients. This study has presented data to show that a single 
individual VCFv4.2 file containing on average 98,000 variants can easily 
be screened against a set of 137 pre-defined targets and where a positive 
finding(s) is made, annotated (through hash arrays) and reported at a 

Automation pipeline
Stage Procedure Manual/Automated Time (hours)

1 User enters path length for the directory containing VCF Files Manual N/A
2 User enters path length for the file containing patient clinical dat Manual N/A
3 Read directory containing VCF file Automated 0.02
4 Trimming of VCF fil Automated 0.12
5 Read directory containing trimmed VCF file Automated 0.12
6 Identify target variants in patient VCF file Automated 11.00
7 Read directory containing list of files with found target variant Automated 0.02
8 Convert files to csv forma Automated 0.02
9 Read directory containing list of csv file Automated 0.02
10 Annotate variants Automated 0.02
11 Merge text file containing patient data with variant resul Automated 0.02
12 Produce clinical reports Automated 0.05

Total time 11.38
Average number of reports produced per minute=1.4

Table 2: An overview of the automated pipeline to search patient VCF files (n=961) for 137 target variants and output the findings in a physician ready clinical repor
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Figure 1: An example output of an automated pdf report. Part A contains the clinical information relating to each patient (populated from the user specified csv file) and 
includes the number of variants that have been identified during the screening process. Part B contains information relating the variants (if any) that have been identified
during the screening process including gene co-ordinates, ref/alt bases, the zygosity in which the variant occurs and a finally a brief description of the clinical disorder 
that occurs if the patient is negatively impacted by a deleterious pathogenic variant.

rate of 1.4 clinical reports per minute. Such approaches will provide 
potential solutions capable of meeting the following requirements of 
most accredited laboratories offering genomic services. These include:

a) Throughput (e.g., screening for defined panels of variants with
report production),

b) Accurate detection (high sensitivity and specificity),
c) Consistent quality of reporting by using hash arrays to annotate

findings,
d) Expand the repertoire of targets screened by adding new variants 

to the existing list.

As noted from point d) above, it has not escaped the attention of 
these authors that increased numbers of variants can be easily added to 

the target panel that are of clinical relevance to the laboratory and also 
physicians using the laboratory’s services. With this goal in mind studies 
have already been initiated by this team to explore the use of creating 
more complex coding/modelling involving successive rounds of logic 
operators (analogous to decision tree algorithms) in order to discover 
pathogenic variants that are not “hard coded” but meet specific criteria 
(for example loss-of-function mutations through the introduction 
frameshift, premature stop-sites or loss of start-sites). In this manner 
it will be possible to exploit the use of publicly available databases (e.g., 
OMIM https://www.omim.org/; ClinVar https://www.ncbi.nlm.nih.
gov/clinvar/); Mendelian Clinically Applicable Pathogenicity (M-CAP) 
Score http://bejerano.stanford.edu/mcap/ [24]) to create decision tree/
artificial neural network models capable of making accurate variant 
classifications concordant with ACMG requirements.

(A) (B)
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As clinical genomics becomes more widespread, personalising 
healthcare through genomically guided therapeutics and management 
protocols will be at the cornerstone of this change. Computational 
algorithms will be requisite at every stage of this rapidly developing field.

Conclusions
Automated computational algorithms can expedite the discovery 

process for known targeted variants of clinical significance and automate 
reporting without user intervention. This translates to reduced turn-
around-time for diagnostic laboratories without impacting the quality 
of service delivery.
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Table 3: Results of variant identification for all 177 patients positively identified with 
a target variant
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b Total number of variant detections. This value indicates the total number of times 
any of the 137 target variants were detected in all patient VCF files. The value is 
higher than the total number of patients given that a single patient could have more 
than one variant identifie
c Number of patients with variants concordant to VCF. Variants detected by the 
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and output result
d Patient zygosity confirmed in VCF files. The VCF file records the zygosity (ho-
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detected by the automated coding was manually checked against the original VCF 
file for each patient.  The reported value indicates the number of patients where 
variant zygosity was concordant even for those patients where more than one vari-
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e Number of patients with one variant detected. This value shows the number of 
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