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Introduction
Microarray analysis is a widely used technology in genetic-related 

fields and has been applied in areas ranging from cancer research to 
pest control. Now scientists can design special microarrays for various 
purposes, such as cancer research [1], mitochondrial function [2], 
chromosomal abnormalities [3], and artery diseases [4]. As microarray 
technology progressed, high-throughput microarray analysis has 
become a powerful approach for scientific research and disease 
diagnosis [5]. For example, high-throughput microarray analysis is 
being developed in identifying molecular targets of brain disorders 
[6], drug discovery, toxicology, stem cell research [7], cancer research 
[8], molecular diagnosis [9], functional proteomics [10], and biological 
system analysis [11].

Many improvements have been devoted to achieving high-
throughput microarray analysis, including the areas of sequencing, 
third dimension, experimental protocol, image capture, and image 
processing. Among these areas of improvement, microarray image 
processing is a key step for a successful high-throughput microarray 
analysis. This step determines the quality of microarray data, which is 
fundamental to all later analysis such as gene clustering and pathway 
derivation.

Scientists use microarrays to study gene expression levels and to 
sequence genomes. By putting DNA in an array on the microarray 
chip, scientists create an orderly formation of spots. Each spot contains 
thousands of identical molecules, consisting of DNA, cDNA or 
oligonucleotides. Microarray images capture the intensity information 
of these spots. Through image processing, one can obtain accurate 
intensity information of these spots, from which gene expression levels 
are studied. Due to a variety of production sources, microarray chips 
are produced with different densities, different spot sizes, and different 
arrangement patterns. The spot intensities reflect quantity levels and 
have a wide range of values. Further complicating the analysis, a 
microarray image is often misaligned and rotated to a varying degree. 
In addition, background due to noise and contamination can directly 
affect the accuracy of spot detection and measurement. 

Figure 1 shows typical difficulties in microarray image processing. 
These include: 1) spot misalignment, where spots are offset from their 
intended location; 2) image rotation, which is unwanted rotation 

of microarray grids; 3) unobservable spots, where large ranges of 
intensities make some spots hard to detect; 4) uneven background due 
to noise; 5) contamination on microarray slides; 6) high spot density; 
and 7) irregular spot shapes and sizes. In addition, microarrays from 
different vendors have different formats, often requiring special 
information from vendors to perform a successful image analysis.

Even with microarray format information from vendors, much 
human input is needed to accurately determine the locations and 
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Abstract
High throughput microarray analysis has great potential in scientific research, disease diagnosis, and drug discovery. 

A major hurdle toward high throughput microarray analysis is the time and effort needed to accurately locate gene spots 
in microarray images. An automatic microarray image processor will allow accurate and efficient determination of spot 
locations and sizes so that gene expression information can be reliably extracted in a high throughput manner. Current 
microarray image processing tools require intensive manual operations in addition to the input of grid parameters to 
correctly and accurately identify gene spots. This work developed a method, herein called auto-spot, to automate the 
spot identification process. Through a series of correlation and convolution operations, as well as pixel manipulations, 
this method makes spot identification an automatic and accurate process. Testing with real microarray images has 
demonstrated that this method is capable of automatically extracting subgrids from microarray images and determining 
spot locations and sizes within each subgrid, regardless of variations in array patterns and background noises. With 
this method, we are one step closer to the goal of high throughput microarray analysis.
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Figure 1: Typical complications in microarray image processing. Panel (a) 
shows a microarray image layout, which has rows and columns of subgrids. 
Panel (b) shows a subgrid, which contains rows and columns of gene spots.
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sizes of many spots in a microarray image. Current microarray image 
analysis software more or less needs microarray parameters, such as 
numbers of row and columns and distances between spots. M a n u a l 
adjustment of microarray grids is often required for a successful 
microarray image processing. The grid circles enclosing spots may 
be too small, resulting in the loss of data, or be too large, resulting 
overlapping with neighboring spots. The grid circles could also be 
completely off the spot, distracted by unwanted splotches on the chip. 
Consequently, human input is needed to correct these inaccuracies 
in spot detection and measurement. This takes up many hours of 
repetitive and tedious adjustments, making microarray technology, 
which is meant to expedite scientific investigations, much less efficient.

There are existing software tools available for microarray image 
analysis such as ScanAlyze (by M.B. Eisen, http://www.eisenlab.org/
eisen/) and TIGR Spotfinder [12] (www.tigr.org/software/tm4/). How-
ever, they require intensive manual operations to accurately identify 
spots and measure intensities.

There have been numerous attempts to automate the image 
processing procedures since the emergence of the microarray 
technology [13-31]. However, these methods usually rely on either 
specific array formatting information or human input, and are not 
available in most commonly used microarray analysis software.

The most recent and up to date work for automatic image processing 
is by Rueda and Rezaeian [31]. They use radon transform to determine 
rotation and use horizontal and vertical histograms to identify rows 
and columns. This discrete approach may be inaccurate in determining 
the rotation angle and does not address non-rectangular spot arrays.

This work developed a method called the auto-spot method to 
automate the process of analyzing microarray images. This method 
is unique in the way to map spot locations through a combination of 
correlation and convolution operations. The method is able to locate 
subgrids within a microarray image and to identify spot regions 
regardless of array patterns, rotational angles, and margin sizes. 
To demonstrate the performance of this method, in the results and 
discussion section, we applied the method, as well as two available 
softwares, ScanAlyze and Spotfinder, to microarray images of different 
arrangements.

Method
Microarray gene spots are often grouped into subgrids and each 

microarray chip contains columns and rows of subgrids. An automatic 
processing method for microarray analysis needs to be able to separate 
subgrids in a microarray image from one another and to identify 
spots within each subgrid image. This work presents a method herein 
called auto-spot to automatically process microarray images. Figure 
2 shows the image processing procedures of this method. The auto-
spot method processes a microarray image in two procedures. First, it 
extracts subgrids from an image; and second, it identifies spots within 
each subgrid image. Figure 3 shows a flow chart depicting steps for 
extracting subgrids, and Figure 4 shows a flow chart of the steps for 
identifying spots. In the following subsections, these two procedures 
are described separately.

Subgrid extraction

A microarray image has subgrids in rows and columns. However, 
where the rows and columns are, and how much the image has been 
rotated, need be decided before subgrids can be separated from one 
another. The auto-spot method locates subgrids by determining the 
separation lines that separate subgrids into rows and columns. The 
subgrids are then extracted from the enclosed region of these separation 
lines. The steps in this subgrid location process are explained in detail 
below.

Calculate the auto-correlation map of a microarray image:  
First, estimate the average distances between the maximums, ∆w 
in horizontal and ∆h in vertical, in the auto-correlation map of the 
microarray image. The microarray image is then filtered with a band-
pass filter to remove structure features of the size max {∆w, ∆h} or 
less. For the convenience of correlation function calculations, the 
microarray image may be resized to a square with a side length being 
a power of two. After the filtering, the main structure features of the 

Figure 2: The microarray image processing of the auto-spot method. First, a 
microarray image is separated into subgrids by identifying separation lines. 
Then, subgrids are processed to identify gene spots.
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Figure 3: Flowchart forsubgridextraction.



Citation: Wu E, Su YA, Billings E, Brooks BR, Wu X (2012) Automatic Spot Identification for High Throughput Microarray Analysis. J Bioengineer & 
Biomedical Sci S5:005. doi:10.4172/2155-9538.S5-005

Page 3 of 9

ISSN:2155-9538 JBBS, an open access journal J Bioengineer & Biomedical Sci Emerging Bioengineering Techniques

image are the subgrids. The auto-correlation map of the filtered image 
contains the arrangement information of the subgrids. The maximums 
in the subgrid auto-correlation map represent the arrangement of the 
subgrids and are used to calculate the slops of the separation lines 
(Figure 5).

Construct strip images of rows and columns: The slopes of the 
rows and columns are calculated from the maximums in the subgrid 
auto-correlation image obtained above. Identify the near vertical 
maximums from above and below the origin and the near horizontal 

maximums from the right and left of the origin. The slopes are 
calculated in the following way (Figure 6):
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Here, nw ,nh are the numbers of maximums along the row and 
column separation lines. The variables, kw, kh are the slopes of the row 
and column separation lines. Please note that the slope of the column 
separation line kh is calculated using x against y as shown in equation 
(1b) to avoid overflow for vertical lines. Using the slopes, a row strip 
image and a column strip image can be created as shown in Figure 6. 
These strip images are images of the same size as the original image. 
Their pixel values are one in a strip region and zero otherwise. The strip 
has a defined slop and width. The width of the strip is set to ∆w and 
∆h for the column strip and the row strip, respectively. The purpose of 
these strip images is to enhance the contrast between spot regions and 
non-spot regions through convolution, as explained in the next step.

Locate separation lines from the strip convolution images: 
Convolve the band-pass filtered image obtained in step 1.1 with the row 
and column strip images obtained in step 1.2 to make the separation 
region stand out (Figure 7). The strip convolution makes spot region 
overlap except the separation between subgrids, so that the separation 
between subgrids have minimum intensities, which are apparent 
in the intensity sums along the row or column slopes (Figure 8). By 
identifying the minimums, the equations of separation lines, equations. 
(2a) and (2b) can be defined for each separation.

j w wjy k x b= +                                                                                     (2a)

i h hix k y b= +                 (2b)
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Figure 4: Flowchart for spotidentification.
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Figure 5: The subgrid auto-correlation map of microarray images. The maxi-
mums in the subgrid auto-correlation map reflect the relative positions of the 
subgrids.
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Figure 6: (a) Slopes of the rows and columns calculated from the maximums; 
(b) the row strip image; and (c) the column strip image.
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Where bhj, bwi define the location of the separation lines. Between the 
separation lines are the subgrids to be extracted for spot identification.

Extract subgrids from the region enclosed by the separation 
lines: The separation lines are scaled back to the original microarray 
image size to separate subgrids. Subgrids between these separation lines 
are extracted from the image to identify spots in the next procedure 
(Figure 9).

Spot identification
Once subgrids are extracted, spots are to be identified within 

subgrids. The flow chart of the spot identification procedure has 
been shown in Figure 4. The concept is that within a subgrid, spots 
are arranged in a single pattern. Spot locations match the pattern 
everywhere, regardless of actual spot intensities. Therefore, spot 
locations can be determined once the pattern is known. The accurate 
spot locations are refined with spot intensities. The boundary of the 
spot array is determined by spot intensities. Within the boundary, 
spot sizes and locations are refined with pixel values. By following the 
pattern, no spot will miss within the boundary. The details of the spot 
identification procedure are described as the following steps.

Array pattern extraction: For convenience, each subgrid is resized 
to a square with a side length being a power of two. Calculate the auto-
correlation image and find all maximums in the correlation image 
(Figure 10). The auto-correlation image reflects the array pattern but 
has inconvenient maximum values. The center peak is extremely high 
and peaks distant from the origin are blurring due to noises and printing 
distortion. A lattice image based on the locations of the maximums is 
constructed with peak heights exponentially decaying from the origin. 
The decay function of the following form is used to reduce effects of 
long-range distortions: 
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The decay distance is set to a fraction of the subgrid size
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Spot location map: The subgrid image is convolved with the 
lattice image obtained from step 2.1 to produce a spot location map 
that shows the ideal spot positions throughout the map (Figure 11). A 
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Figure 8: Sum of intensities along the column slope (top panel) and row slope 
(bottom panel) at different positions. Separation positions can be clearly iden-
tified from the minimums.
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Figure 10: Processing a subgrid image to obtain a grid lattice map. The grid 
lattice map describes the spot distribution pattern.
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Figure 11: Convolve the subgrid image with the lattice map to produce the 
spot location map.
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Figure 12: Determine the boundary rows and columns based on intensity 
sums in rows and columns. The subgrid image within the boundary is the 
data map.
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convolution with the lattice image enhances the intensities of positions 
that are on the lattice pattern. All positions belong to the lattice pattern 
are maximums in the spot location map and are identified by finding 
the maximums.

Boundary determination: The intensities at the spot locations 
are sum up in rows and columns. The sums within the boundary are 
significantly higher than the sums outside the boundaries. Therefore, 
the boundary locations can be defined at the place where the sum 
increases significantly. The spots within the boundaries are data spots 
(Figure 12).

Location refinement and size determination: For each data 
spot, calculate the center of intensity around the ideal location by the 
following equations (Figure 13), 
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The spot size can be fixed to be a certain percentage (e.g., 80%) of 
the grid size, which is defined by the distance between the neighboring 
spots. It can also be variable and determined by the number of pixels 
with intensities above the mean intensity,

iN(I I )1gr π
>

= +

Here, N(Ii > I ), is the number of pixels that have intensity higher 
than average intensity of the spot region, where rg is the radius in pixels. 
The values of xg, yg, and rg, represent the location and size of the spot 
to be identified.

Once the locations and sizes of spots are determined, it is 
straightforward to extract the intensity information of the spots. As to 
the processing of intensities and related them to gene functions are the 
topics of many studies and are not discussed here.

Program Design
The auto-spot method is developed based on a popular image 

processing program: ImageJ [32,33]. ImageJ provides many image 
processing related functions, such as band-pass filter, correlation, 
convolution, access and manipulation of pixel values, etc. By utilizing 
these functions of ImageJ, this development can focus on concepts 
and ideas. ImageJ also provides utilities for macro script writing and 
debugging that makes it very convenient for programming and testing. 
It is planned to implement the auto-spot method to program R (http://
www.r-project.org/) so that many people in the microarray analysis 
community can access this method.

Result and Discussion
The auto-spot method presented in this work is for high throughput 

microarray image processing. This method’s capability of automatically 
gridding can be demonstrated using real microarray images. For 
objective examinations and demonstrations, it is recommended to 
use public microarray images to apply the method. There are many 
such microarray images available from the microarray community. 
In this work, the microarray images from the Stanford microarray 
database (SMD) at www.smd.stanford.edu were downloaded and used 
to examine this method and to compare it with other methods. Due 
to the space limitation, only two images with different microarray 
spot patterns are examined in this report. One has a rectangular array 
pattern, and the other has a hexagonal array pattern.

For the purpose of comparison, the results from two widely used 
microarray image processing softwares, ScanAlyze version 2.51 (by 
M.B. Eisen, http://www.eisenlab.org/eisen/) and TIGR Spotfinder 
version 3.2.1 [12], are presented. Both of the programs are freely 
available and well documented. ScanAlyze and TIGR Spotfinder are 
valuable software tools and have been used in many microarray studies. 
They have many more functions in addition to gridding microarray 
images. In the comparisons reported here, we only focus on spot 
identification. Due to the space limitation and availability, as well as 
cost, other software tools are not compared. Further comparisons with 
other software tools will be reported in future studies.

Global transcriptional profiling microarray (SMD ID: 20385)

This image represents a typical microarray spot layout with 
a rectangular array pattern. We chose this image is because it 
contains most features of microarray images, such as a tilted layout, 
contamination, high noises, etc.

 Figure 14 shows the image of SMD 20385 (panel (a)) and the results 
of the subgridding (panels (b) and (c)) and the spot identification 
(panels (d) and (e)) with the auto-spot method. As can be seen from 
panel (a), the SMD 20385 image tilts toward its right. It is noisy and has 
contaminations. Panel (b) shows the separation lines produced with 
the auto-spot method. It is clear that the separation lines are positioned 
perfectly to separate rows and columns. The separation lines tilt the 

Data map Spot identification map

Figure 13: Spot location refinement and size determination.

SMD 20385 Subgrid separation Spot identification

Extracted subgrid

Enlarged region

(a) (b)

(c)

(d)

(e)

Figure 14: (a) Microarray image of SMD20385 channel 1 downloaded from 
smd.stanford.edu. This image contains 4X12 subgrids. Each subgrid contains 
spots in a rectangular pattern. (b) The separation lines obtained with the au-
to-spot method are shown as white lines. (c) A subgrid extracted using the 
separation lines. (d) The spots identification result. White circles represent the 
locations and sizes of the spots. (e) An enlarged portion of the spot identifica-
tion result.
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same way as the subgrid layout to correctly enclose the subgrids. Panel 
(c) shows a subgrid extracted from the region enclosed by the separation 
lines. Panel (d) shows the result of the spot identification. The spots are 
marked by circles, whose sizes correspond to the spot sizes. For clarity, 

an enlarged portion of the spot identification is shown in panel (e). The 
locations and sizes of the circles agree well with the spots in the image. 
Some weak spots have large circles, because spot size is determined by 
the distribution of pixel values, not by the absolute values of pixels.

As a comparison, we show the results from ScanAlyze and 
Spotfinder. Figure 15 shows the result of ScanAlyze. To use ScanAlyze 
to grid a microarray image, one must create a new grid if an existing 
grid is not available. To create a new grid, one must input a series of 
microarray parameters, such as number of rows and columns, spot 
resolution in x and y direction, spot width and height, pin spaces in x 
and y directions, and the number of subgrids to generate. Table 1 lists 
the microarray parameters used to create the initial grids.

Figure 15 (a) shows a generated grid with parameters shown in 
Table I. Only 32 subgrids are created because that is the maximum 
number of subgrids allowed by ScanAlyze. Initial grids often mismatch 
the spots in microarray images due to a variation in actual parameters, 
printing errors, as well as image tilting. Figure15 (b) shows an enlarged 
initial grid, from which one canclearly see the significant mismatches 
between grid circles and the spots. The mismatch is corrected manually 
with mouse by dragging the grid to the location and resizing to match 
the subgrids. The match is further improved by pressing repeatedly a 
refine button. Figure 15(c) shows the final gridding result. An enlarged 
portion is shown in Figure 15 (d). As can be seen the circles match the 
spots very well.

With Spotfinder, a grid can also be created and refined. Figure 16 (a) 
shows the grid created with the parameters listed in Table 1. Spotfinder 
permits defining the numbers of pins in the x and y directions so all 
subgrids can be generated at once. Again, initially generated grids 
mismatch the spots significantly, as shown in Figure 16 (b). Each grid 
must be individually moved, resized, tilted, and adjusted to produce 
the final grids that match well with the spots, as shown in Figure 16(c).

For microarray images of this type, the auto-spot method, as well as 
ScanAlyze and Spotfinder, work well to locate spots. However, the need 
to input initial parameters and the intensive manual operations with 
ScanAlyze and Spotfinder makes the auto-spot method a much more 
efficient choice over other methods.

Enlarged region

Initial grids

Refined spot locations

Initial spot locations

(c)

(d)

(b)

(a)

Figure 15: Gridding result with ScanAlyze for SMD20385. (a) 32 generated 
subgrids with input parameters listed in Table I. (b) An enlarged view of the 
generated subgrid. (c) After resizing, moving, tilting, and refining, the grids 
match well with the spots. (d) An enlarged region of panel (c).

Images Subgrids columns×rows Spot size resolution Pin spaces
SMD20385 4×12 18×16 15×15 23×22 450×450
SMD69028 4×12 29×32 10×10 15×13 450×450

Table 1: InputparametersforthetwomicroarrayimagestocreateinitialgridsforScanA-
lyzeandSpotfinder.

Grids from input parameters Adjusted grid

Created grid(b)

(c)(a)
Figure 16: Gridding result with Spotfinder for SMD20385. (a) 4X12 generated 
subgrids with input parameters listed in Table I. (b) An enlarged view of the 
generated subgrid. (c) After resizing, moving, tilting, and adjusting, the grids 
match well with the spots.

SMD 69028 Subgrid separation Spot identification

Subgride  extraction

An enlarged
region of (d)

(c)

(e)

(d)(b)(a)

Figure 17: (a) Microarray image of SMD69028 channel 1 downloaded from 
smd.stanford.edu. This image contains 4×12 subgrids. (b) The separation 
lines for columns and rows are produced with the auto-spot method and are 
shown as white overlay lines. (c) A subgrid extracted from the image, where 
spots are arranged in hexagonal pattern. (d) The spot identification result 
with the auto-spot method. The white circles indicate the locations and sizes 
of the spots. (e) An enlarged region of the spot identification result.
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Human lung fibroblast mock microarray (SMD ID: 69028)

This microarray image represents another category of images 
wherein spots are arranged in a hexagonal pattern to maximize the 
density in a gene chip. This pattern causes difficulties for general 
purposed gridding methods that assume spots arranged in a rectangular 
pattern.

Figure 17 shows the microarray image of SMD69028 and the 
processing results with the auto- spot method. This image has 4×12 
subgrids and each subgrid has 29×32 spots. The separation lines 
generated by the auto-spot method for columns and rows are shown as 

white lines in Figure 17 (b). Figure 17(c) shows a subgrid with 29×32 
spots. After spot identification, all spots are identified, enclosed with 
circles of corresponding sizes, shown in Figure 17 (d). An enlarged part 
of the result is shown in Figure 17 (e). Clearly, the locations and sizes 
identified agree well with the spots. Again, the sizes are determined by 
the distribution of pixel values, not by their absolute values. Therefore, 
weak spots are not necessarily small in size.

Figure 18 shows the gridding result from ScanAlyze after inputting 
grid information such as spot size, spacing, column number and row 
number, etc, as listed in Table 1. Figure 18 (a) shows the 32 subgrids 
created, which are the maximum number of subgrids that ScanAlyze 
can create. Figure 18 (b) shows a subgrid from the initial creation. The 
grid circles significantly mismatch the spots. Figure 18(c) shows the 
result of refinement. For clarity, an enlarged portion of panel (c) is 
shown in panel (d). As can be seen, the circles of the first row and every 
other row below it match the spots quite well, but in the second row 
and every other row below it, the circles mismatch the spots. This result 
demonstrates that the refining procedure cannot produce a grid with a 
hexagonal pattern to match the spots.

Figure 19 shows the gridding results from TIGR Spotfinder after 
inputting all spot parameters listed in Table 1. Figure 19 (a) shows the 
initial grids and Figure 19 (b) shows an initial subgrid, where significant 
mismatches can be seen. Figure 19(c) shows the result after refinement, 
including moving, expanding, rotating, and adjusting. Figure 19 (d) 
shows an enlarged portion of the refinement result. Clearly, the first 
row and every other row below it have fairly good matches to the spots. 
However, the second row and every other row below it show very poor 
gridding result where spots often sit on top of the grid lines.

To quantitatively compare the accuracy of these methods, we use 
the spot location data reported by the Stanford microarray database 
as the standard to examine the identification results of these methods. 
Figure 20 shows the root mean square deviation (RMSD) of the 
spot locations from the SMD reports for the two microarray images 
examined above. The black bars show the RMSDs for the SMD20385 
image and the shadowed bars show the RMSDs for the SMD69028 
image. For the SMD 20385 image where arrays are printed in a 
rectangular pattern, ScanAlyze and the auto-spot methods produce 
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Figure 19: Gridding result with Spotfinder for SMD69028. (a) 4×12 gener-
ated subgrids with input parameters listed in Table I. (b) A generated subgrid. 
(c) The grid after resizing, moving, tilting, and refining, where mismatches 
between spots and grids remain. (d) An enlarged view of the adjusted result.
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Figure 18: Gridding result with ScanAlyz for SMD69028. (a) 32 generated 
subgrids with input parameters listed in Table I. (b) An enlarged view of the 
generated subgrid. (c) After resizing, moving, tilting, and refining, the subgrid-
dismatches many of the spots. Panel (d) shows an enlarged region to illustrate 
the mismatch of grids and spots.
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Figure 20: Spot location errors from the three methods. The coordinates from 
the Stanford Microarray Database reports are used as the reference to calculate 
the position errors.
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similar accurate measurement with RMSDs around 2 pixels, while 
the Spotfinder result has a larger RMSD. Therefore, for images with 
rectangular array pattern, ScanAlyze can be as accurate as the auto-
spot method. The Spotfinder result is less accurate, probably due to 
insufficient manual operations to adjust the gridding result. For SMD 
69028 where array is in a hexagonal pattern, the auto-spot method has 
a satisfactory accuracy with a RMSD of 1.5 pixels, while ScanAlyze and 
Spotfinder produce much larger RMSDs around 5.5 pixels. Figure 20 as 
shown in attached word file.

These results show that to use ScanAlyze or Spotfinder for 
SMD69028, one needs special grids designed for the microarray 
chip. In addition, a major difficulty with these tools is that substantial 
manual inputs and adjusts are needed for an accurate identification of 
spots. This is not a serious problem for lab-scale microarray studies, 
but for high throughput microarray analysis, this will be a significant 
hurdle that will be labor expensive and time consuming. These 
results demonstrate the auto-spot method works well for this type of 
microarray images with little manual operation.

While the auto-spot method has shown superior ability to extract 
subgrids and to identify spots automatically, there are difficult 
situations where this method may fail. One scenario is when subgrids 
are not arranged in rows and columns where no separation lines can 
be produced to separate subgrids. So far, we have not seen such type 
of subgrid arrangements. In other words, in all microarray images we 
have seen, subgrids are arranged in rows and columns and the auto-
spot method can apply.

Another difficulty is when subgrids are printed so close to each 
other that the space between subgrids is not larger than the space 
between spots. In this case, the separation lines cannot be automatically 
located from the minimums. 

A third case is that wherein all spots in the boundary rows or 
columns are all too weak to permit determination of the boundary rows 
and columns. This difficulty can be solved if the number of columns 
and rows are known. In this case, the boundary can be identified based 
on column and row numbers plus the difference in intensities.

Conclusions
This work developed an automatic spot identification method 

for the purpose of high throughput microarray analysis. This method 
performs microarray image processing in two procedures. First, it 
extracts subgrids by locating separation lines between columns and 
rows of subgrids. Second, it identifies spots within subgrids so that 
their size and intensities can be measured. Comparison with publicly 
available software, ScanAlyze and TIGR Spotfinder, demonstrates that 
this method is more efficient and more automatic to obtain accurate 
spot locations and sizes than the other methods. To make this method 
a reliable tool for microarray image processing, extensive testing and 
optimization will be performed. With this fully automatic method, we 
are one step closer to the goal of high throughput microarray analysis.
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