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Automatic Sleep Stage Detection and Classification: Distinguishing
Between Patients with Periodic Limb Movements, Sleep Apnea Hypopnea
Syndrome, and Healthy Controls Using Electrooculography (EOG) Signals

Emad Malaekah*, SobhanSalari Shahrbabaki and Dean Cvetkovic
School of Electrical and Computer Engineering, RMIT University, Australia

Abstract

Background: To improve the diagnostic and clinical treatment of sleep disorders, the first important step is to
identify or detect the sleep stages. Utilizing the conventional method-known as visual sleep stage scoring-is tedious
and time-consuming. Therefore, there is a significant need to create or develop a new automatic sleep stage detection
system to assist the sleep physician in evaluating the sleep stages of patients or non-patient subjects. The first aim of
this study is to develop an algorithm for automatic sleep stage detection based on Electrooculography (EOG) signals.
The second aim is to utilize sleep quality parameters to classify and screen Periodic Limb Movements of Sleep (PLMS)
patients and Sleep Apnea Hypopnea Syndrome (SAHS) patients, as distinct from healthy control subjects.

Methods: 10 patients with Periodic Limb Movements of Sleep (PLMS), 10 patients with Sleep Apnoea Hypopnea
Syndrome (SAHS), and 10 healthy control subjects were utilised in this study. Several features were extracted from
EOG signals such as cross-correlation, energy entropy, Shannon entropy and maximal amplitude value. K-Nearest
Neighbour was used for the classification of sleep stages. Several polysomnographical (PSG) features were measured
for screening and classification of the sleep disorders, such as the percentage of the sleep stages over the total time of
sleep, the duration of the sleep stages, Sleep Latency (SL), and sleep efficacy. A decision tree analysis was utilised for
identifying the three groups of subjects.

Results: The overall accuracy, sensitivity and specificity of automatic sleep stage detection were 80.5%, 81.3% and
88.8%, respectively. The Cohen’s Kappa was 0.73. The performance of the classified sleep disorders showed an overall
accuracy of 90%. The sensitivity and specificity were 90% and 95%. The Cohen’s Kappa was 0.85.

Conclusion: One advantage of the automatic sleep stage detection method based on Electrooculography (EOG)
signals is that it can be utilized with portable sleep stage recording instead of using a multichannel signal. Classification
of sleep disorders based on the automatic system is an improvement, in that it can make the screening or diagnostic

processes much faster and easier than with other methods.

Keywords: Sleep stage; Sleep
Electrooculography; Sleep quality

scoring; Polysomnography;

Introduction

The sleep phenomenon has gained reasonable scientific interest for
an extended time. Sleep refers to a behavioral state that varies from
wakefulness by a loss of reactivity, readily and reversibly, in relation to
events within one's environment [1]. Sleep can be categorized into two
primary and distinct behaviors: NREM (Non-Rapid Eye Movement)
sleep and REM (Rapid Eye Movement) sleep [2]. NREM is categorized
as light sleep, termed N1 and N2 (the latter is further broken down
into S1, S2), and deep sleep, which is termed N3 (and further broken
down into S3 and S4) [3]. Deep sleep is also known as Slow-Wave Sleep
(SWS).The abbreviations W, N1, N2, N3, and R are derived from the
new standard of Iber and colleagues [4].

Performing Polysomnography (PSG) entails a comprehensive
sleep study assessing numerous physiological signals such as an
Electroencephalogram (EEG), an Electrooculogram (EOG), an
Electromyogram (EMG), respiratory effort, an Electrocardiogram
(ECG), and others. It is the gold standard for measuring sleep
states [5], sleep quality, and sleep quantity. The manual scoring of
sleep stages based on EEG, EOG and EMG is a subjective and time-
consuming process; hence the need for comprehensive and more
accurate automatic techniques that are easy to apply and can be used in
experimental and clinical ambulatory research.

Several attempts have been made to utilise the EEG or EOG signals

only for detecting sleep stages, or to detect only one particular sleep
stage, such as Slow-Wave Sleep (SWYS) [6,7].

EEG automatic detection has been employed for detecting sleep
stages. The method was comprised of four steps: segmentation,
extraction of parameters, analysis of cluster, and classification. The
parameters compared included the harmonic parameters, Hjorth, and
relative band energy [8]. An automatic algorithm used by Liang [9] for
detection of SWS utilized one or two EOG/EEG channels. The result of
this study obtained 80% sensitivity, and a Cohen’s kappa value of 0.755.

“Sleep disorder” refers to a medical condition in the patterns of
sleep of an animal or human being, also known as somnipathy [10].
The classification of sleep disorders is essential in order to differentiate
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between disorders, and to enhance understanding of etiology,
pathophysiology and symptoms, thus enabling appropriate treatment
[11]. The Pittsburgh Sleep Quality Index (PSQI), which was developed
by Buysse [12], has been used as a standardised subjective measure to
evaluate sleep quality. PSQI is based on several questions relating to the
evaluation of psychometric properties of sleep quality for the duration
of one month. The periodic limb leg movement disorder is defined as a
nearly irresistible urge to move legs while asleep [13]. Studies indicate
that PLMS occurs in stages 1 or 2 of the sleep period before REM sleep.
On the other hand, Obstructive Sleep Apnea Hypopnea Syndrome
(OSAHS) has been on the increase in the last fifty years, with significant
morbidity rates in both developing and developed countries. OSAHS
also causes daylight sleepiness [14]. Sleep apnea hypopnea syndrome
leads to fragmentation of sleep and limits the quantity of time spent in
the deeper sleep stages 3 and 4.

In this study we focused on two main objectives. The first aim was
to develop an automatic sleep stage detection method based on two
EOG signals, as compared with the manual sleep stage detection system
based on EEG, EOG, and EMG signals. The second important aim was
to develop an automatic system for classifying different sleep disorders
based on the sleep quality extracted from the sleep stages.

Materials and Methods
Participants and data collection

The PSG data was downloaded from the online database [11]. The
PSG signals included three EEG signals (C3-A1, FP1-Al and O1-Al),
two EOG signals, and one submental EMG channel. The Right EOG
(REOQG) and Left EOG (LEOG) signals were the only signals utilised
from this PSG dataset. This PSG data was then recorded from 10
healthy controls: 7 females aged 20-65 years (average age: 40 years), and
3 males aged 20-27 years (average age: 23.5 years). Next, these signals
were taken in 10 patients with Periodic Limb Movements of Sleep
(PLMS): 8 adult males aged 31-71 years (average age: 51 years), and 2
adult females aged 27-69 years (average age: 48 years). Finally, signals
were recorded from 10 patients with Sleep Apnea Hypopnea Syndrome
(SAHS): 6 adult males aged 38-73 years (average age: 55 years), and 4
adult females aged 52-74 years (average age: 60 years). The collected
data was acquired in a Belgian sleep hospital using a digital 32-channel
polygraph (Brainnet System of MEDATEC, Brussels, Belgium). The
sample frequency was 200 Hz. The visual sleep stage was scored by an
expert according to the AASM criteria.

EOG signal Processing

Pre-processing: The EOG data was segmented into 5-second
epochs. The entire EOG vector was processed utilising a zero-phase
band pass filter with a Cascaded Integrator-Comb (CIC) filter of order
six, for the following different frequency bands: delta (0.5-2 Hz), deltal
(2-4 Hz), theta (4-8 Hz), alpha (8- 12 Hz), sigma (12-16 Hz), betal (16-
20 Hz ), and beta2 (20-30 Hz) (Figure 1). Since an EOG signal might
be affected by EEG, EMG, and ECG artifacts, launching a suitable
algorithm in order to remove the artifacts and noises is necessary. A
cascade of three adaptive filters based on a least mean square algorithm
was employed, and by this means ECG, EEG, and EMG artifacts were
duly eliminated (more information in [15,16]).

Feature extraction: Several features were extracted from the EOG
signal in the time and frequency domain, such as variance, Maximal
Peak Amplitude Value (MPAV), Minimum Peak Amplitude Value
(MPAV), total power, energy entropy, Shannon entropy, and cross-
correlation. In order to select the best feature that classified variations
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v

Figure 1: Block diagram of the automatic sleep stage detection method using
EOG signals.

in sleep stages and wakefulness, the Sequential Feature Selection
method (SFS) was used.

Classification

In this study, the K-Nearest Neighbor was used for classification
of sleep and wakefulness stages. The KNN is based on a nonparametric
method for different pattern classification approach, which represents
asone robust classifier. The KNN classifier works based on a comparison
between a new sample (testing data) and baseline (training data). It
attempts to find out the K-Nearest Neighbor within the baseline, and
indicates a class which seems more normally in the nearest neighbor
of K. The value of K might need to be diverse in order to detect the
corresponding class between the training and testing data. In this
paper, the value of K varies from 1 to 5. The Euclidean distance metric
is utilized for calculating the distance between two points. The training
and testing data was evaluated based on 10-fold cross-validation.

Smoothing rule

The smoothing rule is one of the common methods for increasing
the accuracy of detecting the sleep stages. This rule is used as in the
following example: three consecutive readings of N1, N2, and N2 were
replaced as sequence N1, N1 and N1.

Classification of sleep disorders

In order to classify the PLSM, SAHS, and healthy control subjects,
different PSG sleep stage parameters were first measured, such as Sleep
Latency (SL), Sleep Efficiency (SE), number of times subject woke up
(NW), Total Sleep Time (TST), Waking After Sleep Onset (WASO),
Slow-Wave Sleep (SWS), and Rapid Eye Movement sleep (REM).
During the first REM period, characteristics of the sleep stages (N1,
N2, N3 and R) were based on the automatic detection system detailed
in the previous section.

A decision tree analysis was used to classify the three groups of
subjects based on the following rules:

- Rule (1) used the percentage of the sleep stage N1 parameter
to separate SAHS patients from PLMS patients and healthy control
subjects. If N1(%) was more than 7% and less than 9%, then a subject
would be classified as an SHAS patient; if N1(%) was less than 4%, then
a subject would be classified as a healthy control; if N1(%) was more
than 10%, then a subject would be classified as a PLMS patient.

- Rule (2) used the percentage of the sleep stage N2 parameter
to separate the SHAS from PLMS patients. If N2(%) was more than
80%, a patient would be classified as an SAHS patient; If N2(%) was
less than 80% and more than 60%, a patient would be classified as a
PLMS patient.

- Rule (3) utilised Slow-Wave Sleep Duration (SWSD) in
minutes and the percentage of sleep stage N3 to distinguish between
PLMS and healthy control subjects. If SWSD was more than 70 min
and N3(%) more than 20%, a subject would be classified as a healthy
control. All these rules were based on some percentage of sleep stage
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and the time duration of sleep parameters, such as N1%, N2%, and
SWSD. The automatic classification algorithm is described in Figure 2.

A statistical analysis was conducted using post-hoc tests to
ascertain whether there were significant differences between the three
groups. Sensitivity and specificity tests, as well as Cohen’s Kappa, were
conducted to evaluate the automatic classification algorithm for the
three groups.

Results

Automatic sleep stage detection

In this pilot study, we utilised the EOG signal only for detection
of the sleep stages of 30 subjects, comprising 10 healthy controls, 10
PLMS patients, and 10 SAHS patients. Several features were extracted
from the EOG signal based on different frequency bands as mentioned
in the previous section. The overall agreement, sensitivity, and
specificity of the detection of sleep stages for healthy control subjects
were 83.5%, 85%, and 88% respectively. The Cohen’s Kappa was 0.79.
Table 1 shows the confusion matrix with sensitivity and specificity after
applying the smoothing rule to one healthy subject as an example. The
results show that the best detection was in wakefulness, and in sleep
stage N3 (by 91%). The detection of sleep stage N1 after utilizing the
smoothing rule was significantly improved.The overall agreement,
sensitivity, and specificity for detection of the sleep stages of PLMS
patients were 80%, 82%, and 86%, respectively. The Cohen’s Kappa
was 0.71, which was lower than the Cohen’s Kappa of the healthy
controls. The reason for this is that the normal distribution of sleep
stages with healthy controls was much more consistent than that of
the PLMS patients. Table 2 shows the confusion matrix, sensitivity,
and specificity of the sleep stages of a PLMS patient. It is obvious that
the total number of sleep stage N2s was higher than other sleep stages,
which increased the detection of stages N1 and R. On the other hand
the overall agreement, sensitivity, and specificity for detection of sleep
stages with SAHS patients were 78%, 77%, and 80%, respectively, while
the Cohen’s Kappa represented was lower than in the other two groups
by 0.67. Table 3 shows the confusion matrix, sensitivity, and specificity
of sleep stages of an SAHS patient. It is clear that the lower sensitivity
was in the wakefulness stages, with an improvement in the detection of
sleep stage N1.

Figures 3, 4 and 5 show the hypnograms of visual sleep stage
scoring vs. automatic scoring for a healthy control, a PLMS and an
SAHS patient, respectively, as opposed to with automatic sleep stage
detection. It can be observed that due to some sleep stages was scored
as sleep stage N2 or N3 which made the view of hypnogram included
some non-corrected classification. However, all of the visual scores
were consistent with 84% for a healthy subject, 86% for a PLMS patient,
and 79% for SAHS patients.

Automatic classification of the PLMS, SAHS, and healthy
control subjects

Figure 2 shows the automatic classification algorithm used to
classify the patients with PLMS, the patients with SAHS, and the
healthy control subjects. The significant sleep parameters, such as
N1(%), N2(%), and SWSD were used to identify the three groups on
the basis of the thresholds as described in the previous section. Table
4 shows the post-hoc test analysis for the three groups of participants.
There were significant differences between the PLMS patients and the
healthy control participants, particularly in sleep stages N1, N2, and
SWS duration. Furthermore, there were significant differences between
the SAHS patients and the healthy control participants in the following
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Figure 2: The automatic classification algorithm for PLMS patients, SAHS
patients, and healthy participants based on decision tree analysis. Where N1
and N2 are the sleep stages and SWSD is slow-wave sleep duration in min.
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Figure 3: The hypnogram of visual sleep stage scoring vs. automatic scoring
for a healthy control subject.
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Figure 4: The hypnogram of visual sleep stage scoring vs. automatic scoring
for a PLMS patient.
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Figure 5: The hypnogram of visual sleep stage scoring vs. automatic scoring
for an SAHS patient.

sleep parameters: SWS duration, REM duration, and sleep stages N2,
N3, and R. The participants with PLMS differed from the SAHS patients
within some sleep parameters, such as in sleep stage N2. Figure 4 shows
the bar plots of the three groups. The SL, WASO, and NW were all
significant sleep stage parameters for the PLMS patients. Sleep stage N2
was a significant sleep parameter for the SAHS patients. The sensitivity
and specificity of identification in the PLMS patients, SAHS patients,
and healthy controls were 90% and 95%, respectively (Table 5). The
level of accuracy and Cohen’s kappa were 90% and 0.85, respectively.

Discussion

In this pilot study, we aimed to use EOG signals for automatic sleep
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Automatic detection

stage detection, and then used the data to classify PLMS patients, SAHS
patients, and healthy control subjects. The overall inter-rate agreement

| R R e sen(s"}:)w“y between the visual sleep scoring and automatic sleep stage scoring was
W 575 18 120 5 16 91 80.5%, with a Cohen’s Kappa of 0.73. On the other hand, the accuracy
N1 22 | 238 | 108 | 5 29 78 level of automatic classification of sleep disorders was 90%, and the
Cohen’s Kappa was 0.85.
Visual N2 15 10 2280 39 62 80.6
detection N3 3 1 168 1018 46 91 We employed different features which extracted from the EOG
R 1 3 150 | 43 | 1065 874 signals and then utilized the KNN classifier for detection of wakefulness
o~ and the sleep stages. Some studies use the decision rule based on
Specificity (%)| 90 | 85 | 70 | 874 | 8.2 various thresholds for predicting the sleep stages [17], however due to
Table 1: The confusion matrix of a healthy control subject. the contract with the threshold from subject to subject particular to the
Automatic detection EOG signal, the resultant accuracy reached 72%. Therefore, we used
W (N1 N2 N3 | R | Sensitivity (%) the KNN classifier due to its simplicity and strength in detecting the
w 52a | 6 | 163 | 5 | 28 o7 sleep stages. Several studies employ signals in addition to EOG signals
for automatic sleep stage detection, such as Electroencephalography
M 50 |150] 163 | 9 36 0 (EEG) and Electromyogram (EMG) signals [18-20]. These require more
Visual N2 25 5 3091 13 | 44 80 electrodes and more complicated algorithms to increase the accuracy
detection N3 10 0 | 191 224 | 19 85 level which has been observed. On the other hand some studies use
R 186 | 11 | 277 16 836 78 only one EEG signal for automatic sleep detection [21,22].
Specificity (%) 88 88 60 | 87.6 82.2 Since the number of occurrences of sleep stage N2 in PLMS and
Table 2: The confusion matrix of a PLMS patient. SAHS patients was more than in the healthy control subjects, this
was a distinct difference between these three groups. This led the
Automatic detection overall accuracy of sleep stage N2 to be very low, which means the
W N1 N2 N3 R | Sensitivity (%) KNN classifier was predicated the other sleep stages as sleep stage
w 547 10 @ 153 17 43 66 N2. In Table 2, for example, it was obvious that the total number of
] N1 29 134 | 181 11 59 72 occurrences of sleep stage N2 was higher than the other sleep stages,
d;/t':‘:lt?;n N2 38 | 13 2893 68 138 795 which caused increased overall detection of the other sleep stages or
N3 3 2 | 104 731 24 84 wakefulness stage.
R 11 ] 12 | 255 | 32 | 968 857 Similar studies have utilised the EOG signal for detection of the
Specificity (%) 85 75 66 96 85 .
sleep stages, or of one particular sleep stage such as Slow-Wave Sleep
Table 3: The confusion matrix of an SAHS patient.
PLMS vs Healthy PLMS vs SAHS SAHS vs Healthy
Sleep parameters t SD p t SD p t SD p
Sleep latency 0.37 43.2 0.71 0.2 40.2 0.81 0.28 21.5 0.77
Sleep efficiency -0.62 22.4 0.54 -0.57 18.3 0.57 -0.24 14.5 0.81
WASO 0.61 94.9 0.55 0.50 81.04 0.62 0.29 59.6 0.77
Number of waking 0.58 1.13 0.57 0.48 193 0.64 0.28 143 0.78
REM Latency 1.9 48.36 0.07 -0.43 101.7 0.67 1.4 95.2 0.17
First REM Period -2.07 0.08 0.06 -1.0 0.60 0.34 0.69 0.60 0.5
Total Sleep Time -0.41 118.9 0.68 -0.51 90.6 0.61 -0.03 77.3 0.97
SWS duration -2.56 70.5 ‘0.03 50.2 0.51 0.62 -6.01 34.38 ‘0.01
REM duration -1.8 41.7 0.10 1.0 32.9 0.33 -3.25 33.4 '0.01
W(%) 0.30 23.2 0.76 0.30 18.8 0.76 0.08 15.38 0.93
N1(%) 2.07 6.1 0.06 1.2 5.7 0.25 1.34 4.23 0.21
N2(%) 2.95 16.6 '0.01 -2.93 10.2 ‘0.01 5.25 15.06 '0.01
N3(%) -3.04 15.2 "0.01 0.80 1.7 0.44 -7.61 7.30 "0.01
R(%) -1.38 10.3 0.2 1.75 6.1 0.11 -2.78 9.03 '0.02
Table 4: The post-hoc t-tests of the differences in the sleep parameters between the three groups.
Automatic Classification
PLMS SAHS Healthy
PLMS 9 1 0
True SAHS 0 9 1
Healthy 1 0 9
Classification Sensitivity 90%
Specificity 95%
Cohen’s kappa 0.85

Table 5:

Confusion matrix, sensitivity, and specificity of the three groups.
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(SWS) [17,22]. An automatic method was previously developed
for detection of SWS based on two EOG channels [22]. This study
employed the amplitude criterion for detecting SWS, and beta power
[18-23] was utilised to reduce the artefact. The result shows inter-rater
reliability between the visual and the developed automatic method of
96%, with a Cohen’s kappa value of 0.70. The sensitivity and specificity
were 75% and 96%, respectively. Another study employed two-channel
electrooculography for automatic sleep stage classification particular to
the left mastoid (M1) [17]. The synchronous Electroencephalographic
(EEG) activity during SWS and S2 were detected by calculating peak-
to-peak and cross-correlation amplitude differences in the 0.5 to 6 Hz
range, and between the two EOG channels. The result indicated epoch
by epoch agreement between the visual and the developed automatic
method of 72%, with a Cohen’s kappa value of 0.63.

The second aim of this study was to utilise the sleep stages that
were detected based on an automated system for the purpose of
classifying PLMS patient, SAHS patients, and healthy control subjects.
We provide significant evidence that supports the use of the PSG
sleep stage features-such as sleep stage N1(%), N2(%), and SWSD-
for an automatic classification of PLMS patients, SAHS patients, and
healthy control subjects. The percentage of sleep stage N1 was the most
significant feature distinguishing patients with SAHS from healthy
control subjects. The study found that sleep stage N(%) was between
7% and 9% for 7 SAHS patients. Conversely, 8 healthy subjects had a
percentage of sleep stage N1 for less than 5% of total sleep duration.
However, some patients with PLMS show higher percentages in sleep
stage N1, which led the mean average of sleep stage N1(%) to be higher
than in the other two groups. Figure 6 presents evidence that the mean
average of sleep stage N1(%) for the healthy control group was lower
compared with the other groups.

The percentage of sleep stage N2 was used to distinguish between
SAHS and PLMS patients. This study found that most of the SAHS
patients had a higher percentage of sleep stage N2 (above 80%) than
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Figure 6: Bar plots of the different sleep parameters for the PLMS patients,
those with SAHS, and the healthy participants.

PLMS patients. In Figure 2, we show the threshold that was used to
distinguish between these two groups of patients. The SWSD and the
percentage of sleep stage N3 were used to separate the PLMS patients
from the healthy control subjects. We found that most of the patients
with PLMS had less SWSD compared to healthy subjects. The longest
SWSD of the healthy controls was above 70 min. The reason for using
the percentage of sleep stage N3 is because some patients with PLMS
had similar SWSD to the healthy control group. Figure 2 shows the
threshold that was used to separate these two groups. The overall
accuracy was 90%, and the Cohen’s kappa was 0.85.

Conclusion

In conclusion, this paper aimed to develop an automatic method

for detection of the sleep stages based on EOG signals, and then utilised
these sleep stages for classification of PLMS patients, SAHS patients,
and healthy control subjects. There was a significant advantage which
supports utilising automatic sleep stage detection based on only EOG
signals on ambulatory sleep recordings. The sensitivity of identifying
PLMS, SAHS and healthy control participants was 90%, 90%, and 90%,
respectively. This study suggests that using an automatic classification
system in screening processes is more effective and efficient compared
to some standards such as PSQI.
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