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Introduction
The analysis of periodic and quasiperiodic waveforms typically 

involves some form of automatic cycle detection [1-5]. There are 
powerful algorithms available to isolate specific frequencies of 
interest in a given waveform; many of these provide readily available 
measurements [6-8]. In the case of physiological behavior, rate 
measurements are often used as summary statistics of the waveforms 
representing that behavior (e.g. number of breaths per minute) [9]. 
Unfortunately, cycle averaging techniques are often inadequate when 
it comes to describing complex behavior, particularly when that 
behavior changes over time [10,11]. In the case of respiratory behavior, 
at least two factors preclude the use of simple cycle averaging: (a) 
the detection of individual and physiologically informative variation 
in chest wall kinematics, and (b) the discrimination of interpretable 
and uninterpretable cycles. Both of these factors can be mitigated by 
the expertise of an experienced coder who can evaluate each cycle of 
a given waveform to determine which ones are acceptable, and then 
measure them accordingly. The downside to human visual coding and 
measurement is the time required to complete it. The twofold purpose 
of this inquiry is to design an algorithm that automatically detects tidal 
breath cycles across a variety of human subjects and to compare the 
algorithm’s performance to that achieved by an experienced human 
coder.

The proposed Automatic Cycle Identification Algorithm (ACIA) 
was used for tidal breath signals. The algorithm was designed in four 
steps using filtering, derivation, and other signal processing techniques 
via MATLAB programming [12,13]. To facilitate further analysis for 
tidal breath signals, the algorithm produced the exact start time for 
each cycle and isolated the distorted cycles due to artifacts. Simulations 
results have shown that, despite the inter- and intra-participant 
variability of the tidal breath signals, the proposed algorithm can 
identify tidal breath cycles correctly and accurately. It can also isolate 
those portions of the signals negatively impacted by motion artifact.

The paper is organized as follows. Section II details the respiratory 
signals used for this analysis. Section III describes the details of the steps 
in proposed algorithm. Section IV shows simulations to compare the 
results obtained by the proposed algorithm with hand-coded results 
obtained by the third author. Section V concludes the paper.

Notation: The uppercase letter M represents the total number of 
data samples in a tidal breath data file. The excursion voltage value at 
the m-th sample is denoted by Y(mτ), 0 ≤ m ≤ M-1, where τ is the 
sampling period in seconds (the sampling period in the analyzed data 
was 0.01seconds). The total number of cycles is denoted by NA, where 
subscript “A” is used to indicate the step and stage addressed in the 
proposed cycle identification algorithm. Typical values for “A” are 
I, II, or III. The start time for the n-th tidal breath cycle is denoted 
by TA[n]. The cycles are indexed consecutively; therefore, the start 
time for the n-th cycle is also the ending-time for the (n-1)-th cycle. 
Notation Ф[n] represents the maximum excursion voltage value in the 
n-th cycle. LA[n] and RA[n] denote, respectively, the minimum values
in the inspiratory and expiratory phases in the n-th cycle (LA[n] and
RA[n] are usually not identical). The letters L and R are used because
the inspiratory phase is in the left portion of a cycle and the expiratory
phase is in the right portion. LA[n] and RA[n] are also referred to as the
left and right minimum excursion voltage in the n-th cycle. ΛA[n] and
ΓA[n] denote, respectively, the inspiratory excursion difference and the
expiratory excursion difference in the n-th cycle.

Overview of Tidal Breath Signals 
The respiratory kinematic data used for algorithm development 

(Section III) and for evaluating the algorithm’s accuracy (Section IV) 
were taken from a separate and independent study by the third author 
exploring tidal breathing in twenty healthy women between 22 and 34 
years of age. The participants’ respiratory behaviors were completely 
voluntarily (i.e., they were not paced or controlled by a metronome 
or other pattern-regulating device). The rationale for including only 
women in that study was to test hypotheses introduced in previous 
literature related to participants’ breath support during listening 
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Abstract
In this paper, we introduce a novel cycle identification algorithm using MATLAB programming to automatically 

identify cycles in tidal breathing signals. The algorithm was designed in four steps using filtering, derivation, and other 
signal processing techniques. To verify the accuracy of the proposed algorithm, its results were compared with those 
of cycles identified manually by a human coder. Simulations results showed that despite the complexity of respiratory 
signals, the proposed algorithm could identify cycles more accurately than the human coder. This algorithm could serve 
as an important first step toward timely identification and coding for more complex respiratory signals, such as those 
underlying speech productions.
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tasks. Each participant’s respiratory movements were measured using 
a respiratory inductive plethysmograph (Inductotracer, Ambulatory 
Monitoring, Inc., Ardsley, NY). The system produced two signals 
representing rib cage and abdomen excursions, the sum of which 
was calibrated to a known volume and adjusted using least-squares 
estimation.

Figure 1 shows two 12-second segments of tidal breath signals. 
Each tidal breath cycle is composed of an inspiratory phase and an 
expiratory phase, with the two phases being delineated by the maximum 
peak of each cycle. The inspiratory start and the expiratory end of each 
cycle are indicated by the vertical dashed lines. As demonstrated in the 
figure, although the tidal breath cycles are similar in their overall shape 
and quasi-periodic nature, the segments demonstrate some degree of 
inter- and intra-participant variability. Hand-coding the signal by an 
experienced coder is time-consuming and may be less precise than an 
algorithm-based identification system, depending on the resolution at 
which the signal is viewed and coded. 

More examples of the variability of tidal breath cycles are provided 
in Figure 2. What is apparent is the difference in the ending segments 
of the expiratory phases among participants (indicated by the dotted 
boxes). The ripples within the signals are normal variations in chest 
wall movement, and a particular pattern can often be characteristic of 
an individual’s tidal breath signal. This is challenging for the algorithm 
design, as the ripples at the ending segments of the expiratory phases 
vary in their respective magnitudes and durations. The start times of 
the cycles are possibly located between any of those ripples or at the 
last ripple, as shown in the first graph in Figure 1 and in Figure 2. It 
is important that an algorithm-based coding system be able to adjust 
to and manage this variability across individual signals. As with most 
physiological signals, the signal representing chest wall movement is 
prone to distortion by motion artifact, which is caused primarily by 

gross-motor movement and/or shifts in posture that are transferred 
to the sensors. Figure 3 shows two examples of how motion artifact 
can negatively impact the interpretability of the tidal breath signal. The 
unwanted displacement or distortion of the signal makes it impossible 
to determine the end point of the previous cycle, which is equivalent 
to the starting point of the subsequent cycle. Motion artifact can also 
introduce short-term upward or downward trends in the signal (as can 
be seen in the lower graph of Figure 3). It is not difficult for a human 
coder to identify, isolate, and remove from analysis the presence of 
motion artifact in the tidal breath signal; an algorithm-based coding 
system must be able to do the same.

Automatic Cycle Identification Algorithm 
The proposed automatic cycle identification algorithm included 

four steps as shown in Figure 4. The first three steps focused on cycle 
identifications, including determining the total number of cycles 
and their exact start times. The fourth step detected and isolated the 
distorted cycles that cannot be used for the purpose of respiratory signal 
analysis. We first give an overview of the four steps with illustrating 
figures, followed by a detailed description of each step in the algorithm. 
A subset of the tidal breath signals described in Section II (six out of 
twenty participants) was used to develop the algorithm.

Overview of the algorithm 

Step I. Identification of all possible cycles: The goal of Step I 
was to identify all possible cycles in a tidal breath data file by looking 
for possible start times via initial processing techniques, including 
decimation, derivation, and interpolation. The cycles were marked by 
vertical lines drawn at the start time for each cycle, as indicated in the 
first plot in Figure 5. As the cycles were numbered consecutively from 
the beginning of the data, the start time of a cycle was also the end 
time of the previous cycle. It was clear from Figure 5 that the initial 
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Figure 1: Examples of tidal breath signals. Start and end points of each cycle are marked by the vertical dashed lines. See Section II for more detail.
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processing techniques in Step I also identified a number of cycles 
between two normal or desired cycles. As these cycles did not represent 
any normal tidal breath cycles, they were referred as “undesired cycles” 
and needed to be removed. This task was carried out in Step II.

Step II. Removal of undesired cycles: It was observed that the 
undesired cycles identified in Step I could generally be classified into two 
patterns based on their locations. As shown in the second plot in Figure 
5, the patterns were represented by the dashed and dotted-dashed cycle 
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Figure  2: Examples of individual tidal breath cycles. Start and end points of each cycle are marked by the vertical dashed lines. Normally occurring variations 
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identification lines, respectively. Two criteria were proposed to remove 
the undesired cycles using various characteristics of tidal breath signals 
such as local maxima, minima, and slope. After the undesired cycles 
were removed, the cycles were renumbered. The index of the last cycle 
was also the total number of desired cycles identified in this step.

Step III. Adjustment of start time for the cycles: By implementing 
Step II, all the desired cycles were identified successfully by their start 
times and marked by vertical lines. However, there was often a small 
offset between the correct start time and the time marked by the vertical 
line obtained in Step II. Therefore, Step III was designed to find the 
exact start time of each cycle and perform further adjustment on the 
corresponding identification line. Due to the complexity in tidal breath 

signals, a two-stage adjustment procedure was designed. In order to 
locate the correct start time, the time at which the next inspiratory 
phase started was identified and the local minimum in the end portion 
of the expiratory phase between two adjacent cycles was examined. The 
third plot in Figure 5 shows the results obtained in Step III.

Step IV. Distorted cycle detection: As mentioned in Section 
II, some cycles in the signals were distorted due to motion artifacts. 
Examples for those cycles were plotted by dashed lines in the last graph 
in Figure 5. The distorted cycles had undesired upwards or downwards 
displacement. Those cycles could not be used for the purpose of future 
analysis because it was impossible to identify the ending points of the 
previous cycles. Step IV was designed to detect, isolate and remove the 
distorted cycles.

Step I: Identification of all possible cycles

Step II: Removal of undesired cycles

Step III: Adjustment of start time for the cycles

Criterion 1: Remove undesired cycles in the trough, based on the average inspiratory
                    excursion

Criterion  2: Remove undesired cycles at the inspiratory phase, based on the average 
                    cycle slope

Stage 1: Locate the time after which the excursion increases consistently

Stage 2: Further adjustment on the start times that are over-adjusted in Stage 1

Step IV: Distorted cycle detection

Figure 4: Diagram of the Automatic Cycle Identification Algorithm.
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Detailed description of the algorithm

Step I. Identification of all possible cycles: Although the respiratory 
signals were roughly quasiperiodic with each cycle resembling a 
sinusoidal-squared waveform, the time duration for each cycle was 
not a fixed constant. Furthermore, the excursion voltage values at the 
end of expiratory phases often fluctuated rapidly in small magnitudes. 
These observations motivated us to use derivation as an initial means to 
identify the start time for possible cycles. As demonstrated in Figure 6, 
the start time for the n-th cycle was identified by a vertical line located 

at time TI[n], where subscript “I” denoted Step I. In the proposed 
algorithm, the signal was decimated by a factor of 30. Interpolation was 
performed on the decimated respiratory signal to recover the original 
time duration. 

The signals in the end portion of an expiratory phase and the next 
inspiratory phase usually did not possess any mathematically tractable 
waveforms. Furthermore, the signals were difficult to analyze if there 
was motion artifact in the end portion of the expiratory phase (see 
Figure 2). As a result, by taking the derivative of the respiratory signals, 
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small bumps in the signal were identified as cycles by Step I as shown 
by dashed lines in Figure 6.

Step II. Removal of undesired cycles: To describe details in the 
algorithm, we first introduced the following measurements associated 

with Step A (depending on which step was being addressed, “A” took 
the value I, II, III, or IV). Figure 7 illustrates these measurements.

ФA[n] was the maximum excursion voltage in the n-th cycle in Step 
A: ФA[n] = max(Y(t), TA[n] ≤ t ≤ TA[n+1]), where TA[n] and TA[n+1] 
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were, respectively, the start times of the n-th and (n+1)-th cycle 
obtained in Step A (here symbol “A” takes value of I, II, III, IV,…). The 
time at which the maximum voltage occurs was denoted by [ ]AT n∗ , i.e. 

[ ]A  ( [ ])An Y T nΦ ∗= .

LA[n] was the minimum inspiratory excursion voltage in the n-th 
cycle in Step A:  [ ] ( ) [ ]A A= min( , [ ])AL n Y t T n t T n∗≤ ≤ . As the inspiratory 
phase was located at the left portion of a tidal cycle, it was also referred 
to as the “left minimum voltage” (indicated by “L”).

RA[n] was the minimum expiratory excursion voltage in the n-th 
cycle in Step A: [ ] ( ) [ ]A A min( t , [ ]  1 )AR n Y T n t T n∗= ≤ ≤ + . It was also 
referred to as the “right minimum voltage” (indicated by “R”).

ΛA[n] was the inspiratory excursion difference in the n-th cycle in 
Step A: ΛA[n] = ФA[n]-LA[n]. It was calculated by the difference between 
maximum excursion voltage ФA[n] and left minimum voltage LA[n].

ГA[n] was the expiratory excursion difference in the n-th cycle in 
Step A: ГA[n] = ФA[n]-RA[n]. It was calculated by the difference between 
maximum excursion voltage ФA[n] and right minimum voltage RA[n].

The identification lines for these undesired cycles were typically 
drawn either at the end portion of the expiratory phase between two 
desired adjacent cycles if there were bumps in the end portion of the 
expiratory phase or inside a cycle if there existed small dips in the 
inspiratory phase. The undesired cycles could be classified into two 
patterns by their locations. Pattern 1 classified the undesired cycles 
located in the end portion of the expiratory phase between two adjacent 
normal tidal breath cycles. Figure 8 shows examples of undesired cycles 
(marked by dashed lines) in Pattern 1. The voltage difference between 
the maximum and minimum voltages in these undesired cycles was 
much smaller than those in desired cycles. Pattern 1 often occurred 
when participants had longer expiratory phases and the expiratory 
voltages fluctuated more rapidly. As a result, more than one undesired 

cycle was often identified by Step I due to the multiple bumps. In 
Pattern 2, the undesired cycles were typically located at the inspiratory 
phase of a distorted cycle that had severe artifacts. Figure 9 illustrates 
this pattern in dashed lines. The following two criteria were applied to 
remove the undesired cycles for Pattern 1 and 2, respectively.

Criterion 1: One of the characteristics in Pattern 1, as shown in 
Figure 8, was that the inspiratory excursion (i.e. the voltage difference 
between the maximum and the left minimum voltage) in the undesired 
cycles was very small compared with that in the desired cycles. In 
Criterion 1, we first identified the cycles in this pattern by examining the 
inspiratory excursion for each cycle and comparing with the ensemble 
average. If the excursion for a cycle fell below a certain percentage of 
the average, the cycle was considered as undesired and its identification 
line was removed. After all the undesired cycles in this pattern were 
identified and removed, the cycle indexes were renumbered. The total 
number of cycles in this criterion was denoted by NII-c1. Criterion 1 
was written as:

{ I 1 I I

I

, if [n] < ,    = 1, 2, . . . , 
II 1 [ ], otherwise[ ] null G n N

c T nT n ωΛ
− = 		                     (1)

where TII-c1[n] was the updated start time for the n-th cycle in Step II 
Criterion 1, “null” represented the action that the identification line 
was removed, ΛI[n] was the inspiratory excursion difference at the 

n-th cycle in Step I (see also Section III-B2), and [ ]I
I 1 I

I

1  N
kG k

N == Σ Λ  

was the ensemble average of inspiratory excursion calculated over all 
cycles identified in Step I. The threshold ω1 was chosen as 37% in the 
algorithm. 

Criterion 2: The undesired cycles in Pattern 2 were located in 
the inspiratory phases. An example was the n-th cycle in Figure 9. It 
could be seen that the expiratory excursion (i.e. the difference between 
maximum and right minimum voltage) of the previous cycle (i.e. the 
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Figure 8: Criterion 1 for Pattern 1 in Step II of Automatic Cycle Identification Algorithm.
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(n-1)-th cycle) was much smaller compared to that of the (n-2)-th cycle. 
In this criterion, the ratio of expiratory excursions between the (n-2)-th 
and (n-1)-th cycles was compared with the ensemble average ratio. If 
the ratio was larger than the ensemble average, then the (n-1)-th cycle 
was identified as undesired and was removed. Similar to Criterion 
1, after all the undesired cycles in this pattern were identified and 
removed, the cycles were renumbered according the updated results. 
Criterion 2 was expressed as:

( ){ II 1 II 1 2 II 1 II-c1

II-c1

, if [ 2]/ [ 1] ,   = 3,...., N
II [ ], otherwise[ ] c c cnull n n H n

T nT n ω− − −Γ − Γ − >=   	                     (2)

Where ГII-c1[n] was the expiratory excursion difference at the 
n-th cycle in Step II-Criterion 1 (see also Section III-B2), and 

( )II 1

II 1 II 1 II 12
II 1

1 [ 1] / [ ]
1

cN
c c ck

c

H k k
N

−

− − −=
−

= Γ − Γ
− ∑  was the average ratio of the 

expiratory excursions between a cycle and the previous one obtained 
in Criterion 1. The threshold ω2 was set as 8 in the algorithm. The start 
time for the n-th cycle obtained in Criterion 2 was the updated start 
time in Step II; therefore, notation TII[n] was used instead of TII-c2[n].

After implementing Criterion 2, all the undesired cycles were 
removed and the total number of desired cycles was determined. The 
updated start time for the n-th cycle was given by TII[n] in (2). However, 
as observed in Figure 9, the start times identified at Step II were not the 
exact start times of the cycles. The offsets usually represented very small 
amounts of time. A two-stage procedure was proposed in Step III to 
perform a final adjustment on the start times.

Step III: Adjustment of start time for the cycle: The offsets in start 
times specified in Step II often occurred if there were many small dips 
or ripples in the ending segments of expiratory phases. Consequently, 
the cycle identification line was drawn between these dips instead of 
at the correct desired start time of the cycle. As the ending segments 
in expiratory phases often were different, it was difficult to specify 
the exact start times by a single criterion. In general, start times were 

observed to have one or both of the following features: (a) the excursion 
voltage after the start time was consistently increasing, which could be 
regarded as an indication of the next inspiratory phase, and (b) the 
excursion voltage at the start time had a locally mathematical minimum 
or near-mathematical minimum (near-mathematical minimum 
meant a value that was so close to the mathematical minimum that 
the difference could not be detected visually). This motivated us to 
implement a two-stage procedure to perform a final adjustment on the 
cycle identification lines such that the exact start time for each cycle 
could be successfully determined.

In the first stage, the time after which the excursion voltage 
consistently increased was identified. Such times, if identified, 
happened to be the exact start times for most of the cycles. However, 
for the cycles in which the ending segment between the previous 
expiratory phase and next inspiratory phase had one or more dips, the 
start times obtained by the first stage were often over-adjusted. Stage 
2 was introduced to undo the over-adjustment by identifying the dip 
with a local or visual minimum in the excursion of the expiratory 
phase. The two stages are described as follows.

Stage 1: In this stage, the time instants after which the excursion 
voltages increased consistently over a certain number of samples were 
identified. In the algorithm, 50 samples were chosen, which was half of 
a second (500 ms). If there existed some dips among those samples, the 
excursion voltages at those samples did not have a consistent increasing 
trend. As shown in the diagram for Stage 1 in Figure 10, a search was 
performed for each cycle using the start time obtained in Step II. If 
excursion voltages in the next 50 samples did not increase consistently, 
the cycle start time was increased by one sample period and another 50 
samples were examined from the updated start time. This procedure 
was repeated until a time-instant was identified such that the excursion 
in the next 50 samples increased consistently.
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The first plot in Figure 11 demonstrates the results from this stage. 
The start times for the n-th and (n+1)-th cycle were updated by vertical 
dotted lines to the times TIII-s1[n] and TIII-s1[n+1], respectively. It could 
be seen from the figure that start times for some cycles identified in 
Stage 1 were over-adjusted by a small time period from the correct 
desired start times. The reason was that there was often a dip in the 
end portion of the expiratory phase with an excursion voltage lower 
than the excursion at the start time specified in Stage 1. If the dip was 
deep enough (being a local or visual minimum), it was considered to 

be part of the inspiratory phase in the current cycle. Otherwise, it was 
considered to be part of the expiratory phase in the previous cycle.

In Stage 1, a start time was identified as a point at which excursion 
voltages in the next 50 samples increased consistently. As a result, all 
ripples or bumps were excluded from the inspiratory phases in current 
cycles and were included in the expiratory phases of previous cycles. 
Consequently, the start time was over-adjusted. Further adjustments 
were performed in Stage 2. Stage 2: In this stage, the over-adjusted start 
times for the cycles specified in Stage 1 were adjusted to the correct 

Step III: Stage 1

Step III: Stage 2

Initial start time:T II[n]

Update the start time TII[n]
by increasing  one  sampling period

Excursion voltages increase
consistently for next 50 samples

Updated start time in Stage 1,  T III-s1[ n] =  T II[ n ]

Adjust the start time to the 
valley,  T III[n] =  TIII-s2[n ]

No adjustment on the start 
time,  T III[n] =  TIII-s1[n ]

Is the valley in the dip deep enough?

Find the time for the valley in the dip,  T III-s1[ n]

No

Yes

No

Yes

Figure 10: Diagram of Step III.
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ones. As shown in the diagram of Stage 2 in Figure 10, the valley of 
a dip in the end portion of the expiratory phase was first located by 
finding the local minimum prior to the start time obtained in Stage 
1. This was performed by a back-search for a decreasing trend in the 

excursion voltage until the time prior to which the voltage started 
increasing was found. Notation TIII-s2[n] was used to represent the time 
at which the valley was located. Next, if the valley in the dip was deep 
enough, the cycle identification line was moved to the valley. Using the 
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local maximum voltage in the range from the valley to the start time 
obtained in Stage 1 as a reference, we checked if the voltage difference 
between the reference and that in the valley was much larger than the 
difference between the reference and that at the start time obtained 
in Stage 1. The ratio of the two voltage differences was used in the 
algorithm. If the ratio was larger than a threshold ω3 = 10, then the start 
time of the cycle was adjusted to the valley in the dip; otherwise, there 
was no adjustment. The local maximum was denoted by ФIII-s2[n] = max 
(Y(t), TIII-s2[n] ≤ t ≤ TIII-s1[n] ) . Stage 2 could be expressed by

( ){ II- 2 3 II

II-s1

[ ],  if [ ]/ [ ] , n = 1, 2,....,N
III [ ], otherwise[ ] sT n n n

T nT n ε ω∈ >= 		                 (3)

where ε[n] = ФIII-s2[n]-Y (TIII-s2) was the voltage difference between 
the reference and that in the valley, and ε[n] = ФIII-s2 [n]-Y (TIII-s1) 
was the difference between the reference and the voltage at the start 
time obtained in Stage 1. The result from this stage is illustrated in 
the second plot in Figure 11. The final start times identified in Stage 2 
in Step III were represented by solid lines at TIII[n] and TIII[n+1]. For 
comparison, the results from Stage 1 were also plotted as dotted lines at 
(TIII-s1[n+1]) and (TIII-s1[n]), respectively. It could be observed from the 
figure that the start times identified in Stage 2 indeed represented the 
correct desired start times.

Step IV: Distorted cycle detection: Even though the average 
shape of tidal breath cycles varied among and within participants, 
distorted cycles were characterized by one or more of the following 
when compared to typical tidal breath cycles: notably shorter durations, 

remarkably larger or smaller excursions, the presence of rapid signal 
deflections, and upward or downward trends within the signal that 
created a noticeable difference in the initial and final voltages. The 
distorted cycles could be detected by calculating the slope in each cycle, 
Ψ[n] = (Y (TIII[n+ 1])-Y (TIII[n] ))/(TIII[n+1]-TIII[n]). If the absolute 
value of a cycle’s slope was larger than a threshold ω4, which was set to 
0.19 in the algorithm, the cycle was identified as distorted and was not 
used in further analysis. Figure 12 showed the results for the proposed 
scheme in distorted cycle detection. The distorted and non-distorted 
cycles were represented by dashed and solid signal traces, respectively. 
The slope in the n-th cycle was larger than ω4 and the slope in the (n + 
1)-th cycle was smaller than -ω4. Both cycles were classified as distorted.

Simulation 
We compared the results of the automatic cycle identification 

algorithm (ACIA) with those of the hand-coded method (HCM). 
The ACIA and HCM results were quantitatively compared using a 
sample of 811 tidal cycle start times across six different participants of 
the original twenty. The respiratory signals used for this comparison 
were a subset of those described in Section II but were not used in any 
way to develop or test the ACIA. The use of these signals allowed an 
unbiased assessment of the ACIA’s accuracy. To identify tidal breath 
cycles using hand coding, an experienced coder viewed each respiratory 
signal as a time waveform in the software program Time-Frequency 
Analysis for 32- bit Windows [14]. Each cycle’s initial and final points 
were identified using the waveform information. The software’s label 

Parameter Meaning Value
ω1 Scalar of the substraction between maximum and left minimum excursion voltage of the n-th cycle. 0.37
ω2 Scalar of the substraction between maximum and right minimum excursion voltage of two adjacent cycles. 8
ω3 Threshold for modification of cycle identification lines in stage 2, Step III. 10
ω4 Threshold for distorted cycle detection. 0.19

Table 1: Criteria Parameters.
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utility was used to mark the cycle’s boundaries. The precision of the 
measurement was increased by zooming in on the cycle’s initial and 
final points on separate passes and marking these points. The time 
required to code one signal by hand ranged approximately from 10 to 
20 minutes, depending on the complexity of the signal. The automatic 
cycle identification algorithm (ACIA), described in Section III, was 
used to identify cycles in the same respiratory signals used for the hand-
coded method (HCM). The threshold values and constants applied in 
the algorithm are listed in Table 1. The cycles identified by both ACIA 
(solid lines) and HCM (dashed lines) were plotted together on each 
respiratory signal (Figure 13). In some cases, both methods identified 
the same start time. In other cases, a zoomed-in review of the start times 
indicated that the ACIA more accurately identified the appropriate 
point than the HCM, due primarily to the resolution with which the 
algorithm could analyze the signal. In order to compare the ACIA with 
the HCM more exactly, we evaluated the duration of all cycles in the 
respiratory signals made by these two algorithms. A large-scale view of 
Figure 13 shows three examples in which the two methods identified 
the same cycle start times. When the signal resolution was increased, 
as in the inset in the upper left-hand corner of the figure, a discrepancy 
between the methods became apparent.

To test the accuracy of the ACIA, two coders familiar with 
respiratory signals (the third author and a person not associated with 
the ACIA development) independently used the MATLAB software 
environment to view the ACIA and the HCM results side by side. The 
coders examined which method more accurately identified the cycle 
start times, given the placement of the start times to the physiological 
signals. In all 811 cases, the AICA either more accurately identified 
the correct start time of the cycle than did the HCM, or replicated the 
HCM’s results. The HCM was unable to resolve inspiratory start times 
as well as the ACIA.

To quantify the difference between the results obtained by the 
ACIA over HCM, the coders also calculated the time difference (ms) 
between the two methods for each of the 811 cycles. Figure 14 shows 
the time differences across the cycles. It was found that the ACIA 
results were identical to those of the HCM results in 68 cycles among 
the total cycles, which is 68/811 = 8.38%. ACIA results were 10 to 50 ms 
more accurate than those of the HCM in 622 cycles (76.70%), 60 to 100 
ms more accurate in 72 cycles (8.88%), 110 to 360 ms more accurate in 
41 cycles (5.06%), and 370 to 800 ms more accurate in 8 cycles (0.99%). 
Figure 15 shows the distribution of the time differences and frequencies 
at which the ACIA was more accurate than the HCM.

Conclusion 
We developed a novel technique for automatically identifying 

respiratory cycles. Given the complexity of the respiratory signals, 
the results of the automatic cycle identification algorithm (ACIA) 
are promising. The algorithm surpassed the hand-coded method. It 
provided not only a time-saving method for coding respiratory signals, 
but also improved upon the accuracy with which the individual cycles 
were identified. In summary, compared to the results performed by an 
experienced hand-coder, the ACIA was able to more quickly select tidal 
breath cycles, more accurately identify and code the cycles’ start times 
so that they could be used in subsequent analyses.
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