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Introduction
The subject of cellular automata has received much attention since 

John Von Neumann’s seminal work [1] on the dynamics of a grid of 
cells which evolve in discrete time steps according to rules based on their 
neighbor’s values (e.g., see the surveys in ref. [2,3]). Conway’s Game 
of Life [4], perhaps the most famous example of cellular automata, 
consists of an infinite two-dimensional orthogonal grid of Boolean 
cells whose values are synchronously updated 1. Cellular automata are 
frequently studied by considering their collective dynamics. Wolfram 
[5], for example, examined the complexity of finding “Garden of Eden 
States” (i.e., states that are unreachable from any other state), as well as 
determining whether a network can reach a state in which all cells have 
value 1 (i.e., a question that is now known as the “All-Ones Problem”). 
Both these problems generally become computationally infeasible for 
all but the smallest one-dimensional networks [6].

A random graph model for automata was introduced by Stuart 
Kauffman in the course of his research on gene regulatory networks. 
These so-called “NK networks” [7] consist of N cells, each of which 
is connected to a randomly chosen subset of K cells. Kauffman and 
others considered self-organization and the spontaneous emergence of 
order [8] in NK and related networks. Consensus is a particular form 
of emergent order that has received particular attention, especially 
in the context of social systems. Miller considered consensus in the 
standing ovation problem as a means to examine behavior in social 
networks using computational models [9]. Arenas surveys network 
structures which lead to emergent features and reports on the 
implications of consensus emergence in a variety of settings [10]. 
In his work, the community structures of networks (i.e., clusters of 
densely interconnected cells, between which connections are sparse) 
play a crucial role. Ball describes how many natural systems rely on 
characteristics akin to community structure in order to reach a level of 
consensus robustly in the presence of noise [11]. Consensus problems 
are closely related to our research since both seeks to understand 

dynamical systems which move towards uniformity irrespective of 
initial conditions [12], and to identify the social network properties 
that lead to stasis and uniformity [13].

The organisms we consider in this paper are discrete Boolean 
cellular automata of the NK type, though we restrict ourselves to K=2 
[14] and require that the cells be connected deterministically to form
a circle. Such cyclic networks have received considerable attention
themselves [6]. Like most prior research, we too (at least initially)
consider only cellular automata that are homogenous at the cellular
level, that is, cyclic networks in which all cells operate according to
an identical update rule. For simplicity, we only consider networks
in which cells synchronously update their values–recent progress in
sequential dynamical systems [15-17] has shown that the behavior of
more general asynchronous systems with small temporal variations can 
be examined by “equivalent” synchronous systems [18].

Where the All Ones Problem asks if the state in which all cells have 
value 1 is reachable from any other state, here we seek to determine if 
there is a state that is reachable from every other state. The networks 
we will consider are so simple as to lack community substructures, and 
yet always reach consensus regardless of noise. This is possible because 
(as we shall prove) their dynamics exhibit a single unique attractor. 
This work extends earlier results on thermal robustness and attractor 
density in synchronously updated cyclic Boolean networks [19].
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Using software developed previously [19], we experimentally simulate 
the size 5 homogeneous XOR organism and output the dynamics as 
a file. From this output, we rendered Figure 5 using Graphviz [20]. 
If we start from the state 00101 and move forward 3 time steps, we 

Background
In this section we introduce basic terminology concerning Boolean 

automata through examples, and provide some motivating context. 
The terminology is rendered formally later, in Section 5.

In this paper we investigate cyclic (i.e., circular) organisms where 
each cell has an instantaneous value of either 0 or 1. The organism is 
homogenous in that it evolves over time by having each cell repeatedly 
apply the same update rule. Although there are many choices of update 
rules, the one we consider here is XOR, which takes into consideration 
just the two immediate neighbors of the cell [14]. The XOR rule 
specifies that if the values of a cell’s two neighbors differ, then the cell 
takes a value of 1 at the next time step; conversely, if the values of a 
cell’s two neighbors agree, then the cell takes a value of 0 at the next 
time step). So, for example, if a cell’s two neighbors have values 0 and 1, 
then at the next time step, the cell will take on a value of 1—an example 
of such a cell appears at the top of the 5-cycle in Figure 1. On the other 
hand, if a cell’s left and right neighbors both have value 0, then at the 
next time step, the cell will take on a value of 0—an example of such a 
cell appears at the bottom-left of the 5-cycle in Figure 1.

If one synchronously (i.e., simultaneously) applies the XOR update 
rule at each of the cells in Figure 1 then one arrives at the configuration 
in Figure 2. Each of these configurations is referred to as a state. If we fix 
index of the organism’s cells, for example as shown in Figure 3, then the 
state depicted in Figure 1 can be named 00010, while the state depicted 
in Figure 2 can be named 00101. We say that the successor of 00010 is 
00101. Following in this manner, one finds that the successor of 00101, 
is 11000, and the successor of 11000 is 11101 and its successor in turn 
is 00101. This sequence of state transitions is shown in Figures 4 and 5. 

Figure 1: Initial state.

Figure 2: Successor state.

Figure 3: Size 5 network.

Figure 4: Successor states from Figure 1.

Figure 5: Attractor with network states.
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using Graphviz to render, shows the complete dynamics graph of the 
cyclic organism of size 5. We generate Figure 7 again using the same 
technique only this time with the binary output converted to decimal 
to show the same graph but vertices (states) labeled by the decimal 
equivalent of the binary name. From either of these diagrams, one 
can verify that there are 6 attractors in all. Five of these attractors have 
length 3, while one of them has length 1.

While the organism of size 5 has 6 attractors, it turns out the 
organism of size 6 has 10 attractors (4 of length 1, and 6 of length 2). 
This is seen in the dynamics graph of the organism of size 6, which 
is given in Figure 8. As before, we generate Figure 8 using Graphviz 
and the simulated dynamics output using our software. Indeed, as 
the organism grows from size 5, 6, 7, so on and onward, the number 
of attractors rises and falls abruptly. This is quantified in the plot in 
Figure 9 below, where the x-axis is the organism’s size (number of 
cells), and the y-axis of this plot is the (base 2) logarithm of the number 
of attractors. Figure 9 is generated using collated experimental results 
from simulations of homogeneous XOR networks of sizes 2 through 
20 where the output attractor counts are graphed using gnuplot [21]. 
We see from the plot that while the general trend is for the number of 

return back at the state 00101 (since 00101→11000→11101→00101), 
such a structure is called an attractor. Because it takes 3 time steps to 
go around this example attractor once, it is said to be an attractor of 
length 3.

Because the organism is of finite size, and each of its cells can only 
take on one of two values (either 0 or 1), there are only finitely many 
states the organism can be in. An organism of size 5 can be in one of 2 
× 2 × 2 × 2 × 2=32 different states; an organism with N cells can be in 
one of 2N different states. Taken as a collection of states, this is referred 
to as the state space of the organism.

Suppose we draw an arrow from one state X to another state Y, 
whenever simultaneously applying XOR at each of the cells in the 
organism when it is in state X would lead to the organism being in 
state Y. Then each state would have exactly one arrow emerging from 
it, since the application of XOR is completely deterministic. The 
resulting directed network would have 2N states as its vertices, and 2N 

arrows as its edges. Such a rendering is called the dynamics graph of the 
organism. Figure 6, which we create in the same manner as before by 
simulating the network to produce an output file of the dynamics and 

Figure 6: Dynamics graph of the cyclic organism of size 5, in binary.
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Figure 7: Number of Attractors vs Network Size.
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attractors to grow exponentially as the organism gets larger, every so 
often the organism reaches a size for which the number of attractors 
plummets to 1—these are precisely those points where the curve passes 
through a point whose y-coordinate is log2 (1)=0. One can see again 
from the plot in Figure 9 that this occurs precisely when the organism 
reaches size 2, 4, 8, and 16.

One might conjecture from the experimental data in the above 
graph that whenever the cyclic organism reaches a size that is a proper 
power of 2 (e.g., 2, 4, 8, 16, 32, 64, ...) then the number of attractors in 
its dynamics graph is exactly 1. The majority of this paper is devoted to 
proving both this statement, as well as its converse: if an organism has 
just one attractor in its dynamics graph, then the organism necessarily 
has a power of 2 many cells.

Interpreting the number of attractors

Biological organisms are subjected to Darwinian preferential 
selection based on the evolutionary advantages of their properties, 
within the context of the ecosystem. Dynamics of Boolean networks 
are simpler than biological networks while possessing some essential 
similar properties. To the extent that the mathematical model we have 
presented here is an idealized rendering of a biological organism, of 
what significance is the number of attractors? Let us examine, at the 
informal level of metaphor, what the implications of having a very 
“large” or very “small” number of attractors have on an organism 
within a real-world ecosystem. We will assume that this ecosystem 
provides the organism with two types of signals: environmental stimuli 
and thermal noise. 

Environmental stimuli are high amplitude signals from the 
ecosystem to which the organism needs to be adaptive and react. 
Thermal noise, on the other hand, consists of low amplitude signals 
against which the organism needs to be robust and not react. An 
organism typically is spinning inside some attractor A. When it 
receives a signal from the outside, one or more of its cell’s values may 
be perturbed (the 0’s may become 1’s and vice versa). This effectively 
throws the organism out of its present state within A, over to some 
other vertex v in it’s the dynamics graph. From v, the organism follows 

the arrows until it lands once again in an attractor A′. The attractor A′ 
may or may not be the same as the attractor A.

For example, if a size 5 organism (see Figure 7) is in the attractor 
A=15→9→6→15 and receives a stimulus, the organism might get 
thrown to state v=28, which case it would land in the attractor A′ 
=23→20→3→23. In this case A ⁄= A′. If however, the stimulus resulted 
in the organism being thrown into state v=22, then it would land in 
the attractor A′ =15→9→6→15. In this case A=A′. From combinatorial 
arguments alone then:

• In an organism which has a very large number of attractors, A′ will 
almost never be the same as A. This makes the organism very adaptive 
(because almost any stimulus will cause it to leave its present attractor), 
but not very robust (for the same reason). Even the slightest amount of 
thermal noise will cause the organism to jump into a different attractor. 
The organism has low robustness.

• In an organism which has a very small number of attractors, A′ will 
almost always be the same as A. This makes the organism very robust 
(because almost no stimulus will cause it to leave its present attractor), 
but not very adaptive (for the same reason). Even the greatest amount 
of environmental stimulus will not cause the organism to jump into a 
different attractor. The organism has low adaptiveness.

An alternate interpretation of attractor counts comes to us from 
the world of neural networks. If the organism is viewed as a set of 
interconnected neurons, then the state space of that organism can be 
interpreted as a mental space. Following this analogy, the dynamics 
of the state space are mental processes and those individual processes 
each lead to an attractor. The formalism of attractors has been used 
to describe memories in the brain [22,23]. The neural network cycles 
infinitely through the states of an attractor, until perturbed through 
stimulus by some outside force, introducing a change in dynamics. 
A mental process that has this property of persisting over time until 
disturbed by an outside force is a memory or a thought. The number 
of distinct memories or thoughts a network can represent reflects 
the quantity of information that the network can process or store. 
Attractors and their potential for information storage has received 

Figure 8: Dynamics graph of organism of size 5, in decimal.
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Figure 9: Dynamics graph of the organism of size 6, in decimal.
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much attention especially in the areas of neural networks and neural 
science. The number and length of attractors have been studied 
extensively [8,24-28]. In ref. [29], simple dynamic systems are studied 
for their large number of attractors and the ease that they can be 
manipulated to perform neural processes.

It is clear then that to attain a reasonable trade-off between being 
robust and being adaptive, the organism requires an “intermediate” 
number of attractors. Having too many attractors implies a loss of 
robustness, and having too few means a loss of adaptiveness. What is 
too many and too few? We know that for an organism of size N, the 
number of states in the state space is 2N, so this is an upper bound on 
the number of attractors. Since every state leads to another state and 
the total number of states is finite, there has to be at least one attractor 
in the dynamics graph; thus 1 is a lower bound on the number of 
attractors.

Given the above observations, the main result of this paper, that 
whenever the cyclic organism reaches a size that is a proper power of 
2 (e.g., 2, 4, 8, 16, 32, 64, ...) the number of attractors in its dynamics 
graph is exactly 1, implies that every time an organism doubles in size, it 
necessarily passes through a size at which it has very low adaptiveness. 
In the next section of this paper, we show through computational 
experiments, that one way to remedy this low adaptiveness is for the 
organism to depart from homogeneity at the cellular level. These 
observations may reflect underlying evolutionary forces driving 
morphogensis and cellular differentiation.

Avoiding low adaptiveness by departing from 
homogeneity

We explore whether low adaptivity can be avoided by introducing 
cellular differentiation. In the homogeneous network every cell 
applies the same update rule. We define a minimally heterogeneous 
organism to have cellular differentiation at a single cell meaning that 
only at this one cell is a different update rule applied. Experimentally, 
we simulate the state space dynamics of every possible minimally 
heterogeneous organism at sizes 2, 4, 8, and 16. For larger sizes 32, 64, 
128, and 256 where complete simulation of the state space dynamics 
is computationally intractable, we sample the state space. To sample 
the state space, we randomly select 1000 initial states and successively 
compute their successor states until we find an attractor and record 
each attractor discovered. The number of attractors discovered by 
sampling provides a lower bound for the total number of attractors.

A cell’s update rule takes as input the Boolean values of its 
neighbours. We refer to the neighbor to left vi × 1 and the neighbor 
to the right as vi+1 where i refers to the index of cell applying the rule. 
For example, the state in Figure 1 can be indexed according to Figure 
3. If we let i=2, then vi-1=v1 and vi+1=v3. Then we can determine that the 
value of the neighboring cells is 0 at vi-1 and 1 at vi+1. Since there are 2 
neighbors and each can have one of two possible values 0 or 1, then 
there are 2*2 or 4 possible input combinations of neighbor values. A 
cell’s value must be either 0 or 1 as a result of each of the possible the 
inputs from its neighbors. Since there are 2 choices for each of the 4 
possible input combinations, there are 24 or 16 possible rules. In Table 
1 we define these rules using Boolean logic. The rules are ordered in 
ascending order according to the Boolean value of the input values for 
which the rule sets the cell’s value to have the value 1.

In Table 2, we see the results of the simulation. At increasing sizes 
which are proper powers of 2, minimally heterogeneous organisms 
where the single cell applies one of following rules {1, 3, 5, 7, 8, 10, 

12 and 14} have an increase in number of attractors. Note, in Table 
2 each column corresponds to one of these minimally heterogeneous 
organisms. For networks of sizes over 24, exhaustively enumerating 
the entire dynamics graph is computationally intractable [30-33]. The 
break in Table 2 between N=16 and N=32 corresponds to a shift in 
computational strategy, from finding the exact number of attractors 
by fully exploring the dynamics graph, to finding a lower bound of 
number of attractors by sampling the dynamics graph starting at 1000 
random initial start states. The minimally heterogeneous organisms 
where the single cell applies one of the following rules {0, 2, 4, 9, 11, 13 
and 15} are not shown in Table 2. For these minimally heterogeneous 
organisms cellular differentiation did not circumvent the collapse to a 
single attractor.

In Figures 10-13 we show the state space dynamics of minimally 
heterogeneous organisms at sizes 2, 4, 8 and 16 where the deviant cell 
applies rule 1 (instead of XOR) to determine its value. For comparison 
the state space dynamics of the homogeneous organism (in which all 
cells apply the XOR update rule) of corresponding sizes, can be seen 
in Figures 14-17. We generate Figures 10-13 as described earlier using 
experimentally simulated dynamics rendered by Graphviz.

Low Adaptivity and Organisms of Size 2i

Our objective is to prove two theorems.

Theorem 1, if the number of cells in an organism is a proper power 
of 2, then the organism has exactly one attractor, which has length 1 
and consists of the state where all cells have a value of 0.

Theorem 2, if regardless of initial state X, the organism always ends 

Rule 0= 0
Rule 1= ¬vi-1 ∧ ¬v i+1

Rule 2= ¬vi-1∧ vi+1

Rule 3= ¬vi-1

Rule 4= vi-1 ∧ ¬v i+1

Rule 5= ¬vi+1

Rule 6= (vi-1 ^ ¬v i+1) ∨ (¬vi-1 ^ ¬v i+1)
Rule 7= ¬(vi-1 ∧ vi+1)
Rule 8= vi-1 ∧ vi+1

Rule 9= (vi-1 ∧ ¬v i+1) ∧ (¬vi-1 ∧ ¬v i+1)
Rule 10= vi+1

Rule 11= vi+1∨ (¬vi-1 ∧ ¬v i+1)
Rule 12= vi-1

Rule 13= vi-1∧ (¬vi-1 ∧¬v i+1)
Rule 14= vi-1∨vi+1

Rule 13= 1

Rule numbers expressed as Boolean logic with 2 inputs: The value of the left 
neighbor vi-1, and the value of the right neighbor: vi+1

Table 1: Table of update rules. 

Size Rule1 Rule 3 Rule 5 Rule 7 Rule 8 Rule 10 Rule 12 Rule 14
2 1 1 1 1 1 1 1 1
4 1 1 1 1 3 3 3 3
8 4 4 4 4 4 4 4 4

16 10 10 10 10 22 22 22 22
32 ≥ 530 ≥ 793 ≥ 809 ≥ 505 ≥ 527 ≥ 804 ≥ 806 ≥ 505
64 ≥ 998 ≥ 1000 ≥ 1000 ≥ 1000 ≥ 998 ≥ 1000 ≥ 1000 ≥ 998

128 ≥ 1000 ≥ 1000 ≥ 1000 ≥ 1000 ≥ 1000 ≥ 1000 ≥ 1000 ≥ 1000
256 ≥ 1000 ≥ 1000 ≥ 1000 ≥ 1000 ≥ 1000 ≥ 1000 ≥ 1000 ≥ 1000

Table 2: Table of minimally heterogeneous organism attractor count as size 
increases by powers of 2.
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up in the same attractor, then the number of cells in the organism is a 
power of 2.

It will take some work to get the proofs of the above statements; they 
appear in finality on pp. 19. We begin with some definitions in Section 
3.1 below. Then, in Section 3.2, we develop a theory of decompositions, 
which are useful to carry out arguments about the dynamics of the 
organism’s state over time. In Section 3.3, this is used to prove results 
about infinite organisms (in which the cells exist on an infinite line). 
In Section 3.4, these results are wrapped into or “mapped down” to the 
dynamics of finite cyclic organisms.

Definitions

Structure: We consider organisms whose cellular structure may 
be modelled as an undirected cyclic graph C=(V, E ) of size n, whose 
vertices are considered “cells” and are enumerated V={v0 ,..., vn−1 }. Each 

cell vi in V is connected in cyclic order to two neighbors, so that E={(vi, 
vi+1 (mod n) ) | i=0,..., n-1}. Microscopic cellular behavior within an 
organism is modeled by fixing a function f : V → F that assigns to each 
cell v ∈ V , a function f (v) from F= {g : {0, 1} × {0, 1} → {0, 1}}, the set 
of all binary Boolean functions; note that |F|=22•2=16. The action of f at 
a vertex vi can be thought of as a truth table mapping vi’s left and right 
neighbors’ current state, to vi’s state at the next time step.

In Table 3 since each of the bits b0, b1, b2, b3 must be either 0 or 1, in 
what follows, we will frequently use the 4-bit binary string b0, b1, b2, b3 
to name the function f. Together, the pair (C, f ) define the microscopic 
structure of the organism. An organism is said to be homogeneous if 
|Im(f )|=1; otherwise it is said to be heterogeneous.

State: Since at each instant, a cell can have a value of either 0 or 
1, the instantaneous state of the organism is specifiable as a function 
V → {0, 1}. The state of the organism over (discrete) time may then be 
represented by a function s: V × N→ {0, 1} where s(vi , t) is the state of 
cell vi ∈ V at time t. Since cell vi behaves (across all time) according to 
function f (vi), and all cells are assumed to operate synchronously, the 
state of the organism evolves over time according to the following law:

s(vi , t+1)=f (vi ) (s(vi−1 (mod n) , t), s(vi+1 (mod n) , t))

For each i=0,... n-1 and t ≥ 0. Informally, the state of the organism’s 

Figure 10: XOR organism size 2.
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constituent cells evolves according to the rule specified by Boolean 
function operating at that cell, together with the current state of its two 
adjacent cellular neighbors. We denote the subset of cells whose state is 
“on” (i.e., 1) at time t as s+ (t)={v ∈ V | s(v, t)=1}. Note that to identify 
the system’s state it suffices to know s+(t), since we can infer that the 
remaining cells are in state 0. In what follows, we will frequently 
identify the state of the organism at time t with the subset s+(t) ⊂ V [8].

Decompositions

The results presented in this section consider countably infinite 
populations of cells arranged in an infinite line. We will show that it 
is always possible to decompose the cells into independent segments, 
on which the successor function acts independently. One can thus 
compute the action of the successor function on the organism as a 
whole by amalgamating its action on each of the independent segments 
in the decomposition. This is the essential content of the final result 
in this section, Lemma 10 on pp. 16. Next, in Section 3.3 (pp.17), we 
use the decompositions to prove significant results about the dynamics 
of infinite linear organisms. We begin with the following definition 
(Table 4).

Definition 1: Let (Z/2Z)z be the set of functions from the integers 
Z to the two-element set (Z/2Z= {0, 1}. Each function x: Z → {0, 1} in 
(Z/2Z)z may be represented as an indexed string where the constituent 
binary symbols are annotated with subscripts from the function’s 

domain Z.

For example, if x is a function which maps the three integers 0, 1 
and 7 all to 1 while mapping all other integers to 0, then we will write x 
as a subscripted string, as follows:

X= 0 1 2 3 4 5 6 701 1 0 0 0 0 0 1 0.
 

Here 0


 represents an abbreviation for the left-infinite sequence 
of 0s (for subscripts decreasing to -∞), while 0


is an abbreviation that 

stands for the right-infinite sequence of 0s (for subscripts increasing 
to +∞). The bijective correspondence between subscripted strings and 
functions is unambiguous. Abusing the notation, we denote both the 
function that is everywhere 0, and it’s associated indexed string, as Ŝ .

In the discussion that follows, we shall frequently move back and 
forth between functions and their indexed string representations. 
We will adhere to a convention wherein functions in (Z/2Z)z shall 
be denoted by lowercase letters (e.g., x, y, z) while their bi-infinite 
binary string representations shall be denoted with the corresponding 
uppercase letters (e.g., X, Y, Z).

The next definition captures the fact that each individual responds 
uniformly to the presence/absence of local belief diversity, since XOR 
(and its negation) are the only two non-constant symmetric Boolean-
valued functions on two inputs.

Definition 2: Let ⊕ be a binary operator on (Z/2Z)z defined as 

Figure 15: Minimally heterogeneous size 8 XOR+Rule 1.
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follows. Given two functions x, y in (Z/2Z)Z, the value of (x ⊕ y):(Z/2Z)
Z at integer i in , is defined in terms of the exclusive-or ⊕ operation (x 
⊕ y)(i)=x(i) ⊕ y(i),

Where, the truth table for the ⊕ operation is enumerated in Table 4.

We use Table 4 to define the successor function Ŝ , which describes 
the state of the entire system at each successive time step by applying the 
XOR update rule synchronously at each constituent cell. For example, 
if X = 0 1 2 3 4 5 6 701 1 0 0 0 0 0 1 0.

 
then Ŝ X = 1 0 1 2 3 4 5 6 7 801 0 1 0 0 0 0 0 1 1 0−

 
.

We intend to quantify the properties of Ŝ using decompositions 
(see Definitions 11 and 12), but first we must introduce some notations 
and preliminary results; this is the objective of Definitions 3-10 and 
Lemmas 3-8 (on pp. 12-15), which follow.

Definition 3: Let Ŝ : (Z/2Z)Z → (Z/2Z)Z be a unary operator defined 
such that for each function x in (Z/2Z)Z , the value of Ŝ x : Z→ Z/2Z at 
i in Z is taken to be Ŝ x(i)=x(i-1) ⊕ x(i+1).

As is customary notation for successive powers of operators, we 
define 0Ŝ  to be the identity map on (Z/2Z)Z and then inductively put 
ˆ jS = 1ˆ ˆ jS S − , for each j > 0. The successor function Ŝ and ⊕ enjoy a 

close relationship, as Lemmas 3 and 5 make evident.

Lemma 3: For all x, y in (Z/2Z)Z, and all i ⊕ Z, Ŝ (x ⊕ y)(i)= Ŝ
x(i) ⊕ Ŝ y(i).

Proof: By Definitions 2 and 3, we know that

Ŝ x(i) ⊕ Ŝ y(i)=(x(i-1) ⊕ x(i+1)) ⊕ (y(i-1) ⊕ y(i+1))

Ŝ (x ⊕ y)(i)=(x(i-1) ⊕ y(i-1)) ⊕ (x(i+1) ⊕ y(i+1)).

The right hand sides of the above equations are equal by the 
associativity and communicativity of the exclusive-or operation ⊕ 
over Z/2Z, and thus so are the left-hand sides. The Lemma follows. 
The previous Lemma suggests that the associative and communicative 
properties of ⊕ could be leveraged if a function x can be decomposed 
into a sum (w.r.t ⊕), since the action of Ŝ to then be distributed over 
summands. This idea shall be brought to fruition in Lemma 10.

Definition 4: Two functions x, y ∈ (Z/2Z)Z are said to be shift-
related, denoted x ≈ y, if there exists a shift t ∈ Z such that x(i)=y(i+t) 
for all i in Z.

For example, if X = 0 1 2 3 4 5 6 701 0 0 1 0 0 0 1 0
 

 and Y =
0 1 2 3 4 5 6 701 0 1 1 0 1 0 1 0

 
, then x(i)=y(i+t) where t=1 (for all i in Z), 

and hence x and y are said to be shift-related. On the other hand, if Z=
0 1 2 3 4 5 6 701 0 1 1 0 1 0 1 0

 
, then z is not shift-related to x, since there is no 

integer t such that z(i)=x(i+t) for all i in Z. From this it follows that z 
is also not shift-related to y which is a specific application of the next 
Lemma.

Lemma 4: The shift-relation ≈ is an equivalence relation on (Z/2Z)Z.

Figure 16: XOR organism size 16.
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Proof: Consider functions x, y, z ∈ (Z/2Z)Z. Reflexivity is obvious 
since x ≈ x by taking t=0 in definition 4. If x ≈ y by shift t, then y ≈ x by 
shift −t, implying symmetry. Finally, transitivity holds since if x ≈ y by 
shift t1, and y ≈ z by shift t2, then x ≈ z by shift t1+t2.

Informally, if two functions are shift equivalent then the results of 
their successors are also shift equivalent. This is clear from the example 
strings X and Y in Definition 4: Ŝ X= 1 0 1 2 3 4 5 6 7 801 0 11 0 1 0 1 0 1 0−

 
 and 

0 1 2 3 4 5 6 7 8 901 0 1 1 0 1 0 1 0 1 0
 Y= 0 1 2 3 4 5 6 7 8 901 0 1 1 0 1 0 1 0 1 0

 
 where Ŝ xi= Ŝ yi+1 therefore Ŝ X ≈ Ŝ

Y. The next Lemma proves the general case.

Lemma 5: If x, y ∈ (Z/2Z)Z and x ≈ y, then Ŝ x ≈ Ŝ y.

Proof: If x ≈ y, then by Definition 4, there exists t ∈ Z such that 
x (i)=y (i+t) for all i in Z. By definition 3, we know that Ŝ x(i)=x(i-1) 
⊕x(i+1) and Ŝ y(i+t)=y(i-1+t) ⊕ y(i+1+t). Appealing again to 
definition 4, we see that Ŝ x (i) = Ŝ y (i+t), from which it follows that 
Ŝ x ≈ Ŝ y. 

We shall use an ordinary, non-indexed string representation 
for ≈-equivalence classes of functions in (Z/2Z)Z. Towards this, we 
introduce the next definition.

Definition 5: For each function x ∈(Z/2Z)Z, let 
... ( 2). ( 1). (0). (1). (2)...

def
X x x x x x= − −  be the associated bi-infinite binary 

(ordinary, non-indexed) string. While definition 1 reflects the fact 
that every function x in (Z/2Z)Z corresponds unambiguously to an 
indexed string, the next Definition and Lemma capture the fact that 
this correspondence is not 1-1 in the case of the ordinary non-indexed 
strings presented in Definition 5.

Definition 6: Associated with every bi-infinite binary (ordinary, 
non-indexed) string X is a countably infinite 1-parameter family 
of functions [ ]X ⊂(Z/2Z)Z, wherein { }: 2 |

def

tX x t= → ∈   , where 

( ) ( )
def

tx i x t i= + for all i in Z.

Lemma 6: For any bi-infinite binary (ordinary, non-indexed) string
X , the set [ X ] ⊂ (Z/2Z)Z  is closed under shift equivalence; that is, (i) 

if xa , xb ∈ [ ]X  then xa ≈ xb , and (ii) if xa ∈ [ ]X and xa ≈ y then y∈ [ ]X .

Figure 17: Minimally heterogeneous size 16 XOR+Rule 1.

s(vi-1, t) s(vi, t) s(vi+1, t) s(vi, t+1)
0 * 0 b0

0 * 1 b1

1 * 0 b2

1 * 1 b3

Table 3: XOR truth table with inputs at time t and resulting output at time t + 1.

A B A⊕B
0 0 0
0 1 1
1 0 1
1 1 0

Table 4: Table of XOR truth table.
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Proof: To see (i) consider two functions xa , xb ∈ [ ]X . By Definition 
6 we know that xa (i)=x (a+i)=x (b+i+(a-b))=xb (i+(a-b)), and so it 
follows that xa ≈ xb by considering a shift of t=a-b in Definition 4. To 
see (ii) suppose xa ≈ y for some xa ∈ [ ]X and some y ∈ (Z/2Z)Z. Then by 
Definition 4, there exists t such that xa (i)=y (i+t) for all i in Z, and thus 
y ≡ xa+t , implying that y ∈ [ ]X by Definition 6. The set F of all binary 
valued functions having finite support (i.e., which take value 1 at only 
finitely many integers) shall turn out to be of special interest.

Definition 7: Let F ⊂ (Z/2Z)Z be the set of binary-valued functions 
on Z having finite support; that is, x ∈ F if x (i)=0 for all but finitely 
many i ∈ Z. For example, ( ) min{ | ( ) 1} 0

0 0

def
b x i x i x

x


= = ≠

=
 corresponds 

to a function x that lies in F, since X contains only three 1s. On the 
other hand, a function x′ which sends all even integers to 1 and all odd 
integers to 0, lies in (Z/2Z)Z\F. For functions of finite support, it will 
frequently be useful to refer to the least and greatest integer which map 
to 1. Towards this, we introduce the next definition.

Definition 8 Let b, e: F → Z be defined as follows:

( ) min{ | ( ) 1} 0
0 0

def
b x i x i x

x


= = ≠

=

( ) max{ | ( ) 1} 0
1 0

def
e x i x i x

x


= = ≠

− =
 

For each function x in F, the length of x ( ) ( ) 1
def

e x b x= − + is taken 
to be the number of bits in the largest essentially non-zero subsegment 
of X. Continuing the previous example 0 1 2 3 4 5 6 701 0 0 1 0 0 0 1 0X =

 
, we note 

that b(x)=0 and e(x)=7 and |x|=8. This suggests that we can “shell” the 
set F by partitioning it into disjoint subsets and assigning each function 
x ∈ F to a specific subset on the basis of |x|. The subsequent Definition 
and Lemma achieves such a shelling.

Definition 9: Let B0 denote the singleton set consisting of the empty 
string, and for each integer n > 0 let Bn denote the set of binary strings 
beginning and ending in 1 and having of length n. Put 0 nnB B∞

== ∪ .

Note that the sets Bn consist of finite ordinary non-indexed binary 
strings of length n. The next Lemma places the set of ≈-equivalence 
classes of binary functions with finite support into 1-1 correspondence 
with the set of finite ordinary non-indexed binary strings.

Lemma 7: The quotient F/≈ is in natural bijective correspondence 
with B.

Proof: We map 0  ∈ F to the empty string in B0 ⊂ B having length 
0. It remains to demonstrate a bijection ϕ between F { 0 } and the set 
of binary strings of finite positive length which begin and end with 
1. Given x ∈ F, 0x ≠ , we take ϕ(x) ∈ Be(x)−b(x)+1 ⊂ B to be the string 
ϕ(x)=x(b(x)) • x(b(x)+1) • • • x(e(x)-1) • x(e(x)).

Clearly if x x≠ ′ as functions, then ϕ(x) and ϕ(x′) are distinct 
members of B. Moreover, if y ∈ F and y ≈ x then ϕ(x)=ϕ( y).

In the reverse direction, given a binary string X ∈ Bn ⊂ B of positive 
length |X |=n>0, we write X as a sequence of binary bits having finite 
positive length 

X=X0 X1 • • • Xi • • • Xn−2 Xn−1 

and consider the function x ∈ F given by 

( ) 0
0 .

ix i X i X
otherwise

= ≤ <


Since X has positive length, X Y≠ , and ϕ−1 (X ) is taken to be the 
≈-equivalence class of x. Clearly if Y ∈ B and X Y≠ , then ϕ-1 (X ) ∩ 
ϕ-1 (Y )=∅.

Definition 10: By Lemma 5, the operator Ŝ  factors through the 
≈ relation, and thus the action of Ŝ  on F ⊂ (Z/2Z)Z presented in 
Definition 3 induces an operator (which we shall denote as S) on the 
quotient set F / ≈. Since F / ≈ was shown to correspond to the set B in 
Lemma 7, we arrive at an induced unary operator S: B → B. The function 
S is thus a self-map of B, which is a set of strings that contains all finite 
strings beginning and ending with 1 (as well as the empty string).

With the preceding definitions in hand, we return to the evolution 
of the dynamical systems over time under the action of the successor 
function Ŝ . The next Lemma shows that for functions with finite 
support, the function’s support interval expands outwards under the 
action of Ŝ ; in particular | Ŝ x|=|x|+2.

Lemma 8: Let x ∈ F\{ Ŝ }. Then

   b( Ŝ x)=b(x)-1

  e( Ŝ x)=e(x)+1

Proof: Since x(b(x))=1 and x(b(x)-2)=0, by Definition 3, Ŝ
x(b(x)-1)=1 and since for all i < b(x)-1, x(i-1)=x(i+1)=0, it follows 
that b( Ŝ x)=b(x)-1. Analogously, since x(e(x))=1 and x(e(x)+2)=0, 
by Definition 3, Ŝ x(e(x)+1)=1 and since for all i > e(x)+1, x(i-
1)=x(i+1)=0, it follows that e( Ŝ x)=e(x)+1.

Given a function x ∈ F, we can decompose its string representation 
X into c disjoint component strings, where each of the components 
has 0r as a prefix and suffix. Such decomposition shall be useful to 
factor the action of rŜ on x into a set of independent action on each 
of the c components. The Definition below renders the decomposition 
formally.

Definition 11: Given a function x ∈ F, integers r ⩾ 0 and c ⩾ 1. 
Choose rj > 0 and gj ⩾ 0 (for j=1,..., c), and let P be a partition of the set 
{b(x)-r1 ,..., e(x)+rc } ⊆ Z

P={(b1, b1+1,..., e1 ), (b2, b2+1,..., e2 ),..., (bc, bc+1,..., ec )}

into c contiguous integer subsequences, in a manner which 
additionally satisfies:

1. b1=b(x)-r1 ; ec=e(x)+rc

2. For j=1,..., c:

• ej ⩾ bj+2rj ;

• x(bj+rj )=x(ej-rj )=1;

• For all i satisfying bj ⩽ i < bj+rj or ej-rj < i ⩽ ej, x(i)=0.

3. bj+1=ej+gj+1, for all j=1,..., c −1.

Then, for j=1,..., c, define

( ) ( 1) ( 1) ( )
def

j
j j j j j j j jW x b r x b r x e r x e r= + ⋅ + + ⋅⋅⋅ − − ⋅ −  

and take rj rj0 0
def

j jW W= ⋅ ⋅ . Note that 2 1j j

j
e b rjW B − − +∈ . Take 

{ }1minc
j jr r==  

We refer to the tuple (b1, W
1, g1 , W

2, g2 ,..., gc-1 , W
c) as an (r, c)-

decomposition of x.

To compute, for example, a (1, 3) decomposition of our ongoing 
example 0 1 2 3 4 5 6 701 0 0 1 0 0 0 1 0X =

 
, we need to provide a size 3 partition 
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of the sequence (−1, 0, 1,..., 7, 8) into contiguous integer sequences. 
If we take P={(−1, 0, 1), (2, 3, 4), (6, 7, 8)}, then conditions 1-3 of 
Definition 11 can be verified directly, noting that b1=−1, e1=1, g1=0, 
b2=2, e2=4, g2=1, b3=6, e3=8; note that g2 maintains the gap between 
the sub-segments of indices (2, 3, 4) and (6, 7, 8). It follows that 

0 1 2 3 4 5 6 701 0 0 1 0 0 0 1 0X =
 

 is a (1, 3) decomposition of X.

The structure of (r, c)-decompositions factor through the equivalence 
relation ≈. For example, referring to the strings 0 1 2 3 4 5 6 701 0 0 1 0 0 0 1 0X =

 

and 1 2 3 4 5 6 7 801 0 0 1 0 1 0 1 0Y =
 

 introduced subsequent to Definition 4, 
we see that ( )010,  0,  010,  1,  010 is a (1, 3)-decomposition of X, while 
( )010,  0,  010,  1,  010  is a (1, 3)-decomposition of Y. The fact that Y is a 
t=1 shift of X is reflected in the fact that b1=0 decomposition of Y, a 
value that is 1 greater than its value in the decomposition of Y. This 
observation is stated formally below:

Lemma 9: Let X ∈ B, and x, x′ ∈ [X]. Let t be an integer for which 
x′ (i+t)=x(i) for all i ∈ Z. If (b1, W

1, g1, W
2, g2,..., gc-1, W

c) is an (r, c)-
decomposition of x, then (b1+ t, W

1, g1, W
2, g2,..., gc-1, W

c) is an (r, c)-
decomposition of x′.

The above allows us to extend the definition of (r, c)-decompositions 
to ≈-equivalence classes of functions.

Definition 12: For each X ∈ B, take x ∈ [X] and let (b1, W
1, g1 , W

2, 
g2 ,..., gc-1 , W

c ) is an (r, c)-decomposition of x. We refer to the tuple (W1, 
g1 , W

2, g2,..., gc-1, W
c ) as an (r, c)-decomposition of the ≈-equivalence 

class [X].

Continuing our example, ( )010,  0,  010,  1,  010  is a (1, 
3)-decomposition of [X]=[Y]. We note by definition each (r, c)-
decomposition (b1, W

1, g1 , W
2, g2 ,..., gc-1 , W

c) of x ∈ F gives rise to a set 
of functions xj: (Z/2Z)Z (for j=1,…,c) where, 

( ) ( )
0 .

j j jx i x i b i e
otherwise

= ≤ ≤


Satisfying the relation x=x1 ⊕ x2 ⊕ ... ⊕ xc. This identity quantifies 
the manner in which we decompose x into a ⊕ sum, each summand of 
which may be seen as being acted upon independently by Ŝ .

Lemma 10: Given X ∈ B, let (W1, g1 , W
2, g2 ,..., gc-1 , W

c) be an (r, c)-
decomposition of [X], for fixed integers r ⩾ 0 and c ⩾ 1. Then for each 
integer 0 < t ⩽ r, the tuple

1 2
1 2 1(0 0 , ,0 0 , ...., ,0 0 )r t t r t r t t r t r t t c r t

cS W g S W g g S W− − − − − −
−⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

is an (r-t, c)-decomposition of [StX].

Proof: Fix x ∈ [X] and let (b1, W
1, g1 , W

2, g2 ,..., gc-1 , W
c) be an 

(r, c)-decomposition of x. For j=1,..., c by Definition 11, we know that 
x(bj+r)=x(ej-r)=1, and x(i)=0 whenever bj ⩽ i < bj+r or

ej-r < i ⩽ ej. Moreover,

0 ( ) ( 1) ( 1) ( ) 0
j

j r r
j j j j

W

W x b r x b r x e r x e r= ⋅ + ⋅ + + ⋅⋅⋅ − − − ⋅




Viewing Wj → X as a substring, by Lemma 8 we see that b( tŜ
x)=b(x)-t, and e( tŜ x)=e(x)+t. Since (by assumption) t ⩽ r, it follows 
that

1 2
1 1 2 1( ,0 0 , ,0 0 , ...., ,0 0 )r t t r t r t t r t r t t c r t

cb t S W g S W g g S W− − − − − −
−− ⋅ ⋅ ⋅ ⋅ ⋅  

 is an (r-t, c)-decomposition of ˆ tS x . The conclusion of the 
Lemma follows by taking the above (r-t, c)- decomposition of Sˆt 
x and considering it as the basis of an (r, c) decomposition of the 
≈-equivalence class [StX], as per Definition 12.

The previous Lemma demonstrates that (r, c)-decompositions 
are a parsimonious way of describing the action of Ŝ on x ∈ F as an 
aggregation of separate independent actions of S smaller sub-segments 
of X. This will be useful repeatedly in the arguments that follow.

The infinite case

The main theorem of this section is the formal proof of the assertion 
that if you start with a state that consists of just two 1s separated by some 
number of zeros, and then simulate forward, you will again at some 
point enter a state that has just two 1s separated by (an even larger) 
number of zeros. More precisely, if you start with two 1s separated by 
2i-1 zeros, then after 2i−1 steps, you will arrive at a state where you have 
two 1s separated by 2i+1-1 zeros. Next, in Section 3.4 (pp. 19), we use 
this theorem to prove important results about the dynamics of finite 
cyclic organisms.

Formally stated:

Theorem 11: ∀i ⩾ 2 
12i

S
− 2 1(10 1)

i− = 2 110 1
i−

Recalling S: B → B from Definition 10, we introduce the following 
named assertion ϕ:

Definition 13: For fixed integer i ⩾ 2, put
1 2 12 1 2 1

i : (10 1) (10) 1
ii i

Sφ
− −− − =

The main result proved in this section (Proposition 18) is that for 
all i ⩾ 2, assertion ϕi is true. This proof shall proceed by induction, for 
which the next Lemma provides the base case. 

Lemma 12: ϕ2 is true.

Proof: It suffices to show S1(1031)=(103)1. Noting that ( )00100 is 
a (1,1)-decomposition of [1031], by Lemma 10 we know (S1(1031)) is a 
(0, 1)-decomposition of [S1(1031)], and since S1(1031)=1010101=(103)1, 
the assertion is proved.

Lemma 13: S2(1)=1031.

Proof: Noting that ( )00100 is a (2, 1)-decomposition of [1], by 
Lemma 10 we know (S2(00100)) is a (0,1)-decomposition of [S2(1)], and 
since S2(00100)=10001=1031, the assertion is proved.

Lemma 14: For all k ⩾ 1, S1((10)k−11)=102k−11.

Proof: Since ( )( )k 10 10 10−

is a (1, 1)-decomposition of [(10)k−11], by 
Lemma 10 we know (0•S1 ((10)k−11)•0) is a (0, 1)-decomposition of 
[S1((10)k−11)], and since S1((10)k−11)=102k−11, the assertion is proved.

Lemma 15: If ∀i > j ⩾ 2, ϕj is true, then 
12i

S
− 2 1(10 1)

i− =
1 1 12 1 2 1 1 2 1 2 1(10 1)= ( (10 1))

i i i i

S S S
− − −− − − −

 

Proof: First we write
1 1 12 1 2 1 1 2 1 2 1(10 1)= ( (10 1))

i i i i

S S S
− − −− − − − . Now, 

by the inductive hypothesis:

   
12 1 2 1 2 1(10 1)=(10) 1

i i i

S
− − − −

By appealing to Lemma 14 we 
11 2 1 2 1((10) 1) 10 1

i i

S
+− −= , which 

completes the proof.

Lemma 16: If ∀i<x, ϕi is true, then 0<k<x implies 2 3 3 2 1(10 1)=(10) 1
k k

S − − .

Proof: We begin by noting that
2

1 1 1

1
2 3 (2 1) (2 2) (2 1) 2

k
k k k k j

j

−
− − −

=

− = − + − = − +∑  

Thus,

 
1 2 3 2 1 22 3 3 2 1 2 2 2 2 2 1(10 1) (10 1)

k k k k

S s s s s s
− − −− − −⋅ ⋅ ⋅  

Repeated application of Lemma 15 yields
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1 2 3

2 3 4

3 4 5

2 1

2 2 1 2 1

2 2 1 2 1

2 2 1 2 1

2 2 1 2 1

(10 1) 10 1

(10 1) 10 1

(10 1) 10 1

(10 1) 10 1
k k k

s

s

s

s
− −

− −

− −

− −

− −

=

=

=
⋅⋅⋅

=

It remains to compute
12 1 2 1(10 1)

k k

s
− − − . Since k<x, we may 

assume the inductive hypothesis: ϕk is true. From this it follows that
12 1 2 1 2 1(10 1) 10 1

k k k

s
− − − −= .

Lemma 17: If ϕi is true ∀i<x then ϕx is true.

Proof: It suffices to show: 
12 1 2 1 2 1(10 1) 10 1

x x x

s
− − − −= . We begin by 

noting that 
1 1 12 1 2 /2 2 /2 1 2 2 110 1 10 0 1 10 1 0 1

x x x x x− − −− − −= ⋅ = ⋅

and thus,
1 1 12 1 2 /2 2 /2 1 2 2 110 1 10 0 1 10 1 0 1

x x x x x− − −− − −= ⋅ = ⋅

is a (2x−1-1, 2)-decomposition of 
12 110

x − − . So, by Lemma 10
1 1 1 1 1 12 1 2 1 2 1 2 1 2 1 2 1( (0 10 ),0, (0 10 ))

x x x x x x

S S
− − − − − −− − − − − −  

is a (0, 2)-decomposition of 
12 1 2 1[ (10 1)]

x x

S
− − − . Using Lemma 13, 12 1x

S
− −  

(1) may be re-expressed as:
1 12 1 2 2 2 1 2 3(1) (10 1)

x x

S S S
− −− − − −=

Appealing to Lemma 16 we determine thatm 
1 12 1 2 3 2 1(10 1) (10) 1

x x

S
− −− − −= . Thus, the (0, 2)-decomposition of 

1 12 1 2 1[ (10) 1]
x x

S
− −− −  is in fact 1 12 1 2 1((10) 1,1,(10) 1)

x x− −− − .

 Concatenating the two factors and the intervening zero (since g1=1), 

we conclude that 
12 1((10) 1)

x− −  is a (0, 1)-decomposition of 
1 12 1 2 1[ (10) 1]

x x

S
− −− − . 

The assertion is proven.

The proof of Proposition 18 is now immediate.

Proposition 18: For all i ⩾ 2, ϕi is true.

Proof: The base case is given by Lemma 12, and the inductive step 
by Lemma 17.

We are now ready to prove Theorem 11.

Proof, directly from Lemma 15 where i ⩾ 2, applying Proposition 
18 shows that ϕi is true for all i ⩾ 2.

Going from infinite to finite

Suppose now that instead of operating with infinite strings 
(functions on Z), the operation is taking place on a cycle of N cells 
numbered 0, 1,..., N−1, each of which could take a value of 0 or 1.

Lemma 19: If X=0N then S(X)=0N

Proof: This is by definition of the XOR function. Any cycle in 
which all cells have the value 0 will remain unchanged over time, that 
is S(0N)=0N.

Lemma 20: If there is one attractor, then the attractor is 0N.

Proof: Suppose we have one attractor. Because an initial state X=0N 
is possible by definition of the networks, applying Lemma 19 completes 
the proof.

Definition 14: A state X is said to lead to a state Y denoted as X → 
Y if ∃k such that Sk(X)=Y.

We are now ready to prove Theorem 1 (stated originally on pp. 8): 
If the number of cells in an organism is a proper power of 2, then the 
organism has exactly one attractor, which has length 1, and consists of 
the state where all cells have a value of 0.

Proof: Suppose N is a power of 2. Consider the starting state 0N 

−1 1. By Lemma 8, simulating forward from this start state produces a 
wave of non-zero values expanding outwards along the cycle from cell 
0. The two wave frontiers proceed in opposite directions, eventually 
colliding on the cycle’s topology at cell N/2 that is antipodal to cell 0. By 
combining Lemma 13 and Lemma 16 we see that, 

1 12 1 2 1(1) (10) 1
i i

S
− −− −= , 

a string of length 2i−1. Thus, at discrete time step 2i−1-1, the cells of the 
cycle are in state: 12 111:10 1

i+ − , implying that cells strictly alternate as 0, 
1, 0, 1,... in their value. Now at this time, because all cells witness local 
homogeneity (that is, for every cell, either both neighbors are 0 or both 
neighbors are 1), at the next discrete step, all cells in the system take 
value 0 (since 0 ⊕ 0=1 ⊕ 1=0). Thus, starting from a simple initial state 
in which precisely one cell has the value 1 and all others have the value 
0, we see that the cycle of N=2i cells converges in 2 i−1 =N/2 discrete time 
steps to being uniformly 0 everywhere.

Since every complex initial state can be decomposed into an ⊕ sum 
of simple states by taking one summand for each cell that has the value 
1—Lemma 3 can be applied to analyze the evolution of the system from 
complex states as well. Because every simple initial state converges to 
the state in which all cells have the value 0 in T=2i-1 steps, Lemma 3 
implies that every complex initial state also converges to the state in 
which all cells have the value 0 in T=2 i-1 steps. In other words, every 
initial state X → 0N, we have shown that the organism has precisely one 
attractor, namely 0N

We are also ready to prove Theorem 2 (stated originally on pp. 8): 
If regardless of initial state X the organism always ends up in the same 
attractor, then the number of cells in the organism is a power of 2.

Proof: By applying Lemma 19 and Lemma 3, it suffices to show that 
for a simple initial state Xi=0N −11 where i is the index of the cell with 
the value 1 if Xi → 0N then for every complex intial state X composed of 
any set of Xi , X → 0N.

Applying Lemma 13, we know S2(N −11)=103 1. Then, repeatedly 
apply Lemma 11 so that after each additional 2i −1 successor steps we 
have two cells of value 1 separated by 2i+1-1 cells with value 0. These 
cells wrap around a cyclic network of N cells. 1⊕1=0, by definition 
of the XOR function. In wrapping the cell values around the network 
of N cells, resulting state would be 0N if the only two cells with value 1 
collide i+1 at the same index. For this collision to occur the number of 
intervening zeros in Lemma 

12 111:10 1
i+ −  equal N-1 mod N.

Therefore, in order for every state 0N −11 to lead to the state 0N for a 
network of size N the following must be true:

 2i+1 −1 ≡ N-1 mod N

2i+1 ≡ 0 mod N

In other words, N divides 2i+1.

We have shown that the organism must have size N=2j for some 
integer j.

Conclusions
In this work, we used an experimental approach to explore the 
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dynamics of homogeneous cyclic organisms of size N=2,...,20 cells, 
using software developed previously [8]. In these homogeneous 
organisms, each cell synchronously determines its successive states 
by computing the ⊕ of the value of its neighbors. From observations 
of these computationally simulated dynamics, we conjectured that if 
the number of cells in an organism is a proper power of 2, then the 
organism has exactly one attractor, which has length 1 and consists of 
the state where all cells have a value of 0. We then formally proved this 
statement as well as its converse: that if regardless of its initial state the 
organism always ends up in the same size 1 attractor, then the number 
of cells in the organism is a proper power of 2. Some of the evidence for 
this now-proven “if and only if” relationship is rendered in Figures 14, 
15 and 16 versus Figures 7 and 8.

Since the act of incrementing the size of an organism until it reaches 
double its size necessarily requires traversing a number that is a proper 
power of 2, any organism that grows to more than twice its original size 
will necessarily encounter a stage in which it has minimal adaptivity 
and maximal robustness. If the organism seeks to always maintain 
“intermediate” values of adaptivity and robustness as it grows, then 
alternative growth patterns that exhibit more than one attractor at 
powers of 2 sizes will be evolutionarily advantageous. The alternative 
growth pattern we explore experimentally in this work, is one in which 
the organism departs from cellular homogeneity to a minimal extent—
allowing a single constituent cell to apply a rule that is different from 
XOR. Through experiments, we show that at sizes that are powers of 
2, such minimally heterogeneous organisms avoid manifesting the 
low adaptivity that is provably exhibited in homogenous organisms. 
We conclude that cellular differentiation is one way an organism can 
avoid low adaptivity configurations that would otherwise necessarily 
be encountered during organism growth. It follows that if there is 
evolutionary pressure selecting for adaptivity, then the phenomenon 
of organism growth may express this pressure as a drive towards 
cellular differentiation and the progression from homogeneity towards 
heterogeneity. Figures 10-13 show the dynamics graphs of minimally 
heterogeneous organisms of sizes 2, 4, 8, and 16 respectively, and have 
increasing numbers of attractors. These figures are placed side by side 
with the dynamics graphs of homogeneous organism of the same size, 
to further illustrate their contrasting dynamics.

Future work will entail simulation of more complex growth 
patterns, beyond merely homogeneous and minimally heterogeneous 
growth. One pattern we plan to explore is probabilistic cellular 
differentiation during growth. Future work needs to look at both larger 
and more diverse organisms, but for larger organisms exhaustive 
simulation is computationally intractable, requiring advances in 
random sampling and estimation theory. By considering dynamics 
data from a more diverse and larger range of systems, it may be possible 
to identify other evolutionary pressures (beyond cell differentiation) 
and meta-phenomena that arise as organisms attempt to maintain a 
balance between adaptivity and robustness during growth.
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