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Introduction
The physiological role of p53 protein in the prevention of cancer 

development through blocking cell cycle progression, regulating cellular 
senescence or apoptosis is well established [1]. In recent years though, 
the emerging role of p53 in metabolic regulation has been a topic of 
great interest. Not only p53 is activated by stress signals, it also seems to 
complexly control energy metabolism under normal conditions [2]. By 
regulating gene expression and other indirect means p53 participates 
in the regulation of glucose, fatty acid, amino acid (glutaminolysis) and 
purine metabolism, influences mitochondrial integrity and oxidative 
phosphorylation, insulin sensitivity, antioxidant response, autophagy 
and mammalian Target of Rapamycin (mTOR) signalling to name 
a few [3]. Importantly, p53 induces expression of TP53-Induced 
Glycolysis And Apoptosis Regulator (TIGAR) which stimulates Pentose 
Phosphate Pathway (PPP) with subsequent production of reduced 
Nicotinamide Adenine Dinucleotide Phosphate (NADPH) necessary 
for reduction of glutathione thus supporting an efficient antioxidant 
defence [4]. Activation of PPP is especially relevant in diabetes where it 
may have protective effect counteracting the negative consequences of 
hyperglycaemia. PPP can process glucose intermediates accumulating 
due to hyperglycaemia that activate metabolic pathways largely 
responsible for the development and progression of microvascular 
diabetic complications [5].

A host of tumour-associated mutations have been described in the 
TP53 gene (chromosome 17p13.1) resulting in very different activities 
from wild-type p53 such as either loss- or gain-of-function [6]. Apart 
from somatic mutations, inherited germ line common polymorphisms 
in the TP53 gene may also contribute to the physiological and 
pathophysiological functions of p53. One of them - a guanine to cytosine 
exchange in exon 4 (rs1042522) of the TP53 causing substitution of 
arginine to proline in the codon 72 – has been widely studied in the 
context of various tumours since the two variants exhibited markedly 
different pro-apoptotic potential [7]. Due to the previously reported 
positive association of p53 polymorphism with susceptibility to Type 2 
Diabetes Mellitus (T2DM) in a large scale candidate gene association 
study [8] and results of experimental studies indicating that p53 
expression in adipose tissue is involved in the development of insulin 
resistance [9] the focus broadened to non-oncological fields as well. 
Recently, two large studies reported association of allele Arg72 with 
T2DM [10] and with the degree of insulin resistance in T2DM [11] 
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and there are also reports of its association with coronary artery disease 
[12,13]. 

The activity of p53 is negatively controlled by Murine Double 
Minute 2 Oncoprotein (MDM2) which promotes p53 degradation and 
is considered as a major negative regulator of p53 [14]. The levels of 
MDM2 strongly affect p53 response and even small increase in MDM2 
level can attenuate p53 function with possible tumour development 
[15]. First intron of the MDM2 gene contains second promoter with 
binding site for p53 [16]. This intron contains a thymine to guanine 
exchange at position 309 which creates SP1 transcription factor binding 
site and increase basal levels of MDM2 [15].

Considering increasingly appreciated role of p53 in the regulation 
of metabolism and its close interaction with MDM2 we were interested 
whether common functional Single Nucleotide Polymorphisms (SNPs) 
in the TP53 and MDM2 genes may affect development and progression 
of diabetes-related morbidity and mortality. Specifically, the aim of 
the study was to analyse the effect of SNPs Arg72Pro in the TP53 and 
SNP309 in the MDM2 on the progression of Diabetic Nephropathy 
(DN), cardiovascular morbidity and mortality and all-cause mortality 
in T2DM subjects.

Material and Methods
Subjects

The study comprised a total of 309 unrelated Caucasian T2DM 
patients with diabetes duration at least 10 years and variable degree of 
impairment of renal function (155 men and 154 women, mean age was 
67.2 ± 10.8 years) from South Moravia region of Czech Republic. The 
baseline stage of DN was defined according to the Urinary Albumin 
Excretion (UAE). Our study sample consisted of: normoalbuminuric 
subjects (UAE <30mg/24h, n=27), subjects with persistent 
microalbuminuria (UAE 30-300mg/24h, n=104), with persistent 
proteinuria (UAE >300mg/24h, n=130) and patients with End-Stage 
Renal Disease (ESRD, glomerular filtration rate <15ml/min/1.73m2 
and/or permanent renal replacement therapy, n=48) followed up in 
specialized nephrology units of Brno University hospitals. Clinical 
characteristics of the study participants are shown in Table 1. Patients 
were followed-up for median 37 (IQR 20 – 59) months. The following 
end-points were considered: (a) progression of DN (i.e. transition 
from any given baseline DN stage to a more advanced stage of 
albuminuria or ESRD, subjects with ESRD at baseline were omitted 
from this analysis since no further progression was possible), (b) major 
cardiovascular event (i.e. non-fatal or fatal myocardial infarction or 
stroke, limb amputation, revascularization), (c) all-cause mortality. 
All patients gave their signed consent prior to their inclusion in the 

study. The study was performed according to the recommendations of 
the Declaration of Helsinki and approved by the Ethical Committee of 
Faculty of Medicine, Masaryk University Brno.

DNA isolation and genotyping

DNA was extracted from peripheral blood samples by the phenol-
chloroform method and stored at -20°C until further analysis. 
Genotyping of TP53 SNP was performed using TaqMan SNP 
Genotyping Assay (C_2403545_10) in ABI Prism 7000 Sequence 
Detection System with genotype discrimination performed using SDS 
2.3 software (all from Applied Bio systems, Foster City, CA). MDM2 
SNP was detected as previously described [17]. 

Statistical analysis

Comparisons between DN groups were performed by Kruskal-
Wallis ANOVA. For both SNPs, Hardy-Weinberg Equilibrium (HWE) 
was tested by chi-square test. Time-to-event analysis using Kaplan-
Meier curves and log-rank test was used. For all standard analyses 
Statistica for Windows (Statsoft inc., Tulsa, OK, USA) was used. P 
value<0.05 was considered statistically significant. 

Results and Discussion
At the end of follow-up period, cumulative incidence of 

DN progression was 25.7% (of these 1.6% progressed from 
normoalbuminuria to microalbuminuria, 1.6% from normo- to 
proteinuria, 31.2% from microalbuminuria to proteinuria, 15.6% 
from microalbuminuria to ESRD and 50% from proteinuria to ESRD). 
Cumulative incidence of major cardiovascular event was 22.6% and 
of all-cause mortality 24.7%, respectively. Ascertained genotype 
frequencies were: CC 57%, CG 39%, GG 4% for SNP Arg72Pro in TP53 
and TT 40%, TG 51%, GG 9% for SNP309 in MDM2.

To assess the eventual impact of both SNPs on studied end-points 
we used Kaplan-Meier analysis. Results of the analyses are shown in 
Table 2. Given the low number of GG genotypes for the TP53 Arg72Pro 
SNP, we applied a dominant model and found significant difference 
between CG+GG vs. CC genotypes for DN progression (P=0.046, log-
rank test). DN progression was faster in carriers genotypes containing 
G allele (associated previously with higher risk of T2DM [10] ), i.e. 
genotypes GG and GC compared to CC homozygotes, Kaplan-Meier 
curves are shown in Figure 1. We did not find any significant difference 
between genotypes of MDM2 SNP for any of the end-points studied.

Protein p53 has been traditionally viewed as a tumour suppressor 
activated by genotoxic stress with subsequent cell cycle arrest and repair 
of the damage or induction of apoptosis if the extent of changes was too 

Parameter (unit) normoalbuminuria (n = 27) microalbuminuria (n = 104) proteinuria (n = 130) ESRD (n = 48) P
Age (years) 66 [61 - 72] 68 [57 - 77] 66 [58 - 75] 69 [64 - 75] 0.179

Duration of diabetes (years) 14 [10 - 22] 8 [5 - 14] 14.5 [8 - 20] 17 [12 - 22] <0.001
FPG (mmol/l) 7.7 [6.2 - 10.2] 7.9 [7.3 - 10.5] 9.3 [7.5 - 11.3] 7.8 [6.3 - 11] 0.173

HbA1C (%) 6.4 [5.2 - 7.5] 6.45 [5.35 - 8.1] 8.1 [6 - 9.6] 6.2 [5.2 - 7.8] 0.062
Total cholesterol (mmol/l) 4.9 [4.3 - 6.3] 4.9 [4.3 - 5.7] 5.2 [4.3 - 6.2] 4.8 [3.9 - 5.5] 0.323

Triglycerides(mmol/l) 1.88 [1.32 - 2.97] 2 [1.32 - 2.71] 2.15 [1.52 - 3.52] 2.11 [1.62 - 3.11] 0.027
Creatinin (µmol/l) 90 [83 - 110] 114 [92 - 147] 139 [104 - 175] 420 [250 - 550] <0.001

Proteinuria (g/24h) 0.11 [0.08 - 0.13] 0.14 [0.08 - 0.22] 1.33 [0.4 - 3.06] - <0.001
GFR (ml/min per 1.73m2) 1.62 [1.32 - 2.3] 1.1 [0.7 - 1.6] 0.88 [0.71 - 1.38] - <0.001

UAE (mg/24h) 10 [8 - 18] 50 [21 - 160] 181 [97 - 545] - <0.001

Data are expressed as median [interquartile range]. Comparisons were made by Kruskal-Wallis ANOVA.
Abbreviations: ESRD, end-stage renal disease; FPG, fasting plasma glucose; GFR, glomerular filtration rate; UAE, urinary albumin excretion.

Table 1: Clinical characteristics of the study participants.
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large. However, in the last several years substantial evidence showed that 
p53 also has an important role in the regulation of metabolic pathways. 
This enabled a major shift of the Warburg effect paradigm and brought 
p53 into the focus in many other disciplines apart from oncology, e.g. 
diabetes and metabolic diseases. Hyperglycaemia has been shown 
to induce mobilization of p53 to the mitochondrial membrane with 
subsequent changes in mitochondrial membrane potential [18]. 
Hyperglycaemia also activates p53 in human endothelial cells [19]. 
Interestingly, oscillating glucose is more effective in p53 activation 
than constant high glucose [19] supporting the view of high glucose 
variability as an additional cellular stressor. Altogether, however, data 
elucidating the role of p53 in metabolic diseases like diabetes mellitus 
and its consequences are scarce so far. To our knowledge this is the first 
study exploring possible relationship between p53 and MDM2 SNPs 
and the progression of adverse effects of diabetes, namely diabetic 
nephropathy, cardiovascular morbidity and mortality.

Conclusions
In the current study we ascertained significant association of 

common polymorphism (specifically genotypes containing allele 
previously associated with higher risk of T2DM) with progression of 
diabetic nephropathy in subjects with T2DM. Elucidation of mutual 
contribution of TP53 genetic effect, long-term metabolic compensation 
and glycemic variability for progression of diabetic nephropathy 
definitely warrants further studies. 

Gene (rs number) Genotype P
DN progression CVE ACM

TP53 (rs1042522) CC vs.CG vs. GG 0.05 NS NS
 CC vs.CG + GG 0.046 NS NS
 CC + CG vs. GG NS NS NS

MDM2 (rs2279744) TT vs. TG vs. GG NS NS NS
 TT vs. TG +. GG NS NS NS
 TT + TG vs. GG NS NS NS

Comparisons were made by log-rank test.
Abbreviations: DN: Diabetic Nephropathy; CVE: Cardiovascular Event; ACM: All-
Cause Mortality.

Table 2: Time-to-event analysis of individual SNPs.

Figure 1: Kaplan-Meier curves for renal end-point for pooled genotypes CC vs. 
GG+GC DN, diabetic nephropathy.
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