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Introduction
Assessment of the cardiac performance is clinically important for 

diagnosing and managing patients with cardiovascular diseases [1-4]. 
To quantify the cardiac performance, cardiac studies have employed 
a number of important indicators, such as the wall thickness, wall 
thickening, and functional strain [5-8]. These indicators are traditionally 
estimated using a number of different medical image modalities. For 
example, tagged MRI or ultrasound are the traditional medical image 
modalities for estimating the functional strain, whereas cine CMRI is the 
traditional technique for estimating wall thickening. The ultimate goal 
of this work is to develop a comprehensive framework for estimating 
different performance indexes of the heart (e.g., functional strain and 
wall thickening) from the same image modality (i.e., cine CMRI) in a 
way that avoids the inconsistency between different estimated indexes. 
This inconsistency results from the inter-slice variability and different 
image resolutions of the different image modalities. In this work, we 
will focus on estimating the wall thickening from cine CMRI using a 
novel 4D approaches for tracking the heart wall over the cardiac cycle. 
Next, we will overview the current methods for estimating the wall 
thickening as well as their limitations.

Related work on wall thickness analysis

Wall thickening is an important indicator for myocardium 
dysfunction, which is more accurate than wall motion analysis [9-
12]. It is typically assessed by visual inspection, which is preferred 
clinically for practical purposes [13]. However, this is obviously a 
time consuming process and is prone to considerable intra- and inter-
observer variability which is a drawback [9,14-16]. To overcome this, 
local myocardial wall thickness is derived, automatically or semi-
automatically, after tracing the endocardial and epicardial boundaries 
in all short-axis images. Prasad et al. [17] proposed to measure the 
myocardial thickening in CMRI more reliably by solving a partial 
differential Laplace equation. However, to reduce the effects of 
segmentation errors in the wall thickness estimation, a further step 
of manual adjustment was performed by a clinical expert. Recently, 

Khalifa et al. [18] proposed an automated framework for analyzing 
the wall thickness and thickening function by solving the 2D Laplace 
equation. However, their method is based on 2D analysis and did not 
take into account the 3D motion of the cardiac wall (i.e., out-of-plane 
motion). Therefore, there is a need for developing more methods for 
more accurate wall thickness analysis.

Limitations of existing works and our approach

In summary, the abovementioned frameworks for analyzing the 
regional function (i.e., wall thickening) are not sufficiently accurate 
and reliable for several reasons: (i) visual inspection is obviously a 
time consuming process and is prone to considerable intra- and inter-
observer variability, and (ii) current 2D methods for wall thickening 
estimation lead to inaccurate measurements because they do not take 
into account the 3D motion of the heart (i.e., out-of-plane motion).

To overcome the aforementioned limitations, we propose a novel 
PDE-based method to estimate the wall thickening from 4D cine CMRI 
based on tracking the LV wall geometry. To achieve this goal, we 
develop a 4D (3D+time) approach to track the LV wall points based on 
solving the 3D Laplace equation between each two successive surfaces 
over the cardiac cycle. To preserve the anatomy of the heart wall, the 
initially tracked surface points are iteratively refined through an energy 
minimization cost function using a generalized Gauss-Markov random 
field (GGMRF) image model. Our ultimate goal is to use the same 
image modality (i.e., cine CMRI) to estimate performance indexes 
of the heart (e.g., wall thickening and functional strains) in order to 
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Abstract
A novel approach for assessing the myocardial function using 4D cine cardiac magnetic resonance imaging 

(CMRI) is proposed. The myocardial function is assessed by estimating the left ventricle (LV) wall thickening based 
on a novel 4D tracking approach that tracks the LV wall during the cardiac cycle. Initially, the proposed 4D approach 
tracks the surface points on the LV wall by solving a 3D Laplace equation between each two subsequent LV surfaces. 
In order to remove inconsistencies and preserve the anatomy of the heart wall during the tracking process, the initial 
locations of the tracked LV surface points are iteratively adjusted through an energy minimization cost function 
using a generalized Gauss-Markov random field (GGMRF) image model. Using the iteratively adjusted solution of 
the 3D Laplace equation, the myocardial wall thickening is estimated by co-allocation of the corresponding points, 
or matches between the endocardium and epicardium surfaces of the LV wall. Experimental results on in vivo data 
demonstrate that our approach outperforms 2D wall thickening estimation approaches.
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obtain more correlated and accurate indexes, which have the ability 
to quantify meaningful effects in treatment and physiological studies.

Methods
The proposed framework for estimating the wall thickening of the 

heart from cine CMRI is schematized in Figure 1. The segmentation of 
the LV wall borders can be obtained using any segmentation technique, 
e.g., using the method in [18] (more about segmentation methods can 
be found in [19]). In this paper, we focus on the tracking of the LV wall 
points and the assessment of the myocardial function. Details of the 
proposed framework are described below. 

4D tracking of the LV wall points

Initial tracking using the solution of the 3D Laplace equation: In 
order to estimate the heart performance indexes, the surface points of 
the myocardium should be tracked over the cardiac cycle. In this work, 
we propose a geometrically motivated approach to track the surface 
points on the LV wall through the cardiac cycle. Our method tracks the 
LV surfaces’ points by solving the Laplace equation between each two 
successive surfaces [20-23] (we denote one as the reference surface and 
the other one as the target surface). The Laplace equation is a second-
order linear PDE, which takes the form:

2 2 2
2

2 2 2 0
x y z
γ γ γγ ∂ ∂ ∂
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∂ ∂ ∂

                   (1)

where ( , , )x y zγ is the estimated electric field between the surfaces. The 
solution γ between two surfaces results in intermediate equipotential 
surfaces and streamlines (field lines), being everywhere orthogonal 
to all equipotential surfaces and establishing natural voxel-to-voxel 
correspondences between the surfaces. In order to estimate ( , , )x y zγ
, we used a second order central differences method and the iterative 
Jacobi approach:
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where ( , , )i x y zγ is the estimated electric field at ( , , )x y z during the ith 
iteration; and , ,x y zθ θ θ  are the step length or resolution in , ,x y z  
directions, respectively. Basic steps of the proposed Laplace-based 
tracking methodology are summarized in Algorithm 1.

Algorithm 1 Solution of the 3D Laplace Equation Between Two 
Surfaces

1) Find the 3D edges of both LV wall surfaces.

Initial condition: Set the maximum and minimum potential γ  at 
the target and reference surfaces, respectively.

Estimate γ  between both surfaces using Eq. (2).

Iterate Step 3 until convergence is achieved (i.e., there is no change 
in estimated γ  values between iterations).

GGMRF-based refinement: In order to avoid any anatomical 
distortions that result from solving the Laplace equation, we employ 
a smoothness constraint to preserve the LV wall anatomy. The 
introduced constraint preserves the relative position between the 
neighboring voxels on the target LV wall surface through iterative 
energy minimization using a GGMRF image model [24] on the initially 
tracked points. Each tracked point on the target is iteratively refined 
by a GGMRF image model [13] using the voxels neighborhood system 
(N-nearest neighbors) (Figure 2).

Given the N-nearest neighbors of each point on the target surface, 
the location of each point is refined using its maximum A posteriori 
(MAP) estimates and voxel-wise stochastic relaxation (iterative 
conditional mode (ICM) [25]) that jointly optimize x , y  and z spatial 
coordinates using [18,26]:
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where s ( , , )s s sx y z=p and s ( , , )s s sx y z=p    denote the initial tracked 
points’ locations and their expected estimates; N  is the number of 
nearest neighbors (Figure 2); ,s rη is the GGMRF potential, and ρ  and 
λ  are scaling factors. In addition to N, the parameter [ ]1.01, 2.0β ∈
controls the refinement level (e.g., β=2 for smooth vs. β=1.01 for 
relatively abrupt edges). The parameter α { }1, 2α ∈  determines the 
Gaussian, α=2, or Laplace, α=1, prior distribution of the estimator. Our 
experiments below were conducted with 1, 5, 1.01, 2ρ = λ = β = α =  
and 2η =s,r  for all directions.
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Figure 1: The proposed framework for estimating the performance indexes of 
the heart using cine CMRI.

Figure 2: Schematic illustration of the 2-nearest voxels.
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Clinical applications

Wall thickness analysis has been used in many clinical applications. 
These applications include the detection, quantification, and follow 
up the treatment of different cardiac diseases, such as hypertrophic 
cardiomyopathy [29], hypertensive heart disease [30], amyloid heart 
disease [31], and chronic ischemic heart disease [32]. To emphasize 
the potential of using the wall thickening to document changes with 
treatment, we have tested our method in research participants with 
chronic ischemic heart disease and heart damage who underwent a 
stem-cell myogeneration therapy. For visual assessment of the wall 
thickening (Δ) functional parameter, we use a voxel-wise parametric 
(color-coded) map. To derive these functional maps, each Δ value is 
normalized by relating it to the maximum value measured in the whole 
volume for the pre- or post-treatments, for the given subject. Figures 4 
and 5 present the parametric maps for the Δ values over multiple cross-
sections for pre- and post-therapy of four subjects. As shown in Figure 
4, our 4D method can better detect the variability of the wall thickening 
than the 2D method proposed by Khalifa et al. [18]. These results 
emphasize the potential of using the wall thickening to document 
changes with treatment that were consistent with improvements 
in patient condition, as documented by clinical indexes. This lends 
encouragement for the proposed framework to detect and quantify 
meaningful effects in treatment and physiological studies.

Future work

The proposed framework has been preliminary tested on six 
patients over multiple time sessions. In order to further test and 
quantify the accuracy of the proposed approach, we plan to acquire 
more datasets with different heart abnormalities and test the accuracy 
of our approach with respect to ground truth landmark points, selected 
by a radiologist. In addition, to avoid the human variability, we plan 
to test our approach using synthetic simulated phantoms with known 
ground truth wall thicknesses and different noise levels to further 
quantify the accuracy and robustness of the method. Furthermore, 
our future work include the estimation of other global (e.g., ejection 
fraction) and local (e.g., functional strain) assessment metrics, derived 
from cine CMRI, for patients enrolled in our case study, stem-cell 
myoregeneration therapy.

Wall thickening assessment 

The changes in the wall thickness during systole of the cardiac 
cycle (i.e., the wall thickening) are obtained by accurate co-allocation 
of the corresponding points, or matches, between the inner and outer 
surfaces of the LV wall by solving the 3D Laplace equation. The wall 
thickness and thickening are estimated using the geodesic distances 
between the estimated corresponding point pairs. A typical example 
of finding the point-wise correspondences between the inner and outer 
surfaces of the heart wall using the solution of the 3D Laplace equation 
is shown in Figure 3.

Results and Discussion
The proposed framework has been tested on 15 independent 

cine CMR datasets obtained from six patients, with prior myocardial 
infarctions that were documented by both clinical indexes and viability 
MRI [22]. Short-axis images were obtained using a 1.5 T Espree system, 
Siemens Medical Solutions, USA Inc., with phased array wrap-around 
reception coils. Breath-hold cine imaging was done using balanced 
steady-state free precession. Typical parameters were: TR: 4.16 ms; 
TE: 1.5 ms; flip angle: 80o; average k-space lines per segment: 12; in-
plane resolution: 1.4x3.1 mm2; and slice thickness: 8 mm. 25 temporal 
image frames were obtained for each slice. The patients were part of an 
institutional review board (IRB)-approved study investigating a novel 
myoregeneration therapy, and all patients had given informed consent 
before imaging.

In-Vivo validation

In order to validate our method, we compare the estimated values 
of the wall thickening to the ground truth (GT) values, which were 
estimated using a set of landmark points that were selected and traced 
manually by a radiologist throughout the cardiac cycle. Comparison 
results between our method and the GT for estimating wall thickening 
are presented. As demonstrated, our estimation is close to the GT as 
documented by the statistical paired t-test [27] with P-value greater 
than 0.05, which indicates non-significant difference.

To highlight the advantage of the proposed 3D method for 
estimating the wall thickening, we compare our method with the 2D 
method proposed by Khalifa et al. [18]. Unlike our method, the 2D 
analysis [18] shows a significant difference from the GT (the paired 
t-test P-value is less than 0.05). This is due to the fact that 2D methods 
do not take into account the 3D heart motion and out-of-plane motion 
that lead to inaccurate estimation of the wall thickening metric [28]. 
So our method can provide more accurate results, which make it more 
suitable for clinical applications [29-32]. These results highlight the 
advantages of the proposed framework.

Endocardium Surface

Voxel -wise Correspondence
2-Nearst Neighbors

Epicardium Surface

Figure 3: Coallocation of corresponding LV wall points for a patient 
data using the proposed method. The inner and outer LV wall surfaces 
are shown in pink and green respectively.
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Figure 4: Pre- and post-thickening analysis using the 2D method proposed in 
[18] and our proposed method for a patient enrolled in this study. The results 
are projected on 2D basal, mid-cavity, and apical cross-sections for illustration.
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Conclusion
A novel 4D (3D+time) tracking approach for accurate assessment of 

myocardium function using cine CMRI is presented. The experimental 
results on in vivo data demonstrated the ability of the proposed 
approach for detecting the out-of plane heart motion which leads to 
accurate estimation of 4D wall thickening assessment metric. The main 
benefit of 4D regional analysis using cine CMRI is that it allows better 
detection of the variability of the wall thickening than the 2D methods. 
The results presented in this study emphasize the potential of using 
the proposed 4D wall thickening analysis to document changes with 
treatment and to detect and quantify meaningful effects in physiological 
studies.
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