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Introduction 
Spatial analyses of disease incidence or mortality in small areas are 

often used to identify elevated risk. For example, posterior probabilities 
of elevated disease risk in each area may be obtained from Bayesian 
models of area disease counts [1-3]. However, elevated risk identified 
in a particular area may not extend to nearby areas, whereas spatial 
clustering of high risk across several adjacent or nearby areas may be of 
particular importance for health policy prioritisation. Identification of 
high risk localities may be more precise than identification of elevated 
risk in individual areas, especially for less frequent outcomes. Interest 
in spatial clustering of high risk may extend to the geographic pattern 
of interrelated disease outcomes (e.g., different forms of mental illness 
or different cardiovascular diseases).

For identifying such clustering in conjunction with a disease 
model, local indices of spatial association, and particular adaptations 
of them, become relevant. The present analysis considers use of local 
join-count statistics to detect high risk locality clustering for disease 
count data aggregated into small areas. These statistics are used in 
conjunction with an area disease model, and Bayesian inferences based 
on updating of prior assumptions using Markov chain Monte Carlo 
(MCMC) estimation.

The proposed join-count statistics methodology is initially applied
to clustering of suicide deaths in 922 small areas in NW England. The 
relative mortality risks are modelled using a Bayesian spatial convolution 
prior [4] with alternative forms of spatial interaction (e.g., binary 
adjacency vs distance decay) between neighbouring areas considered. 
Results obtained using the join count method in conjunction with a 
spatial model are compared with the widely used (albeit non-Bayesian) 
spatial scan method, as implemented in the FlexScan and SaTScan 
packages. The application is then extended to analyze bivariate 
clustering in suicide deaths and self-harm hospitalisations.

Methods: Join-Count Measures for Local Clustering in 
Risk

In Bayesian small area disease applications, the classification 
of an area as high risk typically depends on unknown parameters. 
Consider disease counts (yi,i=1,...n) with expected values ei obtained by 

multiplying area populations by the region-wide disease rate, and with  
i i

i i
y e=∑ ∑ . Then the yi may be taken as Poisson,

( ),i i iy Poi e r∼

where the ri are relative disease risks in area i with average  1. Such risks 
often show spatial correlation, and ignoring such correlation can lead to 
biased and inefficient inference, as the observations are not independent 
[5]. A widely applied model (known as the convolution model) involves 
two sets of random effects: (a) spatially structured effects si to represent 
spatially correlated risks and following a conditional autoregressive 
(CAR) scheme [4],

[ ]|i is s 2
0 0~ / , / ,ij j i i

j i
N w s S Sσ

≠

 
∑  

 

where wij are symmetric spatial interactions (with wii=0 ),  [ ]is  represents
the collection of S effects excluding Si, and S0i= ;ij

j
w∑  and (b) iid random 

effects ui, typically normal with ui ~ N(0,τ2), to represent possible over 
dispersion, or excess variability in relation to the Poisson assumption. 
Then if there are covariates Xi relevant to explaining variations in area 
disease risk, one has:

 log( )i i i ir X s uβ= + +              (1) 

If there are no covariates to model spatial patterning of risks, the 
spatial random effects represent spatial pattern in the disease outcome, 
whereas otherwise they capture spatial structure in the residuals. To 
assess actual clustering, one may obtain measures such as Moran’s 
I for the si; this entails deriving the index at each MCMC iteration, 
with posterior inferences (e.g. credible intervals) based on the values 
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Abstract
Models for spatial variation in relative disease risk often consider posterior probabilities of elevated disease risk in 

each area, but for health prioritisation, the interest may also be in the broader clustering pattern across neighbouring 
areas. The classification of a particular area as high risk may or may not be consistent with risk levels in the surrounding 
areas. Local join-count statistics are used here in conjunction with Bayesian models of area disease risk to detect 
different forms of disease clustering over groups of neighbouring areas. A particular interest is in spatial clustering of 
high risk, which can be assessed by high probabilities of elevated risk across both a focus area and its surrounding 
locality. An application considers univariate spatial clustering in suicide deaths in 922 small areas in the North West of 
England, extending to an analysis of bivariate spatial clustering in suicide deaths and hospital admissions for intentional 
self-harm in these areas.
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accumulated over iterations.

Consider binary measures bi of disease risk for areas i=1,...,n, with 
bi=1 for elevated risk, bi=0 otherwise. For example, one may define 
bi=1 for ri>τr, where τr is a relative risk threshold (e.g., τr=1 or τr=1.25, 
and bi=0) otherwise. If relative risks have average 1, and τr=1 then the 
region-wide proportion of areas with elevated risk, E(bi)=π, will be 
approximately 0.5. 

In spatial disease applications with correlated relative risks ri, binary 
indicators such as bi=I(ri>1) will also tend to be spatially correlated. 
Region-wide spatial clustering in the bi can be measured by join-count 
statistics, based on concordance in risk status between area pairs. Thus, 
a join-count measuring clustering in high risk across a region is

11
1 1

,
n n

ij i j
i j

J w b b
= =

= ∑ ∑    

with 0.5J11 known as the BB statistic [6]. Differing health status in 
neighbouring area-pairs is measured by a weighted total of joins with bi 
and bj discordant, which can be denoted

 
2

10
1 1

( ) .
n n

ij i j
i j

J w b b
= =

= −∑ ∑   

Observed join-count totals can be compared with totals expected 
under a null hypothesis of spatial independence [7]. The expected total 
of concordant joins under the hypothesis of no spatial dependence is 

E(J11)=S0π
2 where 0

1 1
,

n n
ij

i j
S w

= =
= ∑ ∑  and J11 will exceed E(J11) when there is 

spatial patterning in the disease outcome [6]. Similarly the observed 
J10 can be compared with E(J10)=2S0π(1-π), and will be less than this 
expected total when there is disease clustering. It may be noted that in 
a modelling application with ri unknown, the indicators bi (and related 
parameters such as π) are also unknown, and sampled at each MCMC 
iteration. 

A localised set of join-count statistics (with area i as the focus) 
can be used to decide whether area i and nearby areas form a high risk 
cluster, or demonstrate an alternative risk pattern in the locality. For 
measuring joint high risk, with both area i and its neighbouring areas 
being high risk, one has

11
1 1

( 1) ( 1) ,
n n

i i ij j i ij j
j j

J I b w I b b w b
= =

= = = =∑ ∑
   

where I(A)=1 if condition A holds, and I(A)=0 otherwise. When the 
focus is on area i, it is relevant to distinguish discordant high-low risk 
pairings (bi=1, bj=0) from low-high risk pairings (bi=0, bj=1). The 
relevant local join-count statistics in these cases are then

 10
1 1

( 1) ( 0) (1 ),
n n

i i ij j i ij j
j j

J I b w I b b w b
= =

= = = = −∑ ∑

and

01
1 1

( 0) ( 1) (1 ) .
n n

i i ij j i ij j
j j

J I b w I b b w b
= =

= = = = −∑ ∑

The count J10i captures situations where area i is high risk, but 
nearby areas are mostly low risk, so that area i may be termed a high 
risk local outlier. The count J01i would be elevated when area i itself does 
not have high risk, but neighbouring areas are mostly high risk. Finally,

 00
1 1

( 0) ( 0) (1 ) (1 )
n n

i i ij j i ij j
j j

J I b w I b b w b
= =

= = = = − −∑ ∑  

represents localities where both the focus and surrounding areas 

are low risk. The expected number of common high risk joins with area   
i as the focus (i.e. area i is a high risk cluster member) is E(J11i)=S0iπ

2, 
while E(J10i)=S0iπ(1-π) and E(J00i)=S0i(1-π)2. 

Consider a sequence t=1,....T of MCMC samples. From the 
indicators  ( )t

ib  of elevated risk at each MCMC iteration, one may 
estimate probabilities of elevated risk in area i specifically (without 
regard to the broader locality), namely 

  ( )

1
/ .

T
t

i i
t

H b T
=

= ∑

One may also monitor join-counts indicating locality-wide elevated 

risk ( ) ( ) ( )
11

1
,

nt t t
iji ji

j
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= ∑  with posterior estimates
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The estimated proportion of joins in the locality centred on area i 
that are joint high risk, namely

  
 

11 11 0/ ,i i iJ Sπ =
provides a summary index of high risk across that locality. By contrast, 
the proportion of joins centred on area i that are (1,0)  pairs  

  
 

10 10 0/ ,i i iJ Sπ =
provides an index that area i is a high risk outlier relative to the 

broader locality. 

The join-counts 11iJ   and 10iJ   can be written as ( 1)i ij j
j

I b w b= ∑   and  
( 1) (1 )i ij j

j
I b w b= −∑ respectively, from which it follows that

11 10 0( 1) ,i i i iJ J I b S+ = =  

and hence that



 

11 10 .i i iH π π= +  

Hence, 


11iπ   will be elevated when both  iH   is elevated, and risk in 
the surrounding locality is elevated also. By contrast,  



10iπ  will be elevated 
when  iH   is elevated, but risk in the surrounding locality is relatively 
low. Similarly,  01 00 0( 0) ( 0) (1 ) ( 0) ,i i i ij j i ij j i i

j j
J J I b w b I b w b I b S+ = = + = − = =∑ ∑  

and defining 01 01 0/i i iJ Sπ =  and 00 00 0/i i iJ Sπ =   one has



 

01 001 .i i iH π π− = +
Areas can be ranked in terms of  



11iπ  to indicate which likely high 
risk cluster centres are. Alternative tests regarding high risk clustering in 
the locality around area i might be envisaged. One involves expectation 
weighted averages

/
i i

i j j j
j L j L

R r e e
∈ ∈

= ∑ ∑   

of modelled relative risks across localities Li that include both the 
focus area i and areas adjacent to it. These weighted averages can be 
monitored during the MCMC updating and the probabilities that Ri 
exceed 1 obtained. However, this test may be affected by unusually high 
relative risks in one or two areas within the locality, or by situations 
where a low risk area is surrounded by high risk areas.

Another option is to compare the sampled J11i at each MCMC 
iteration to the expected count S0iπ

2 under a no clustering hypothesis, 
and obtain estimates of the probabilities 2

11 11 0Pr( | ).i i ih J S yπ= >  

If bi=1, 11 ,i i ij j ij j
j j

J b w b w b= =∑ ∑  and the comparison 2
11 0i iJ S π>   
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reduces to ij j
j

w b >∑   2
0 ,iS π   a condition very likely to be met in 

high risk localities (where risk is elevated in both the focus area and 
surrounding areas, so that 11iπ   is high). Hence, the comparison  

2
11 0( )i iI J S π>  will tend to have a similar probability of holding as that 

for ( 1)iI b =   in such localities. 

Methods: Clustering in Bivariate Risk
An extension of the proposed join-count statistics is in the 

detection of elevated bivariate risk across localities, based on local 
join-counts for the joint high risk binary event. Methods for bivariate 
spatial association have been proposed [8], and bivariate LISA methods 
indicate association between the value for one variable at a given 
location and the average of another variable at neighbouring locations. 
However, there is no widely applied cluster detection method (e.g. 
spatial scan technique) for bivariate outcomes. Let A and B denote 
two health outcomes ( )Ai Ai Aiy Poi e r∼ ,  ( ),Bi Bi Biy Poi e r∼  and 
consider join-counts corresponding to the joint high risk classification:

 ( , ).ABi Ai Ar Bi Brb I r T r T= > >

The event risks  { , }Ai Bir r  can be obtained via the models

log( ) ,Ai i A Ai Air X u sβ= + +                  (2)

log( ) ,Bi i B Bi Bir X u sβ= + +      
    

with one option for priors on the random effects being
2(0, )Ai Au N τ∼  ,  2(0, )Bi Bu N τ∼                  (3)

To assess high risk clustering in both events jointly, the bivariate 
local join-counts

11
1 1

n n

AB i ABi ij ABj Ai Bi ij Aj Bj
j j

J b w b b b w b b
= =

= =∑ ∑  

can be monitored. The estimated probability of elevated bivariate risk 
in area i specifically is 



( )

1
/ ,

T
t

ABi ABi
t

H b T
=

= ∑

but this elevated bivariate risk may not apply across the broader locality. 
However, the estimated proportion of bivariate joins in the locality 
centred on area i that are joint high risk, namely
 

11 11 0/AB i AB i iJ Sπ =   

provides a summary index of high bivariate risk across that locality. For 
detecting isolated elevated bivariate risk (high risk in the focus area but 
not extending to the broader locality), the relevant join 

count is

 
10

1 1
(1 ) (1 ).

n n

AB i ABi ij ABj Ai Bi ij Aj Bj
j j

J b w b b b w b b
= =

= − = −∑ ∑

Just as implications about smoothed relative risks may depend on 
the form of spatial interaction assumed [5], so may the inferences about 
clustering patterns. Implications about risk patterns for interdependent 
events, especially when one event is less frequent than another, may 
also be influenced by the form of random effects assumption (and the 
extent to which there is borrowing of strength). For example, clustering 
inferences in the less common outcome may be affected if a bivariate 
spatial prior (allowing correlation in spatial risks between outcomes 
within areas) is adopted instead of separate univariate spatial priors as 
in equation (3).

Results: Locality Risk Patterns in Suicide Deaths in NW 
England 

While relatively rare, suicide is a major reason for premature 
mortality. To assess risk patterns in individual areas as compared to their 
broader localities, we consider suicide deaths yi over the period 2006 to 
2010 in 922 small areas (Middle Level Super Output Areas or MSOAs) 
across the North West of England (Table 1). These areas are designed 
to be of similar size in population terms, with an average population 
of 7500. Expected deaths ei are based on applying an England wide 
schedule of age specific suicide rates to MSOA populations, with scaling 
applied to ensure  i i

i i
y e=∑ ∑ . 

The average mortality count is 3.5, but event totals yi in individual 

Locality Index of 
focus
area

  π11i
posterior
estimate

Hi
posterior
estimate

Relative risk ri 
in focus area
(posterior
mean)

h11i
(posterior
means)

Total areas 
in locality
(inclu-ding
focus)

Indices of areas in locality
(other than focus)

Modelled relative risk 
R1i across locality
(expectation weighted
average)

Pr(R1i >1)
(elevated
locality
risk)

SMR
across
locality

1 594 0.854 0.979 1.717 0.979 7 590,  592,  593,  595,  597,  599 1.547 0.999 2.151
2 16 0.834 0.989 1.845 0.989 9 5, 10, 11, 15, 17, 21, 22, 25 1.433 1.000 1.872
3 11 0.820 0.971 1.729 0.971 5 5, 18, 15, 16 1.478 0.997 2.011
4 249 0.761 0.969 1.692 0.966 5 247, 248, 251, 252 1.385 0.991 1.782
5 856 0.753 0.977 1.742 0.975 7 849, 851, 853, 857, 858, 859 1.375 0.995 1.957
6 595 0.743 0.889 1.460 0.889 5 593, 594, 596, 599 1.427 0.992 1.844
7 251 0.741 0.885 1.420 0.885 6 247, 248, 250, 252, 258 1.534 0.999 2.181
8 597 0.735 0.966 1.755 0.963 4 594, 599, 601 1.452 0.989 1.901
9 590 0.726 0.986 1.882 0.985 5 587, 589, 592, 594 1.465 0.993 1.741
10 710 0.723 0.966 1.768 0.943 4 709, 711, 712 1.405 0.968 1.580
11 10 0.714 0.895 1.452 0.894 7 2, 5, 6, 13, 16, 17 1.353 0.998 1.757
12 258 0.713 0.999 2.207 0.994 8 250, 251, 252, 255, 259, 262, 264 1.369 0.995 1.660
13 15 0.713 0.870 1.397 0.870 6 8, 11, 16, 18, 21 1.419 0.998 1.795

Table 1: Suicide mortality, areas with highest estimates (π11i) for elevated locality risk.
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areas vary widely, and moment estimates of relative risk /i iy e   
(sometimes called standard mortality ratios or SMRs), also vary widely. 
Such moment estimates are unreliable with variance instability when 
there are small numbers of suicide deaths, as in many MSOAs [9,10]. 

To provide stabilised estimates of relative risk including 
spatial borrowing of strength, a convolution model is applied with 

( ),i i iy Poi e r∼   where

0log( ) ,i i ir u sβ= + +                   (4) 

where [ ]|i is s  2
0 0~ / , /ij j i i

j
N w s S Sσ
 
∑  
 

 , and iu  ( )2~ 0, .N τ   A flat prior 
on 0β   is assumed, and a gamma prior with index 1 and shape 0.001 on 
the inverse spatial variance 21 /σ  [11,12]. Convergence is improved by 
linking the variance parameters; thus 2 2 /τ σ ρ=   where ρ   is assigned 
an exponential prior with rate 1. Inferences in this and subsequent 
models are based on the second halves of two chain runs of 10,000 
iterations, with convergence assessed according to BGR statistics [13]. 

Localities are defined as areas adjacent to area i, though the 
weighting attached to different areas within such localities can be 
varied. To assess possible sensitivity regarding inferences about locality 
risk, alternative assumptions about wij are investigated: equal weighting 
of all adjacent areas as compared to alternative forms of inverse distance 
decay 1 /ij ijw dγ= . The binary indicators ( ) ( )( 1)t t

i ib I r= >  and local join-
counts ( )

11
t
iJ   are monitored to provide posterior estimated probabilities 



11iπ   of high risk common to the focus and its locality, and estimated 
marginal probabilities of elevated risk, namely  .iH    

Inferences for Locality Risks
Consider first a binary adjacency assumption for the wij (wij=1 if 

areas are adjacent, wij=0, otherwise), under which the Moran spatial 
correlation index for the si is obtained as 0.56 with 95% interval (0.47, 
0.66). Figure 1 maps out the posterior mean relative risks ri across the 
region, though this map tends to be dominated by low density rural 

areas (such as in the Lake District in the northern part of the map). 
Subsequently higher resolution maps are used to depict risk and 
clustering patterns, since in the case study, high risk clustering tends 
to be in densely populated urban areas. Maps of the administrative 
geography of the region (including maps of MSOAs) are available at the 
UK Map Collection page http://www.ons.gov.uk/ons/guide-method/
geography/beginner-s-guide/maps/index.html.

The estimated 


11iπ  have an average of 0.221, with a 0.975 percentile 
of 0.638, and with the maximum 



11iπ  being 0.854. The estimated 
marginal probabilities  iH  have an average of 0.426, with a 0.975 
percentile of 0.923, and a maximum of 0.999. The 



10 ,iπ  which provide 
indicators of isolated high risk not extending to the broader locality, 
have an average of 0.205, with a maximum of 0.583. The estimated  11ih



are also shown; as discussed above, these are similar to  iH  in localities 
characterised by high risk clustering, but their ordering of potential 
cluster centres is similar to that of the 



11iπ  Of the 13 areas with highest   
11ih


 values, 10 are also among the 13 areas with highest 


11iπ  values.

There are 5 areas with 


11iπ   over 0.75, and 13 areas with 


11iπ   over 
0.70. Table 1 summarises locality risk patterns for the 13 areas with 


11iπ   over 0.70, ranked by the size of 


11 ,iπ  and also including estimates 
of Hi and ri  (posterior means). The relatively low values for both  iH  
and  



11iπ  reflect the rarity of the suicide outcome; more frequent 
outcomes (such as self-harm hospitalisations considered in the bivariate 
analysis) are more likely to have high   iH  and 



11iπ   (e.g. close to 1). 
Table 1 also shows posterior means of expectation weighted averages 

1 / ,i j j j
j L j Li i

R r e e
∈ ∈

= ∑ ∑  of modelled relative risks across localities 

Li, encompassing both the focus area i and areas adjacent to it. Also 
shown are estimated probabilities that 1iR  exceed 1, namely that the 
entire locality has elevated risk, and unsmoothed suicide SMRs across 
localities  

/ .j j
j L j Li i

y e
∈ ∈
∑ ∑    

The 


11iπ  identify focus areas with high probabilities of elevated 
risk and of belonging to a high risk locality, rather than clusters per 
se. So some areas are present in more than one locality in table 1; for 
example, areas 594 and 599 appear twice. There are 47 distinct areas in 
the localities in table 1, and their posterior mean ri range from 0.99 to 
2.21 with average 1.36. 

Probabilities that the average locality risk R1i exceeds 1 are all over 
0.968. The average locality risks R1i may be used to confirm what the 
join-count statistics indicate, in particular the 



11iπ  statistics, but in 
themselves are not conclusive about elevated risk common to both a 
focus area and areas around it. Weighted averages such as R1i may be 
affected by unusually high relative risks in a subset of areas within the 
locality, whereas 



11iπ  is specifically focussing on elevated risk status 
across all areas in a locality. An example is provided by area 28 which 
has 1 suicide death against 4.4 expected, with an estimated exceedance 
probability H28=0.36.  However, the areas adjacent to area 28 have 34 
deaths in relation to 20 expected, with a probability of 0.98 that the 
locality wide R1, 28  exceeds 1 (where the locality encompasses area 28). 
Note that this type of pattern would be detected by the join-counts J01i 
and corresponding probabilities 01 01 0/ .i i iJ Sπ =    

Delineation of high risk localities using local join-counts in 
conjunction with a relative risk model such as equation (1) contrasts 
with the spatial scan procedure which is applied to observed area 
disease counts without any modelling preliminaries, for example, 

Figure 1: Suicide Realtive Risk, Posterior Means.

http://www.ons.gov.uk/ons/guide-method/geography/beginner-s-guide/maps/index.html
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smoothing or borrowing strength procedures to reduce unreliability in 
fixed effects relative risk estimates. Despite this fundamental difference, 
the localities of table 1 can be compared with clusters identified by the 
SaTScan and FleXScan packages developed by Kulldorff [14] and Tango 
and Takahashi [15], respectively. It also implies to the work done by 
Holowaty et al. [1] and Więckowska et al. [16]. SaTScan identifies five 
high rate clusters with Monte-Carlo p-values under 0.2. The average 


11iπ    is 0.666 for the 29 areas in these five clusters, and the overlap 
with the local join-count method is apparent in that only 2.2% of the 
922 areas have 



11iπ  over 0.666. Similarly, the 59 areas identified by 
FlexScan (in 7 clusters with p-values under 0.2) have an average 



11iπ   
of 0.618.

The most likely cluster identified by SaTScan [15] contains areas 
{248, 249, 251, 252, 253, 258}, while FlexScan identifies the area set {249, 
251, 252, 253, 258, 262, 263, 265, 271} as its leading secondary cluster 
(with lowest p-value after the most likely cluster). Areas {248, 249, 250, 
251, 252, 255, 258, 259, 262, 264} are included in the localities identified 
using join-count statistics in table 1, and in fact consist of neighbouring 
areas in Tameside, a local authority district in the south east of the 
region, with the district of Oldham to the North and with Stockport to 
the South. Figure 2 (of MSOAs in the three local government districts 

of Tameside, Oldham and Stockport) shows a cluster of MSOAs in 
the centre of the mapped sub-region, mostly in Tameside, all having 
posterior mean relative risks above 1.10.

The most likely cluster identified by FlexScan consists of the areas 
{587, 588, 590, 591, 593, 594, 597, 599}, and the similar area set {590, 
592, 593, 594, 595, 597, 599} is also the leading secondary cluster 
identified by SatScan. Areas {587, 589, 590, 592, 593, 594, 595, 596, 597, 
599 and 601} are included in the areas in table 1, and consist of a set of 
areas in the coastal town of Blackpool. Figure 3 (of MSOAs in the three 
local government districts of Blackpool, Wyre and Fylde) shows this 
cluster of adjacent MSOAs at the westernmost centre of the plot, all 
having posterior mean relative risks above 1.15 except for area 589 with 
modelled relative risk of 0.994, but encompassed within surrounding 
higher risk areas.

The local join-count procedure also provides estimates of 


10 ,iπ   
which will be elevated when  iH   is elevated, but risk in the surrounding 
locality is relatively low. These may be considered as local high risk 
outliers, discordant in terms of health status from their neighbours. To 
demonstrate the contrasting risk patterns between the focus area and 
surrounding areas, we define Ai, encompassing areas adjacent to the 
focus area i but not including that area.

Thus, table 2 shows the 12 MSOAs with 


10 ,iπ   over 0.5, the modelled 

Index of
focus area

Hi posterior
estimate

π10i posterior
estimate

Modelled relative risk, 
ri,  in focus area 
(posterior mean)

Number of areas in
surrounding
locality (excluding focus)

Modelled relative risk R2i
across rest of locality 
(excl focus)

Pr (R2i>1) (elevated
risk in adjacent
areas)

SMR across
rest of locality

532 0.853 0.583 1.379 5 0.920 0.248 0.768
620 0.800 0.582 1.358 2 0.890 0.239 0.490
439 0.787 0.580 1.288 6 0.868 0.113 0.702
772 0.974 0.550 1.805 4 1.009 0.492 0.739
554 0.739 0.545 1.233 6 0.847 0.091 0.693
406 0.804 0.521 1.299 6 0.917 0.234 0.856
862 0.896 0.514 1.469 4 0.977 0.411 0.695
763 0.743 0.509 1.252 3 0.887 0.216 0.869
158 0.855 0.506 1.329 7 0.956 0.329 0.877
740 0.960 0.503 1.145 7 1.022 0.551 0.754
744 0.765 0.502 1.244 4 0.924 0.271 0.782
198 0.749 0.502 1.251 5 0.900 0.209 0.532

Table 2: Suicide mortality, areas with highest estimates (π10i) for outlier high risk.

Figure 2: Modulled Suicide Relative Risks, Tameside, 
Oldham and Stockport.

Figure 3: Modelled Suicide Relative Risks, Blackpool, Wyre 
and Fylde.
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relative risk ri (posterior mean) in the focus area, and posterior mean 
relative risk in the surrounding area, namely

2 / .i j j j
j A j Ai i

R r e e
∈ ∈

= ∑ ∑  

Also shown are unsmoothed suicide SMRs across adjacent areas   
/ .j j

j A j Ai i
y e

∈ ∈
∑ ∑ For all but one area, the probabilities that R2i (average 

risk in the locality excluding the focus area) exceed 1 are under 0.5, 
whereas the probabilities Hi of elevated risk in the focus area itself all 
exceed 0.7. 

Locality Risk Patterns under Alternative Spatial Weights
Inferences from convolution or other area disease count models may 

be affected by the form of spatial interaction assumed. Two alternatives 
to binary adjacency are considered, which involve down weighting 
areas at greater distance from the focus area (with inter-area distances 
based on population centroids). These assume distance decay according 
to 1 /ij ijw dγ=  (γ>0) with values of γ=0.5 and γ=1 considered. These 
values are based on a preliminary analysis using model (4) to find an 
optimal value for γ using a discrete prior over values {0, 0.1, 0.2,..., 1.5}, 
which produced a posterior mean for γ of 0.69. 

We focus on elevated locality risk in particular, and table 3 
summarises locality risk patterns under the two distance decay options. 

The table considers only areas with 


11iπ  over 0.70, ranked by 


11 .iπ   The 
weighted averages of modelled relative risks across localities Li  (centred 
on and including area i) now adjust also for distance decay as well as 
expected deaths, namely

3 / .
i i

i j ij j ij j
j L j L

R r w e w e
∈ ∈

= ∑ ∑
 

Table 3 shows posterior mean R3i  and probabilities that  R3i exceed 

1. Unsmoothed suicide SMRs across the locality /j j
j L j Li i

y e
∈ ∈
∑ ∑   are 

defined as before.

There is considerable overlap between table 3 and table 1 in those 
focus areas identified as having both elevated “own area” risk (high Hi) 
and elevated risk across the locality also. Thus of the 13 areas with high   


11iπ  identified in table 1, 11 also appear as focus areas in the top panel 
(high distance decay wij) of table 3, and the other two (areas 251, 590) 
are included in the broader localities listed there. All 13 cluster-centre 
areas identified in table 1 appear as such areas in the lower panel of table 
3 (less marked distance decay). 

Results: Bivariate Spatial Clustering under Alternative 
Spatial Priors

We now consider local join-counts for detecting bivariate risks that 
are both significantly elevated and also spatially clustered. Consider 

Locality Index of
focus area

π11i
posterior
estimate

Hi posterior
estimate

Relative risk ri in
focus area 
(posterior mean)

Indices of areas in locality
(other than focus)

Modelled
relative risk R3i
across locality

Pr (R3i>1) (elevated
locality risk)

SMR across
locality

Distance Decay Coefficient (γ) equals 1
1 710 0.833 0.969 1.77 709, 711, 712 1.52 0.978 1.58
2 16 0.831 0.985 1.76 5, 10, 11, 15, 17, 21, 22, 25 1.40 1.000 1.87
3 594 0.825 0.967 1.59 590, 592, 593, 595, 597, 599 1.43 0.997 2.15
4 11 0.815 0.964 1.61 5, 8, 15, 16 1.41 0.997 2.01
5 711 0.810 0.888 1.49 709, 710, 712 1.55 0.984 1.58
6 595 0.754 0.889 1.39 593, 594, 596, , 599 1.38 0.988 1.84
7 249 0.748 0.964 1.58 247, 248, 251, 252 1.34 0.986 1.78
8 597 0.730 0.957 1.60 594, 599, 601 1.36 0.975 1.90
9 856 0.728 0.975 1.66 849, 851, 853, 857, 858, 859 1.33 0.988 1.96
10 337 0.723 0.979 1.70 332, 334, 340, 542 1.37 0.983 1.65
11 712 0.715 0.853 1.43 707, 709, 710, 711 1.43 0.971 1.30
12 333 0.712 0.912 1.45 330, 334, 336, 340 1.29 0.967 1.64
13 10 0.711 0.881 1.41 2, 5, 6, 13, 16, 17 1.32 0.992 1.76
14 732 0.709 0.933 1.52 27, 728, 729, 731, 736 1.35 0.963 1.64
15 15 0.709 0.860 1.34 8, 11, 16, 18, 21 1.36 0.996 1.79

Distance Decay Coefficient (γ) equals 0.5
1 594 0.839 0.972 1.64 590, 592, 593, 595, 597, 599 1.47 0.998 2.15
2 16 0.831 0.988 1.80 5, 10, 11, 15, 17, 21, 22, 25 1.41 0.999 1.87
3 11 0.818 0.968 1.67 5, 8, 15, 16 1.44 0.995 2.01
4 710 0.789 0.973 1.78 709, 711, 712 1.47 0.977 1.58
5 249 0.763 0.967 1.64 247, 248, 251, 252 1.37 0.984 1.78
6 711 0.763 0.895 1.48 709, 710, 712 1.49 0.980 1.58
7 595 0.754 0.894 1.42 593, 594, 596, 599 1.39 0.988 1.84
8 856 0.749 0.978 1.71 849, 851, 853, 857, 858, 859 1.36 0.993 1.96
9 597 0.726 0.959 1.66 594, 599, 601 1.38 0.978 1.90
10 251 0.722 0.871 1.38 247, 249, 251, 252, 258 1.46 1.000 2.18
11 15 0.715 0.868 1.37 8, 11, 16, 18, 21 1.39 0.994 1.79
12 10 0.713 0.895 1.42 2, 5, 6, 13, 16, 17 1.33 0.993 1.76
13 333 0.713 0.915 1.48 330, 334, 336, 340 1.30 0.965 1.64
14 258 0.705 0.999 2.16 250, 251, 252, 255, 259, 262, 264 1.38 0.998 1.66

Table 3: Elevated locality risks, local join-count statistics and distance decay options.
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suicide deaths yAi for 2006-10 as discussed above, and self-harm 
hospitalisations yBi for 2006-7 to 2010-11 (five financial years, with 
ICD10 X60--X84 codes) across the 922 MSOAs in NW England (the 
data can be obtained at http://www.apho.org.uk/resource). Expected 
hospitalisations eBi are based on England wide age specific rates, with 

scaling applied to ensure Bi Bi
i i

y e=∑ ∑ . Self-harm is often a precursor to 
later actual suicide, but considerably more frequent with average event 
count  By =93. 

A convolution model is applied with ( ),Ai Ai Aiy Poi e r∼  
( ),Bi Bi Biy Poi e r∼   but comparing two alternative procedures to 

provide stabilised estimates of relative risk. The first includes spatial 
borrowing of strength within outcomes, but without such borrowing 
between outcomes, and unrelated CAR and iid priors for each event

 log( ) ,Ai i A Ai Air X u sβ= + +   

log( ) ,Bi i B Bi Bir X u sβ= + +

with  2(0, )Ai Au N τ∼ ,  2(0, )Bi Bu N τ∼ , [ ]|Ai A is s   2
0 0~ / , / ,ij Aj i A i

j i
N w s S Sσ

≠

 
∑  

 
 

and [ ]|Bi B is s  
2

0 0~ / , / .ij Bj i B i
j i

N w s S Sσ
≠

 
∑  

    Spatial interactions wij are 

binary based on adjacency. The second procedure assumes { , }Ai Bis s   
follow a bivariate CAR prior [17] with unknown within area covariance 
matrix

 
2

2
A A B AB

s
A B AB B

σ σ σ ρ

σ σ ρ σ

 
Σ =   

  

with 1
s
−Σ   taken to be Wishart with 2 degrees of freedom and identity 

scale matrix.

The bivariate indicators

( 1, 1)ABi Ai Bib I r r= > >

are monitored in each case to provide bivariate join counts 11AB iJ . From 
these one obtains indicators of elevated bivariate risk encompassing 
both the focus area and its surrounding locality

(a) Without pooling between outcomes
Index
Of
focus
area

π11ABi
posterior
estimate

HABi Relative
risk rAi in
(focus
Area)

Relative
risk rBi in
(focus
Area)

Indices of areas in locality
(other than focus)

Modelled
relative 
risk RAi
across 
locality

Modelled
relative 
risk RBi
across 
locality

Pr(RAi>1)
(elevated
locality
risk)

Pr(RBi>1)
(elevated
locality
risk)

SMR
across
locality

Self-harm
SHR 
across
locality

594 0.77 0.99 1.74 2.12 590, 592, 593, 595, 597, 599 1.56 1.71 1.00 1.00 2.15 1.73
333 0.75 0.94 1.52 1.76 330, 334, 336, 340 1.33 1.38 0.97 1.00 1.64 1.39
597 0.64 0.98 1.80 2.12 594, 599, 601 1.47 1.57 0.99 1.00 1.90 1.58
16 0.58 0.99 1.76 2.60 5, 10, 11, 15, 17, 21, 22, 25 1.47 1.28 1.00 1.00 1.87 1.29
29 0.58 0.84 1.31 1.22 22, 25, 26, 27, 32, 33 1.30 1.24 0.98 1.00 1.53 1.25
312 0.57 0.94 1.52 2.56 309, 310, 311, 315 1.21 1.60 0.91 1.00 1.30 1.60
315 0.54 0.77 1.19 1.95 310, 311, 312, 316, 318, 323,  

327
1.22 1.63 0.95 1.00 1.48 1.64

251 0.54 0.95 1.51 1.90 247, 249, 250, 252, 258 1.52 1.34 1.00 1.00 2.18 1.34
573 0.54 0.80 1.27 1.40 569, 572, 574, 577 1.30 1.73 0.97 1.00 1.70 1.75
731 0.53 0.79 1.26 1.29 729, 732, 733, 736 1.33 1.26 0.97 1.00 1.79 1.26
33 0.52 0.82 1.28 1.53 26, 29, 32, 174, 76 1.19 1.35 0.91 1.00 1.23 1.36
76 0.52 0.78 1.21 1.24 72, 73, 74, 78, 79, 81 1.22 1.16 0.96 1.00 1.33 1.17
856 0.50 0.99 1.68 2.22 849, 851, 853, 857, 858, 859 1.37 1.33 0.99 1.00 1.96 1.34
729 0.50 0.95 1.50 1.29 726, 727, 731, 732, 733, 734 1.24 1.31 0.93 1.00 1.34 1.32

(b) With pooling between outcomes
Index of
focus
area

π11ABi
posterior
estimate

HABi Relative
risk rAi in
(focus
Area)

Relative
risk rBi in
(focus
Area)

Indices of areas in locality
(other than focus)

Modelled
relative 
risk RAi
across 
locality

Modelled
relative 
risk RBi
across 
locality

Pr(RAi>1)
(elevated
locality
risk)

Pr(RAi>1)
(elevated
locality
risk)

SMR
across
locality

Self-harm
SHR 
across
locality

333 0.87 0.99 1.69 1.77 330, 334, 336, 340 1.40 1.38 1.00 1.00 1.64 1.39
594 0.82 1.00 1.98 2.13 590, 592, 593, 595, 597, 599 1.71 1.72 1.00 1.00 2.15 1.73
197 0.79 1.00 1.87 4.21 190,  195,  196, 201 1.31 1.81 0.98 1.00 0.98 1.82
315 0.76 0.96 1.42 1.95 310, 311, 312, 316, 318, 323, 

327
1.34 1.63 1.00 1.00 1.48 1.64

33 0.74 0.95 1.43 1.54 26, 29, 32, 174, 176 1.30 1.35 0.99 1.00 1.23 1.36
313 0.73 0.97 1.48 2.70 306, 308, 311, 314, 317, 318 1.25 1.73 0.97 1.00 1.14
29 0.72 0.93 1.37 1.22 22, 25, 26, 27, 32, 33 1.36 1.24 1.00 1.00 1.53 1.25
772 0.71 0.99 1.86 2.24 767, 768, 773, 777 1.29 1.60 0.95 1.00 1.42 1.61
312 0.69 1.00 1.83 2.58 309, 310, 311, 315 1.33 1.60 0.99 1.00 1.30 1.60
76 0.69 0.91 1.32 1.24 72, 73, 74, 78, 79, 81 1.30 1.16 0.99 1.00 1.33 1.17
733 0.68 0.92 1.36 1.37 729, 731, 734, 735, 736 1.37 1.33 0.99 1.00 1.43 1.33
573 0.68 0.90 1.37 1.40 569, 572, 574, 577 1.48 1.74 1.00 1.00 1.70 1.75
731 0.67 0.92 1.41` 1.29 729, 732, 733, 736 1.43 1.27 0.99 1.00 1.79 1.26
492 0.67 0.97 1.56 3.20 489, 494, 495, 501 1.26 2.14 0.95 1.00 1.34 2.15

Table 4: Bivariate risk, areas with highest probabilities for cluster centres.
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11 11 0/ .AB i AB i iJ Sπ =  

One may also estimate the weighted locality relative risks for each 
event, namely

/ ,Ai Aj Aj Aj
j L j Li i

R r e e
∈ ∈

= ∑ ∑  

/ ,Bi Bj Bj Bj
j L j Li i

R r e e
∈ ∈

= ∑ ∑
  

and the probabilities that they exceed 1.

For the model without pooling between outcomes, table 4 (top 
panel) shows there are 14 areas with 



11AB iπ  exceeding 0.5. It can be 
seen that stronger locality inferences hold for the more frequent second 
outcome (self-harm), with all the probabilities  Pr( 1)BiR >  being 1. 
However, the identified localities also have Pr( 1)AiR >  exceeding 0.9 
for all 14 cluster centres, and exceeding 0.95 for 12 cluster centres. 

Inferences regarding the rarer outcome, both for the focus area and 
the locality, become stronger when there is pooling between the two 
outcomes (Table 4, lower panel). The pooling model is in fact supported 
by the data, since the Deviance Information Criterion [18] is reduced 
from 11311 to 11221, and the posterior estimate (with 95% CrI) for ρAB 
is 0.75 (0.64, 0.84). Moran spatial correlation indices for sAi and sBi are 
obtained as 0.45 (0.39, 0.52) and 0.42 (0.41, 0.45) respectively. 

There are in fact now 28 areas with 


11AB iπ  exceeding 0.60, but 
table 4 contains the same number of cluster centres under the two 
options in order to facilitate comparison. The locality with the highest  


11AB iπ  under the pooling model consists of five MSOAs in Wigan 
(areas 330, 333, 334, 336, and 340), and has 28 suicide deaths (against 
17 expected), and 627 self-harm hospitalisations against 450.6 expected. 
Other MSOAs in Wigan with elevated and clustered bivariate risk are 
apparent in table 4 (the 4th, 6th and 9th focus areas in the lower panel). 
Figures 4 and 5 show modelled relative risks for the two outcomes in 
MSOAs in Wigan (MSOAs in centre), and in the adjacent St Helens 
and Bolton districts. It can be seen from both figures that high suicide 
and self-harm rates occur widely through these three districts, but that 
elevated levels of both self-harm and suicide together are apparent in 
areas coded 330, 333, 334, 336, and 340 (in the centre of the southern 
boundary), and also in a north-west aligned band of Wigan MSOAs in 
the central part of the map.

The lower panel of table 4 shows two new cluster centres (197, 
492), as compared to the upper panel, these being areas where self-
harm risk (both observed and modelled) is high, and estimated suicide 
risk is pulled towards the risk for the more common outcome under 
the bivariate spatial prior. Using extra information about risk patterns 
provided by a more frequent outcome (or by intercorrelation between 
outcomes in general) is generally regarded as beneficial. This is a 
form of borrowing strength [19] enabling stronger inferences for an 
infrequent outcome. However, analysis such as that here, of potential 
impacts on inferences about clustering, may provide an additional facet 
for assessing sensitivity to alternative spatial priors. 

Criteria for Cut-off Points
Considering the results of both the univariate and bivariate 

clustering analyses together, one may set out some criteria for choosing 
focus areas for high risk localities. The choice of cut-off for 



11iπ   (or   


11AB iπ for bivariate outcomes) should be based on the profile of their 
ranked values, in conjunction with information about risk variation 
(e.g. the profile of Hi and Ri). The necessary interconnection with Hi 
follows from the relation 

 

11 10 .i i iH π π= +

 Health outcome data for small areas vary considerably in the extent 
to which significant variations in area relative risk (and hence locality 
clustering) can be detected and this affects cut-off choice. For example, 
for the relatively rare suicide outcome, there are only 18 areas with
Pr( 1| )i ib y H= =  exceeding 0.95, and a cut-off 



11 0.7iπ >  was used, 
with a minimum Hi of 0.87 among the 13 areas above this cut-off. A 
slightly lower cut-off could be entertained, though the 17th ranked area 
in terms of 



11iπ   (with  


11 0.69iπ = ) has a relatively low Hi of 0.79, below 
the threshold of Hi=0.8 for elevated risk suggested by Richardson et al. 
[3]. The probabilities Pr( 1| )iR y>  that the locality wide modelled SMRs 
exceed 1 are also relevant, provided the Ri are obtained for localities 
where both the focus and surrounding areas have elevated risk. All 13 
areas with  



11 0.7iπ >  have Pr( 1| )iR y>   exceeding 0.95. 

Whereas suicide is a rare outcome, self-harm is around 25 times 
more frequent. When a univariate clustering analysis (comparable to 
that carried out for completed suicide and reported on above) is carried 
out for self-harm, there are 275 MSOAs with Hi exceeding 0.95, and 
16 MSOAs with 



11 0.9,iπ >  so a higher cut-off point could be used to 
detect high risk clusters for this outcome.

Figure 4: Modelled Suicide Risk (Bivariate Analysis) Wigan, 
Bolton, St Helens.

Figure 5: Modelled Self-Harm Risk (Bivariate Analysis) 
Wigan, Bolton, St Helens.
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For the bivariate outcome analysis (suicide and self-harm) without 
borrowing of strength between outcomes (e.g., Table 4 upper panel), 
there are 14 areas with Pr( 1, 1| , )Ai Bi A B ABib b y y H= = =  exceeding 0.95, 
and a relatively low cut-off of  



11 0.5AB iπ >  was used. The implications 
of using a slightly lower cut-off point could be considered, since even 
in this analysis, the locality relative risks RAi and RBi are significantly 
elevated (above 1) at lower values of  



11AB iπ  than the illustrative cut-
off taken. 

It follows from the above discussion that there are no simple 
rules for a low threshold 



11iπ  or 


11AB iπ  below which clustering is 
implausible. It depends on the profile of Hi and Ri as well as on the profile 
of  


11iπ . Also relevant is the relative size of 


11iπ  and 


10 ,iπ  the latter 
being the probability of a high risk area surrounded by low risk areas. 
Where an area has Pr( 1| )iR y>  below 0.9, or Hi below 0.75, or 



10iπ
clearly exceeding 



11iπ  then high risk clustering becomes considerably 
less likely.

Conclusions
Small area disease models often use exceedance probabilities for 

each individual area to make inferences about risk patterns. However, 
elevated risk in an area may not necessarily extend to the surrounding 
locality. This paper has sought to identify areas where elevated risk 
extends to the broader locality using local join-count statistics. These 
statistics can identify local outliers as well as high risk cluster centres, 
and can be applied to assess high risk clustering in more than one 
health outcome. 

The procedure here can be used in conjunction with a disease model 
where risk status is unknown, so enabling the clustering implications of 
contrasting likelihood and prior assumptions (e.g. regarding pooling 
between areas, and outcomes) to be assessed. In particular, inferences 
about clustering patterns in two outcomes considered jointly may well 
be influenced by alternative assumptions, particularly when a spatial 
prior borrows strength over outcomes as well as areas. Sensitivity of 
clustering inferences to alternative priors for spatial effects, such as the 
approach of Leroux et al. [20] in contrast to the convolution prior, also 
provides an additional area of research. 
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