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Introduction
The main goal of systems biology [1], consists in providing a 

quantitative and integrative description of living organisms by using 
simulation of complex and interconnected models of metabolic 
networks and signaling pathways. These complex processes are 
described by systems of biochemical reactions and quantitatively 
analyzed by corresponding sets of mathematical equations that relate 
reactant concentrations and elementary rate constants to changes in 
product concentrations with time. In order to analyze the temporal 
evolution of the systems of reactions, series of ordinary differential 
equations (ODEs) need to be computed. ODEs are computationally 
solved with ODE solver algorithms, providing numerical solutions for 
the temporal changes of the various variables of the biological systems. 
Over the years, mathematicians have developed numerous ODE 
algorithms. However, each ODE system or model is specific regarding 
to the number of states, input, stiffness and linearity, and therefore, 
each algorithm differs in terms of speed and accuracy. If different ODE 
solvers produce relatively similar results, their performances are highly 
variable, in term of speed to reach a stable numerical solution and 
accuracy of the final solution. It is therefore difficult to choose the best 
algorithm to solve particular sets of ODE without expertise analysis. 
In fact, algorithm selection is a complex problem, which depends on 
many criteria, as described by Rice [2].

According to Ewald [3] (Figure 1), the selection of the most 
appropriate algorithm to solve an ODE system requires knowing 
1) the model and its inputs (problem space), 2) the model size and
characteristics (feature space), 3) the ODE solver structure (algorithm
space), and 4) user’s preferences (criteria space). Users usually have a
specific expertise, either in biology, modeling, code development or
mathematics, but rarely in all fields. There is, therefore, a real need for a

tool guiding any users towards the choice of the best algorithm to solve 
ODE systems.

Rhenovia is repeatedly faced with this problem throughout the 
development of a simulation platform for hippocampal glutamatergic 
synapse [4], and its integration into complex neuronal network. To 
this purpose, kinetic models were built and implemented. Due to the 
nature of kinetic models, the ODE systems are bilinear. As this project 
was initiated several years ago using the Java programming language, 
the eight solvers compared are all Java-based. We decided to simplify 
the algorithm selection problem by comparing the eight ODE solver 
algorithms performances and determine the most appropriate for 
bilinear synaptic kinetic models, depending on the properties of the 
system under consideration. This study provides a priori knowledge 
on solvers performances to help users interested in launching a large 
number of simulations with a specific model, for example to run an 
analysis sensibility.

In the literature, bilinear systems are written in the mathematical 
form represented by equation (1), where ( ) nx t ∈ℜ  is the state variable 
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Abstract
In systems biology, systems of kinetic reactions are generally used to model and simulate various biochemical 

pathways. These reactions are translated into ordinary differential equations, which are computationally resolved 
by numerical algorithms. Computation performance, defined by how fast the algorithm converges to a numerical 
solution of the system of ordinary differential equations, critically depends on the choice of the appropriate algorithm. 
In this paper, we compared several algorithms used to solve ordinary differential equations applied to several kinetic 
models that describe the dynamic behavior of receptors and ion channels found in chemical synapses of the Central 
Nervous System; we provide a simplified method to determine the performances of these ordinary differential 
equation solvers, in order to provide a benchmark for algorithm selection. This method will facilitate the choice of 
the most efficient algorithm for a given kinetic model with a minimum number of tests. Our results provide a tool 
for identifying optimal solvers for any biological bilinear kinetic models under various experimental conditions. This 
comparison also underscored the complexity of biological kinetic models and illustrates how their input dependency 
could interfere with performance. Despite these challenges, our simplified method helps to select the best solvers 
for any synaptic receptors kinetic models described, with a bilinear system with minimal a priori information on the 
solver structure and the model.
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vector and ( ) mu t ∈ℜ  is the system’s input vector, with ( )iu t  the thi  
command of the system and iB his associated constant matrix [5,6]. 
The bilinear systems are a special case of non linear affine systems.

1
( ) . ( ) ( ). . ( )

m

i i
i

x t A x t u t B x t
=

= +∑                    (1)

We compared eight ODE solvers (Table 1 and Table S-1), 
implemented in the Java language following good coding practice [7], 
in order to ensure adequate performance and high robustness. The 
ODE solvers are categorized into three groups: implicit, explicit and 
hybrid solvers (hybrid solver combines implicit and explicit methods at 
each integration step). Our kinetic models are usually bilinear systems 
and can be categorized as stiff or non-stiff according to their temporal 
evolution under a particular experimental protocol. The notion of 
stiffness was introduced by Curtiss and Hirschfelder [8], and has 
been refined several times. Since we do not intend to give a precise 
definition of stiffness here, we will consider a model to be non-stiff 
if an explicit solver is more efficient than an implicit one; otherwise 
we will consider it to be stiff [9]. The stiffness detection methods are 
commonly based on numerical resolution method stability bound [10-
12]. This implies that the stiffness of a model is closely related to the 
selected numerical resolution method. According to Ekeland et al. [12], 
the precise definition of the stiffness of a system of equations is not 
crucial from a practical point of view. Therefore, in order to simplify 
the algorithm selection problem, we decide to follow Ekeland’s idea, 
and not to determine the stiffness degree of models used in this study.

All evaluated solvers have variable step-sizes, except for the 
selected reference solver. The reference solver is a fourth-order explicit 
Runge-Kutta (RK) algorithm [13] (RK4), and assumed to be the most 
precise at the chosen (very small) step size. The other solvers were 
Runge-Kutta Fehlberg, TR-BDF2, Rosenbrock, JVODE ADAMS, 
JVODE BDF and JLSODE. The Runge-Kutta Fehlberg [14,15] (RKF) is 
a fourth/fifth-order explicit RK scheme. TR-BDF2 [16,17], an implicit 
solver, is composed of a trapezoidal rule and a second-order Backward 
Differential Formula (BDF scheme), and corresponds to the ode23tb 
solver [18] in the Matlab® software (see details in the supplemental 
document). The Rosenbrock solver [19] is a hybrid RK4, and IMEX 
(for IMplicit-EXplicit) [20,21] is another hybrid fourth-order Runge-
Kutta. JVODE is a Java version of the CVODE solver [22,23]. JVODE 
has not been modified, as it was implemented in Java language by the 
BioUML platform developers [24]. JVODE includes two schemes: 
1) a variable order (from 1 to 12), explicit Adams-Moulton method 
for non-stiff systems, and 2) a variable order (from 1 to 5), implicit 
Backward Differential Formula (BDF scheme) for stiff systems. We 
will differentiate these two schemes and call them JVODE ADAMS 
and JVODE BDF, respectively. The last ODE solver is JLSODE (Java 
version of LSODE [25]), which has the same Adams-Moulton and BDF 
schemes as JVODE. This last solver however adds stiffness detection, as 
written by Uteshev and Pennefather [26]. With this stiffness detection, 
JLSODE starts with the Adams-Moulton scheme and reversibly 
switches to the BDF scheme, if the system becomes stiff. With stiffness 
detection and the combination of two methods, one for non-stiff and 
one for stiff systems, we could assume that this solver would be the 
best performer and the most stable between all solvers. These eight 
solvers were implemented in the RHENOMS™ simulation platform 
[4]. Further details about these 8 ODE solvers are provided in the 
supplemental document.

Materials and Methods
As a common basis of benchmarking, we used the Rhenovia’s 

biosimulation platform RHENOMS and several models of synaptic 
receptors/channels. Figure 2 shows an example of a very simplified 

Figure 1: Algorithm selection problem. The algorithm selection problem was defined by Rice in 1976, and completed by Ewald [3]. As presented in this scheme ([3] 
page 22), users need to know model inputs, characteristics (size) and algorithms structure in order to select the right algorithm for a simulation.

Explicit Implicit Hybrid

RK4
RKF

JVODE ADAMS
JLSODE

TR-BDF2
JVODE BDF

JLSODE

Rosenbrock
IMEX

Hybrid solvers combine the use of an explicit method followed by an implicit one 
for each step. JLSODE solver includes both explicit and implicit schemes and 
uses the most appropriate one at each integration step.

Table 1: Classification of the 8 ODE solvers used in our study.
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biological kinetic model of a generic glutamate receptor called 
elementary model. The glutamate neurotransmitter is represented by 
Glu, while R and RGlu represent the receptor in the free and liganded 
state, respectively. In this kinetic scheme, k1 and k2 represent the 
association and dissociation rate constants for the binding of the 
neurotransmitter on the receptor. The ordinary differential equations 
corresponding to this kinetic model consist in the system of equations 
(2), and the bilinearity is given by the term GluRk **1 .

1 2

2 1

* * *

* * *

dRGlu k R Glu k RGlu
dt

dR k RGlu k R Glu
dt


= −


 = −


                                                       (2)

In this study, we choose four elementary models with different 
kinetic structures and dynamic characteristics (fast or slow), and 
corresponding to ligand-gated receptor (activated by a ligand such 
as glutatmate or GABA) or voltage-dependent channels (activated 
by a change of the potential), two important elements for synaptic 
transmission. The first model tested in this study is represented in 
Figure 3, and could represent either an AMPA or NMDA synaptic 
receptor according to the set of parameters used [27,28]. To differentiate 
these two models, we will call them AMPA7 and NMDA7, respectively. 
Testing the algorithms with two sets of parameters applied to the same 
model structure allows differentiating the impact of the kinetic scheme 
and the impact of the parameters on the algorithms performances. 
Several other models developed by Rhenovia were then tested. The 
next tested model is a model of NMDA (NR1/NR2A) receptor [29], 
with 15 states variables (referred later as NMDA15), qualified as slow 
based on the response of the model (50-250 msec) in the referential of 
synaptic transmission. This NMDA receptor model gives more details 
and information on the receptor characteristics than the first NMDA7 
model. The fourth model represents the GABAA synaptic receptor, 
which is considered as a fast model (20-50 msec). Lastly, a model of an 
N-type voltage-dependent calcium channel (VDCC) was tested. This 

VDCC model is relatively fast (0-5 msec for activation), and differs 
from the models previously described as it is based on the Hodgkin-
Huxley formalism [30], instead of kinetic reactions. This VDCC model 
was parameterized and validated to fit Jaffe and Poirazi results [31,32]. 
The features of all tested models are summarized on Table 2.

We stimulated each model with two different protocols: 1) 
Protocol 1 (P1) is a single event (Figure 4A and 2) Protocol 2 (P2) is 
the same event repeated 4 times with a 10 msec interval (Figure 4B). 
These two protocols were selected because they correspond to the type 
of electrical activity that takes place in the brain under most conditions. 
In the resting state, neurons communicate at low frequency, with single 
action potential (the single event protocol). On the other hand, under a 
number of conditions (learning, exploration), neurons increased their 
firing frequency and often emit bursts of action potential at frequency 
between 5 and 100 Hz. As an example, we selected 10 Hz. The repeated 
events are protocols often used for testing synaptic receptor models [33]. 
In addition, this low frequency could show if input had an important 
impact on solver performances. For the ligand-gated receptors, the 
single event consists in a 1 msec pulse of 1 mM glutamate, while for 
the voltage-gated channel the single event is a 1 msec depolarization 
step from -70 mV to 0 mV. These two protocols were tested with two 
sets of tolerance, which are used to validate a computed step by all the 
numerical ODE resolution methods: 1) a common set of tolerance with 
the relative tolerance equal to 1e-3 (Rtol), and the absolute tolerance 
equal to 1e-6 (Atol), and 2) a set of restrictive tolerance with Rtol=1e-6 
and Atol=1e-9. These two tolerance sets are respectively called Tol1 and 
Tol2. Although this choice may appear arbitrary, experience leads us 
to consider these values as relevant for numerical resolution methods 
[26,34].

Explicit Runge-Kutta methods are stable algorithms, as long as 
the integration step-size remains small enough. Therefore, we selected 
the fourth-order explicit Runge-Kutta (RK4) algorithm solver with 
a constant step-size of 0.5 µsec, as our reference to ensure that the 
solution of the simulation would remain stable and accurate. To assess 
performance, we used the execution time (speed) and the number of 
points (which is proportional to memory consumption) necessary to 
complete the simulation (i.e. to reach a stable numerical solution), 
which satisfy the tolerance parameter sets. As the execution time differs 
a little for each simulation, we repeat it ten times and make an average 
for measuring the execution times. For each model and protocol, the 
calculated output of the simulation is the current generated by receptor/
channel activation as a function of time. We also evaluated the relative 
precision of each algorithm by determining the Mean Square Error 
(MSE), and the Normalized Root Mean Square Deviation (NRMSD) 
between the results produced by a solver and those generated by the 

Figure 2: Example of an elementary kinetic model for ligand/receptor binding.

Figure 3: Kinetic scheme of the AMPA7/NMDA7 model depending to the set of 
parameters. The rectangles represent the different state variables. The green 
ovals named Glu represent the input of the model and the location with where 
it interacts in the model.

Model State 
size

Number of 
equations

Number of 
parameters

Number of 
inputs

Dynamic 
rate (msec)

AMPA7 7 7 16 1 20-50

NMDA7 7 7 16 1 50-250

NMDA15 15 15 38 3 50-250

GABAA 8 8 18 1 20-50

N type VDCC 2 6 12 1 0-5

Glutamatergic 
synapse 144 326 432 1 unknown

For each model, we extracted the same features: state size, number of equations, 
number of parameters, number of inputs and dynamic rate times.

Table 2: Features of the models used in this study.
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reference solver (RK4). More details are available in the supplemental 
document for the measurement of these two accuracy criteria. These 
4 performance criteria (execution time, memory consumption, MSE 
and NRMSD) were selected as indices for rapidly obtaining the most 
accurate result using the lowest computer resources.

To quantify each algorithm performance, we simplified the 
algorithm selection problem and used the ||p|| norm value, as illustrated 
in equation (3), where pi represents our selected criteria and wi the 
priority that user give for each criteria, respectively. Importantly, in 
this study, we decided to use the same priority level for all four criteria, 
and thus, the w vector is [1, 1, 1, 1]T. The norm value provides a rapid 
comparison of the overall performance of the various algorithms, 
as it generates a single value for the performance of each algorithm. 
Algorithms yielding a small norm value will thus be considered as more 
efficient than others yielding a larger norm value.

( )
4 2

1
.

n

i i
i

p p w
=

=

= ∑                      (3)

Furthermore, to verify the performance variation of algorithms, 
we computed the differences in norm values between the different sets 
of tolerance and protocols. The performance variations enable us to 
determine whether an algorithm is sensitive to input protocol, or to 
tolerance parameter sets. Simulations were performed on a workstation 
with a LINUX (Ubuntu 10.04) operating system and an Intel® Xeon® 
CPU at 2.67 GHz frequency equipped with 12 Gbytes of RAM and the 
version 1.6 of Java installed.

Results and Discussion
In computational neuroscience, most models are stimulus-

dependent and bilinear. The major goal of our study was to simplify the 
algorithm selection problem by benchmarking the solvers performances 
implemented in RHENOMS. This simplification could make a complex 

problem accessible to all users, and provide a recommendation for the 
possible use of biological bilinear kinetic models. Therefore, we will not 
discuss here the details of the solvers or of the models.

AMPA7/NMDA7 receptor model

This kinetic scheme, presented in Figure 3, comprises 7 states, 7 
equations, 16 parameters and 1 input variable. It could model a fast 
receptor like AMPA or a slower one like NMDA, according to the set of 
parameters used. For this model, we choose the open state probability 
represented by the O4 rectangle in Figure 3 as readout. The open 
probability of the AMPA7 model is depicted on Figure 5, and the same 
state for the NMDA7 model is shown in Figure 6. As we can see, the 
two models (AMPA7 and NMDA7) do not give the same dynamics 
on the open probability state. The raw data of the AMPA7 model are 
depicted on Table S-2 and S-3 on the additional document for the P1 
and P2 protocols. Similar data for the NMDA7 model are given in 
Table S-4 and S-5. The performance values are presented on Table 3 for 
the AMPA7 and on Table 4 for the NMDA7 model.

In order to find the best algorithm for this model, we identified the 
solver(s) with the smallest norm values for the two stimulation protocols 
and the two sets of tolerance (Figure 7). Based on the first protocol 
(Figure 7B), the hybrid IMEX solver provides the best performances 
for the AMPA7 model whereas solvers with a BDF scheme are the 

Figure 4: Stimulation protocols. A: Single event protocol P1, B: Repeated 
event protocol P2. Inserts represent the stimulus embedded in the entire 
simulation run.

Figure 5: Normalized open state probability for AMPA7 model. Insert 
represents the results embedded in the entire simulation run.

Figure 6: Normalized open state probability for NMDA7 model.
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Figure 7: Normalized norm values for the AMPA7 receptor model. A: Review of the protocol P1. B: The normalized norm values for the 8 solver algorithms with P1. C: 
Review of the protocol P2. D: The normalized norm values for the 8 solver algorithms with P2. All ||p|| norms are normalized to the reference RK4 ||pRK4|| norm.

Figure 8: Normalized norm values for the NMDA7 receptor model. A: Review of the protocol P1. B: The normalized norm values for the 8 solver algorithms with P1. C: 
Review of the protocol P2. D: The normalized norm values for the 8 solver algorithms with P2. All ||p|| norms are normalized to the reference RK4 ||pRK4|| norm.
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RK4 RKF TR- Rosen- IMEX JVODE JVODE JLSODE

BDF2 brock ADAMS BDF

Protocol 1 (single pulse)

Tol1 1.0 1.34e-3 1.46e-3 5.27e-4 5.23e-4 5.59e-4 1.02e-3 5.49e-4

Tol2 1.0 1.35e-3 4.31e-2 6.44e-4 5.98e-4 1.01e-3 1.97e-2 8.64e-4

ΔP1 Tol1/Tol2 - 1e-5 4.16e-2 1.17e-4 7.5e-5 4.5e-4 1.87e-2 3.15e-4

Protocol 2 (repeated pulses)

Tol1 1.0 2.39e-3 7.09e-3 6.14e-4 5.87e-4 7.85e-4 2.2e-3 7.19e-4

Tol2 1.0 2.41e-3 1.65e-2 1.12e-3 7.86e-4 2.61e-3 1.69e-2 1.79e-3

Δ P2 Tol1/Tol2 - 2.1e-5 9.41e-3 5.06e-4 1.99e-4 1.8e-3 1.47e-2 1.1e-3

Δ Tol1 P1/P2 - 1.1e-3 5.6e-3 8.7e-5 7.5e-5 2.26e-4 1.2e-3 1.7e-4

Δ Tol2 P1/P2 - 1.1e-3 2.66e-2 4.76e-4 7.11e-4 1.6e-3 2.8e-3 9.26e-4

Tol1 and Tol2 represent the ||p|| norm value for each algorithm with P1 and P2 protocols. ∆ P1 Tol1/ Tol2 represents the absolute difference between Tol1 and Tol2 for P1, 
whereas ∆ P2 Tol1/ Tol2 represents the same absolute difference for P2. ∆ Tol1 P1/P2 represents the absolute difference between P1 and P2 for Tol1 parameters, whereas 
∆ Tol2 P1/P2 represents the same absolute difference for Tol2.

Table 3: Quantification and comparison of normalized solver performances for the AMPA7 model.

RK4 RKF TR- Rosen- IMEX JVODE JVODE JLSODE

BDF2 brock ADAMS BDF

Protocol 1 (single pulse)

Tol1 1.0 5.14e-4 1.83e-3 5.24e-4 5.21e-4 5.41e-4 8.36e-4 5.25e-4

Tol2 1.0 5.36e-4 3.93e-3 5.84e-4 5.63e-4 8.14e-4 9.54e-3 7.2e-4

ΔP1 Tol1/Tol2 - 2.2e-5 2.1e-3 6e-5 4.2e-5 2.73e-4 8.7e-3 1.95e-4

Protocol 2 (repeated pulses)

Tol1 1.0 5.29e-4 4.55e-3 5.64e-4 5.57e-4 6.08e-4 1.23e-3 6.28e-4

Tol2 1.0 5.79e-4 9.06e-3 7.1e-4 6.58e-4 1.13e-3 1.63e-2 1.03e-3

Δ P2 Tol1/Tol2 - 2.1e-5 9.41e-3 5.06e-4 1.99e-4 1.8e-3 1.47e-2 1.1e-3

Δ Tol1 P1/P2 - 1.5e-5 2.72e-3 4e-5 3.6e-5 6.7e-5 3.9e-4 1.03e-4

Δ Tol2 P1/P2 - 4.3e-5 5.13e-3 1.26e-4 9.5e-5 8.14e-4 6.76e-3 3.8e-4

Tol1 and Tol2 represent the ||p|| norm value for each algorithm with P1 and P2 protocols. ∆ P1 Tol1 / Tol2 represents the absolute difference between Tol1 and Tol2 for P1, 
whereas ∆ P2 Tol1/ Tol2 represents the same absolute difference for P2. ∆ Tol1 P1/P2 represents the absolute difference between P1 and P2 for Tol1 parameters, whereas 
∆ Tol2 P1/P2 represents the same absolute difference for Tol2.

Table 4: Quantification and comparison of normalized solver performances for the NMDA7 model.

RK4 RKF TR- Rosen- IMEX JVODE JVODE JLSODE

BDF2 brock ADAMS BDF

Protocol 1 (single pulse)

Tol1 1.0 8.025e-3 3.587e-3 5.25e-4 5.22e-4 5.45e-4 8.83e-4 5.59e-4

Tol2 1.0 8.051e-3 1.8478 6.04e-4 5.76e-4 8.96e-4 1.163e-2 8.79e-4

ΔP1 Tol1/Tol2 - 2.6e-5 1.8444 7.9e-5 5.4e-5 3.51e-4 1.075e-2 3.29e-4

Protocol 2 (repeated pulses)

Tol1 1.0 8.034e-3 8.004e-3 5.74e-4 5.63e-4 6.76e-4 1.51e-3 6.6e-4

Tol2 1.0 8.067e-3 2.7826 8.04e-4 7.18e-4 1.554e-3 2.18e-2 1.35e-3

Δ P2 Tol1/Tol2 - 3.3e-5 2.7746 2.3e-4 1.55e-4 8.68e-4 2.029e-2 6.92e-4

Δ Tol1 P1/P2 - 9.1e-6 4.417e-3 4.9e-5 4.1e-5 1.31e-4 6.27e-4 1.01e-4

Δ Tol2 P1/P2 - 1.6e-6 0.9347 2.4e-4 1.42e-4 6.48e-4 1.016e-2 4.73e-4

Tol1 and Tol2 represent the ||p|| norm value for each algorithm with P1 and P2 protocols. ∆ P1Tol1/Tol2 represents the absolute difference between Tol1 and Tol2 for 
P1, whereas ∆ P2 Tol1/Tol2 represents the same absolute difference for P2. ∆ Tol1 P1/P 2 represents the absolute difference between P1 and P2 for Tol1 parameters, 
whereas ∆ Tol2 P1/P2 represents the same absolute difference for Tol2.

Table 5: Quantification and comparison of normalized solver performances for the NMDA15 model.
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worst performers. With the second protocol (Figure 7D), we observe 
the same tendancy. If we analyze the raw data (in the supplemental 
document), TR-BDF2 and JVODE BDF needed an important number 
of points to compute the results. Contrary, the IMEX algorithm is the 
one that had the lowest memory footprint and had the most accurate 
results. In addition, its execution time is very short.

According to performances obtained on this AMPA7 model, TR-
BDF2 and JVODE BDF appear to be the most sensitive to protocol and 
tolerance sets variations with this model. The RKF solver is the least 
sensitive to tolerance variations, whereas hybrid solvers were the least 
sensitive to protocol variations.

In Figure 8, the same graphics are plotted for the parameters, which 
model the NMDA7 synaptic receptor to visualize the ||p|| performances 
values. With a slow dynamics on this kinetics scheme, the RKF solver 
became the best choice for all our tested protocols and tolerance sets. 
As for the AMPA7 model, solvers using BDF scheme are the worst 
performers. In fact, the raw data (in the supplemental data) show that 
these solvers needed a large number of points, and a long execution 
time. Regarding the performance variations on these models, RKF 
appears to be the least sensitive to protocols and tolerance variations, 
whereas JVODE BDF and TR-BDF2 are the most sensitive.

This kinetic scheme generates different dynamics with different 
parameters. With the parameters modeling the fast AMPA7 model, the 
IMEX solver appears to be the most suitable; and with the parameters 
modeling the slow NMDA7 model, the RKF solver appears to be the 
most suitable. With this observation, it appears that the dynamics of 
the system is more important than the structure of the kinetic scheme.

NMDA15 receptor model

The NMDA15 (NR1/NR2A) receptor is a relatively slow (50-250 
msec) glutamate receptor. This model was previously calibrated and 
validated to fit a variety of experimental data [26]. The tested NMDA15 
model had 3 inputs: glutamate concentration, glycine concentration 
and depolarization. For this study, we choose the glutamate as the 
protocol input. Glycine and depolarization are parameterized to be 
constant. The current generated by receptor activation using the 
single pulse protocol P1, and calculated with all the solvers is depicted 
on Figure 9. All algorithms provided similar results, and Figure 10 
summarizes these performance values. The criteria of the NMDA15 
model are quantified on Table S-6 and S-7 of the supplemental 
document. Algorithm performance values for the NMDA15 receptor 
model are quantified in Table 5.

To find the best algorithm for this model, we identified the solver(s) 
with the smallest norm values for the two stimulation protocols and the 
two sets of tolerance (Figure 10B and 10D). Based on Figure 10B, for 
P1 protocol, the algorithm performances did not differ much between 
Tol1 and Tol2 tolerances except for the BDF scheme (TR-BDF2 and 
JVODE BDF solvers), for which a more than 10 times difference on 
||p|| performance value is observed. For P2 protocol, the performance 
differences between Tol1 and Tol2 parameters were more pronounced 
with the last three algorithms. As for P1 protocol, BDF scheme 
performances deteriorated significantly with Tol2. For both stimulation 
protocols, the best solver was IMEX for both tolerance parameters, 
while the least performing algorithm was RKF for Tol1 and TR-BDF2 
for Tol2 for both protocols. Considering the algorithm performance 
variations presented in Table 5, we concluded that TR-BDF2 solver 
was the most sensitive to protocol and tolerance parameters for the 

NMDA15 receptor model, whereas RKF solver has the overall most 
stable performance.

GABAA receptor model

The GABAA synaptic receptor is a fast model with approximately 
the same dynamics as the AMPA7 model. It is sensitive to the GABA 
neurotransmitter. Our GABAA model was developed using parameters 
is presented [35]. The tested GABAA model had 8 states, 8 equations, 
18 parameters and 1 input. Figure 11 shows the GABAA model current 
generated with protocol P1. This current was our readout to determine 
performance values. Our results indicate that all solvers provide similar 
results. This model’s quantification criteria are depicted in details in the 
supplemental document on Table S-8 and S-9 (respectively for P1 and 
P2 protocols). The algorithm performance values for the tested GABAA 
receptor model are quantified in Table 6.

The graphs presenting the ||p|| performance value in Figure 12 
quantitatively helps to determine the most appropriate algorithm for 
the GABAA receptor model. A brief examination of Figure 12B and 
12D suggests that TR-BDF2 and JVODE BDF are the worst solvers for 
this model, as they yield large ||p|| values. JLSODE appears as the best 
solver for this model with the first protocol (P1), and the first tolerance 
parameters (Tol1). For all others simulations, IMEX yields the best 
performances. Observing the performance variations on Table 6, the 
worst solvers (JVODE BDF and TR-BDF2) for this model are the most 
sensitive to input and tolerance variations. With the GABAA model 
and the tested situations, IMEX and RKF yield the most consistent 
performances.

In fact, from Table S-8 and S-9 in the supplemental file, we could 
observe that RKF is the faster solver. However, the IMEX was most 
accurate with the GABAA model with all tested simulation. The IMEX 
was clearly not competing with other solvers for the execution time 
on the second protocol, as it needs longer time to compute the results. 
But, its low memory consumption combined with its final accuracy 
background made it the best solver for this particular model.

N-Type VDCC model

In general, it has proven difficult to model voltage-dependent 
calcium channels (VDCC), due to the existence of a tail current at the 
end of the plateau current. For our comparative studies, we decided 
to simulate the N-Type VDCC, a high voltage-activated channel. This 
channel is very fast (0-5 msec activation), as shown in Figure 13. For 
this channel, we increased the depolarization duration to 10 msec. The 
interval between pulses was adjusted in protocol P2 to maintain the 
10 Hz stimulation condition. All the solvers were able to accurately fit 
the references results. The various performance values parameters are 
summarized in Figure 14.

No significant differences were observed between the eight 
considered algorithms, except for TR-BDF2, which generated the 
highest ||p|| norm performance values for both protocols and tolerance 
sets. Comparing the overall performance values of the solvers (Table 7), 
JLSODE was the algorithm that provided the best performance for both 
stimulation protocols and tolerance sets. However, RKF performance 
values were very close to that of JLSODE (1e-6 difference).

When we analyzed the criteria quantification table (Table S-10 
and S-11 in supplemental file), all algorithms required approximately 
the same number of points, except for TR-BDF2, which needed more 
points with Tol2 parameters (10 times more for P1 and 64 times more 
for P2). In addition, all solvers generated almost the same NRMSD, 
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Figure 9: Normalized NMDA15 receptor current. NMDA15 receptor’s current resulting from a single pulse protocol generated by all solver algorithms.

Figure 10: Normalized norm values for the NMDA15 receptor model. A: Review of the protocol P1. B: The normalized norm values for the 8 solver algorithms with 
P1. C: Review of the protocol P2. D: The normalized norm values for the 8 solver algorithms with P2. All ||p|| norms are normalized to the reference RK4 ||pRK4|| norm.
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Figure 11: Normalized GABAA receptor model current. GABAA receptor’s current resulting from the single pulse protocol generated by all solvers. Insert represents 
the results embedded in the entire simulation run.

Figure 12: Normalized norm values for the GABAA receptor model. A: review of the protocol P1. B: The normalized norm values for the 8 solver algorithms with P1. 
C: review of the protocol P2. D: The normalized norm values for the 8 solver algorithms with P2. All ||p|| norms are normalized to the reference RK4 ||pRK4|| norm.
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RK4 RKF TR- Rosen- IMEX JVODE JVODE JLSODE

BDF2 brock ADAMS BDF

Protocol 1 (single pulse)

Tol1 1.0 1.19e-3 5.66e-3 5.32e-4 5.27e-4 5.74e-4 8.62e-4 4.88e-4

Tol2 1.0 1.98e-3 2.11e-2 6.49e-4 6.06e-4 1.05e-3 1.47e-2 8.88e-4

ΔP1 Tol1/Tol2 - 7.9e-4 1.54e-2 1.17e-4 7.9e-5 4.76e-4 1.38e-2 4e-4

Protocol 2 (repeated pulses)

Tol1 1.0 1.95e-3 6.12e-3 6.07e-4 5.87e-4 7.48e-4 1.95e-3 7.53e-4

Tol2 1.0 2.09e-3 1.86e-2 1.03e-3 8.8e-4 2.46e-3 3.07e-2 1.7e-3

Δ P2 Tol1/Tol2 - 1.4e-4 1.25e-2 4.23e-4 2.93e-4 1.71e-3 1.12e-2 9.47e-3

Δ Tol1 P1/P2 - 7.6e-4 4.6e-4 7.5e-5 6e-5 1.74e-4 1.08e-3 2.65e-4

Δ Tol2 P1/P2 - 11e-4 2.5e-3 3.81e-4 2.74e-4 6.6e-4 1.6e-2 8.12e-4

Tol1 and Tol2 represent the ||p|| norm value for each algorithm with P1 and P2 protocols. ∆ P1 Tol1/Tol2 represents the absolute difference between Tol1 and Tol2 for P1, 
whereas ∆ P2 Tol1 / Tol2 represents the same absolute difference for P2. ∆ Tol1 P1/P 2 represents the absolute difference between P1 and P2 for Tol1 parameters, whereas 
∆ Tol2 P1/P2 represents the same absolute difference for Tol2.

Table 6: Quantification and comparison of normalized solver performances for the GABAA model.

RK4 RKF TR- Rosen- IMEX JVODE JVODE JLSODE

BDF2 brock ADAMS BDF

Protocol 1 (single pulse)

Tol1 1.0 5.004e-2 5.154e-2 5.006e-2 5.007e-2 5.008e-2 5.008e-2 5.003e-2

Tol2 1.0 5.004e-2 0.683 5.006e-2 5.007e-2 5.008e-2 5.008e-2 5.003e-2

Δ P1 Tol1/Tol2 - 2.5e-8 0.6314 9.84e-7 9.4e-8 1.056e-6 1e-6 1.2e-8

Protocol 2 (repeated pulses)

Tol1 1.0 5.001e-2 5.647e-2 5.018e-2 5.019e-2 5.037e-2 5.037e-2 5e-2

Tol2 1.0 5.001e-2 3.215 5.018e-2 5.019e-2 5.037e-2 5.037e-2 5e-2

Δ P2 Tol1/Tol2 - 2.7e-10 3.1587 2.8e-8 1.08e-7 6.4e-8 2e-9 1e-9

Δ Tol1 P1/P2 - 5.976e-6 4.933e-3 1.198e-5 1.192e-5 2.988e-5 2.899e-5 5.99e-6

Δ Tol2 P1/P2 - 6e-6 2.5322 1.102e-5 1.213e-5 3.006e-5 3e-5 6.01e-6

Tol1 and Tol2 represent the ||p|| norm value for each algorithm with P1 and P2 protocols. ∆ P1 Tol1/Tol2 represents the absolute difference between Tol1 and Tol2 for P1, 
whereas ∆ P2 Tol1/Tol2 represents the same absolute difference for P2. ∆ Tol1 P1/P2 represents the absolute difference between P1 and P2 for Tol1 parameters, whereas 
∆ Tol2 P1/P2 represents the same absolute difference for Tol2.

Table 7: Quantification and comparison of normalized solver performances for the N-type VDCC model.

RK4 RKF TR- Rosen- IMEX JVODE JVODE JLSODE

BDF2 brock ADAMS BDF

P1 1.0 0.3156 0.4989 0.1334 0.4327 0.1425 0.1456 0.1537

P2 1.0 0.3273 0.261 0.1663 0.4705 0.1884 0.1831 0.1926

Δ Tol1 P1/P2 - 1.16e-2 0.2379 3.291e-2 3.773e-2 4.585e-2 3.753e-2 3.886e-2

Tol1 and Tol2 represent the ||p|| norm value for each algorithm with P1 and P2 protocols. ∆Tol1 P1/P2 represents the absolute difference between P1 and P2 for Tol1 
parameters.

Table 8: Quantification and comparison of normalized solver performances for the glutamate synapse model.

except for RKF (for both stimulation protocols) and TR-BDF2 (for Tol2 
tolerance set).

As illustrated in the supplemental file (Figure S-1), when switching 
from Tol1 to Tol2, the TR-BDF2 solver yielded smaller error values 
(both MSE and NRMSD), although execution time and memory 
consumption (i.e. number of points) increased and exceeded RK4 
values. In addition, a small relative tolerance value (Rtol<1e-6) was not 
required to obtain accurate results with TR-BDF2 solver. These results 
indicate that the JLSODE solver is the best choice for this VDCC 

model, as it provides the best performance. However, RKF results were 
very close. In addition, when observing performance variations, RKF 
performances were less sensitive to input protocols or tolerance sets.

Application to RHENOMS model

In order to complete our study, we then analyzed the performance 
of the different ODE solvers with a model of glutamatergic synapse 
that integrates a large number of synaptic elementary models, such 
as receptors, channels, transporters, enzymes and signaling pathway 
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Figure 13: N-type VDCC current. N-type VDCC’s current resulting from a single event protocol generated by all ODE solvers Insert represents the results embedded 
in the entire simulation run.

Figure 14: Normalized norm values for the N type VDCC model. A: review of the protocol P1. B: The normalized norm values for the 8 solver algorithms with P1. C: 
review of the protocol P2. D: The normalized norm values for the 8 solver algorithms with P2. All ||p|| norms are normalized to the reference RK4 ||pRK4|| norm. 
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models. Overall, the glutamatergic synapse platform integrates more 
than 300 equations to be solved at each integration step, 144 variable 
states for 21 bilinear synaptic elementary kinetic models. A simplified 
representation of the glutamatergic model is illustrated in Figure 15, 
which specifically highlights the previously tested elementary models. 
In addition to the large number of equations, the neurotransmitter 
release model uses the Systems Biology Markup Language (SBML) 
events [36], which results in more non-linearity, stiffness and difficulties 
to solve equations during simulations.

Despite the power and available memory in the computer we 
used, computing the glutamatergic synapse model with TR-BDF2 
algorithm with the second tolerance set (Tol2) was beyond the available 
capacity, and we, therefore, cannot present these results. Indeed such 
calculation would require a computer cluster with much more memory 
as the number of points computed for all elementary models becomes 
prohibitive. The second set of tolerance placed TR-BDF2 in its worst 
configuration, and this algorithm did not need a restrictive tolerance to 
provide accurate enough results. In addition, users do not often change 
the default tolerance parameters, which are commonly set close to our 
first set (Tol1). For these reasons, we present algorithm performances 
with the first tolerance set only (Tol1) with the two stimulation protocols 
(P1 and P2). Quantified criteria are presented in the supplemental file 
by Table S-12.

Considering the number of synaptic receptors integrated in this 
model, we selected the postsynaptic current as the main readout, 
as it corresponds to the sum of currents generated by activation of 
all receptors, and is a common readout in biological experiments. 
In addition, we replaced the number of points (used to evaluate the 
performance of previous tested models) by the memory consumption 
for the simulation, which seems more appropriate for this complex 

model. A two-second simulation is performed, with a 100  msec 
delay before the start of stimulation was applied, and the quantified 
performances values and variations for the glutamatergic synapse 
model are presented in Table 8.

As shown in Figure 16, the Rosenbrock solver provided the smallest 
norm values for both protocols. In contrast, IMEX, which is a hybrid 
solver too, with a fourth-order RK-scheme, generated a large norm 
value. Surprisingly, TR-BDF2 algorithm improved its performance 
between P1 and P2 protocol. This could be due to its step-size 
adaptation tstop (see supplemental file), with which TR-BDF2 readapts 
the integration step-size around an abrupt variation (i.e. a stimulation 
input). In theory, the more stimulation the model receives, the more 
efficient the algorithm becomes [16]. It was the sole algorithm with a 
better performance with P2 as compared to P1. TR-BDF2 was also the 
most sensitive to input protocol with the glutamatergic synapse model, 
whereas RKF was the least sensitive.

Conclusion
Computational neuroscience encompasses a wide range of kinetic 

models with very different characteristics. It is very difficult to select 
the appropriate algorithm to solve the ODE systems representing 
biological bilinear kinetic models. Indeed, in order to select the right 
algorithm, as suggested by Rice, users need to know the model input, 
model characteristics (size), and ODE solver structure. A benchmark 
comparing various ODE solver algorithms or a recommendation 
could help users to select the most appropriate algorithm for a given 
simulation. We simplified the algorithm selection problem and 
benchmarked eight ODE solvers performances using several types of 
kinetic models with two different stimulation protocols. Although this 
benchmark was done in Java programming language, it is important to 

Figure 15: Simplified schematic representation of the used glutamatergic synapse model.
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Figure 16: Normalized norm values for glutamatergic model. Normalized norm values for the 8 solver algorithms for the glutamate synapse model stimulated with P1 
and P2 protocols. All ||p|| norms are normalized to the reference RK4 ||pRK4|| norm.

Model Protocol Tolerance Best ||p|| Worst ||p||

Fast model: P1 Tol1 IMEX TR-BDF2

AMAP7 Tol2 IMEX JVODE BDF

P2 Tol1 IMEX TR-BDF2

Tol2 IMEX JVODE BDF

Slow model: P1 Tol1 RKF TR-BDF2

NMDA7 Tol2 RKF TR-BDF2

P2 Tol1 RKF TR-BDF2

Tol2 RKF JVODE BDF

Slow model: P1 Tol1 IMEX RKF

NMDA15 Tol2 IMEX TR-BDF2

P2 Tol1 IMEX RKF

Tol2 IMEX TR-BDF2

Fast model: P1 Tol1 IMEX TR-BDF2

GABAA Tol2 IMEX TR-BDF2

P2 Tol1 IMEX JVODE BDF

Tol2 IMEX JVODE BDF

Fast model: P1 Tol1 JLSODE TR-BDF2

N-type VDCC Tol2 JLSODE TR-BDF2

P2 Tol1 JLSODE TR-BDF2

Tol2 JLSODE TR-BDF2

Glutamatergic P1 Tol1 Rosenbrock TR-BDF2

synapse P2 Tol1 Rosenbrock IMEX

Summary of the best and worst solvers for the two types of models with two different stimulation protocols and tolerance values, and the applicative simulation with the 
glutamatergic synapse. P1 stands for the single event protocol and P2 stands for the repeated event protocol.

Table 9: Summary of the best and worst solvers.
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note that the conclusions would not change with another programming 
language, as long as good coding practices are respected. Our overall 
conclusions are summarized in Table 9.

According to Table 5, TR-BDF2 was the least appropriate 
algorithm for all the models used in this study, with the selected 
stimulation protocols and tolerance parameter sets. TR-BDF2 is an 
ODE solver combining a trapezoidal scheme, followed by a second-
order Backward Differential Formula (BDF2). As shown in our results, 
a relative tolerance set below or equal to 1e-6 reduced this algorithm’s 
performance, and produced the highest overall ||p|| norm values. This 
algorithm could produce better performances and accurate enough 
results with a larger tolerance, but a more economical (in terms of 
performance) solver could then give accurate enough results as well.

The IMEX algorithm was the overall best choice for the tested 
AMPA7, NMDA15 and GABAA models. RKF solver was appropriate 
for the NMDA7. JLSODE was the best choice for the fast N type Calcium 
Channel model and Rosenbrock solver was the most appropriate for 
the glutamatergic synapse model, which was considered as a complex 
model. However, algorithm performance variations indicated that the 
RKF algorithm was the most stable one, when comparing stimulation 
protocols and tolerance sets. In fact, RKF solver appeared to be more 
stable to input and tolerance sets variation compared to JLSODE, which 
possesses stiffness detection with our w preference criteria. This study 
clearly showed that for a kinetic model, changing the model dynamics 
will affect the solver performances. In fact, for our model, the dynamic 
appears to be more important than the underlying kinetic structure.

Synaptic elementary kinetic models are composed in most cases of 
time-varying continuous time control system with input (ẋ=f(t,x,u)), 
also called affine in control or bilinear. Due to the dependency of ODEs 
with respect to inputs, it is important to note that model stiffness 
could differ if changing the stimulus protocol. Additionally, algorithm 
performance could change depending on the selected performance 
criteria or the criteria priority level (or weight), as described by Rice 
[2]. The presented method gives a priori information on solvers 
performance using an equal priority level for all four selected criteria. 
Users who need to run a large number of simulations with a model (for 
example to perform a sensitivity analysis or to test a drug concentration 
effect) could use this method to optimize the computational effort.

As a comparison with other simulation platforms or software, 
NEURON [37] uses the CVODE algorithm with a manual selection 
of either Adams-Moulton or BDF scheme. The Copasi [38] tool 
(biochemical network simulator) uses a fourth-order hybrid Runge-
Kutta algorithm, in addition to the LSODE algorithm, which integrates 
Petzolds stiffness detection. BioUML [24] developers made the same 
choice as Copasi ones, using a fourth-order hybrid Runge-Kutta 
algorithm, in addition to the CVODE algorithm implemented in Java 
language. The Matlab software uses the same approach as ours, which 
consists in integrating several resolution algorithms, and allowing the 
users to choose their algorithm based on the model they intend on 
simulating.

PYTHIA [39] is software, which provides a strict selection 
algorithm and tries to select a pair of machine/algorithm, in order to 
optimize the computational effort with a given problem. However, 
to use this tool, users need some expertise due to the complexity of 
the algorithm selection problem. As synaptic receptor models are 
commonly designed using SBML [36], a possible extension of this 
work would be to generate an automatic algorithm selection, which 

uses the strength of SBML. The idea would be to use SBML standard 
for automatically extracting the model features, and make the process 
completely transparent to the user.
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