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Introduction
Parallel manipulators, due to its closed-loop structure, posses a 

number of advantages over traditional serial manipulators such as high 
rigidity, high load-to-weight ratio, high natural frequencies, high speed 
and high accuracy [1]. However, they also have a few disadvantages 
such as a relatively small workspace, relatively complex forward 
kinematics and the most importantly, existence of singularities inside 
the workspace [2].  Kinematics analysis of parallel manipulators 
separate in two types, forward kinematics and inverse kinematics. The 
inverse kinematics, which maps the task space to joint space, is not 
difficult to solve. On the other hand, the forward kinematics, which 
maps the joint space to task space, is so hard to solve. Also, the existence 
of not only multiple inverse kinematic solutions (or working modes) 
but also multiple forward kinematic solutions (or assembly modes) is 
another problem in kinematics analysis [3]. The challenging problem is 
not to find all possible solutions but to directly determine the unique 
feasible solutions, the actual physical solution, in among all possible 
solutions starting from a certain initial configuration [4].

Forward kinematics and singularity analysis of planar parallel 
manipulators have been investigated by many researchers [5-7]. Efforts 
to solve the forward kinematics of planar parallel manipulators have 
concentrated on 3-RPR manipulator due to its inherent simplicity. 
It is established the forward kinematic solution of general 3 DOF 
planar parallel manipulators can be lead to a polynomial of degree 8 
[8]. However, the forward kinematic problem for the manipulator 
under study leads to a maximum of 6 real solutions. It is worth 
taking into considerations, the three manipulators under study are 
kinematically equivalent to each other and, as a result, we derived the 
forward kinematics equations for 3-RRR and modified it to the two 
other manipulators. Additionally, the existence of singularities and 
uncertainties inside the workspace where the manipulator gains some 
degrees of freedom and become uncountable. In such configurations, 
the actuated joints forces of the manipulator will become unacceptably 
large that often reach their allowable limits. To overcome the problem 
of kinematics singularities a neural network –based approach is 
developed which has the ability of generalization and can successfully 
learn relationships that are not present in the training set in an efficient 
manner.

There have been increasing research interests of Artificial Neural 

Networks (ANNs) due to their extreme flexibility and the capability 
of non-linear function approximation. Many efforts have been made 
on applications of Neural Networks to various types of parallel 
manipulators [9-13].

In this paper, a supervised neural network approach is developed 
to control the motion of the 3-RPR, 3-PRR and 3-RRR planar parallel 
manipulators. Multiple neural networks are used to overcome the 
problem of the multiple solution branches of either forward or inverse 
kinematics. This approach also overcomes the problems of singularities 
and uncertainties’ arising in trajectory planning as it has, like any ANN 
algorithms, generalization ability. In this approach a network is trained 
using training data generated from the inverse kinematics. The training 
is done off-line until reaching acceptable error and a validation test is 
also done, at each iteration, to avoid model over fitting. It may be noted 
here that the present work may be considered as an implementation of 
the artificial neural network approach for serial manipulators passing 
through singular configuration, as proposed by [14], for planar parallel 
manipulators.

Kinematics of Parallel Manipulators
Kinematic analysis of parallel manipulators includes solution 

to forward and inverse kinematic problems. The forward kinematics 
of a manipulator deals with the computation of the position and 
orientation of the manipulator end-effector in terms of the active joints 
variables. Forward kinematic analysis is one of essential parts in control 
and simulation of parallel manipulators. Contrary to the forward 
kinematics, the inverse kinematics problem deal with the determination 
of the joint variables corresponding to any specified position and 
orientation of the end-effector. The inverse kinematics problem is 
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essential to execute manipulation tasks. Most parallel manipulators can 
admit not only multiple inverse kinematic solutions, but also multiple 
forward kinematic solutions. This property produces more complicated 
kinematic models but allows more flexibility in trajectory planning 
[15]. In other words, a manipulator configuration can be defined either 
by actuator coordinates q=[q1, .., qn]T or by Cartesian end-effector 
coordinates x= [x1, .., xn]T with n the DOF of the manipulator under 
study. The transformation between actuator coordinates and Cartesian 
coordinates is an important issue from viewpoint of kinematic control. 
Computation of the end-effector coordinates from given actuator 
coordinates (forward kinematics) can be written in the general form 

x= ƒFKP(q) (1)

The inverse task which is to establish the actuator coordinates 
corresponding to a given set of end effector coordinates (inverse 
kinematics) can be also written in the general form

q= ƒIKP(x) (2)

Then the kinematic constraints imposed by the limbs can be written 
in the general form

ƒ(x,q)=0 (3)

Differentiating Eq.(3) with respect to time, we obtain a relationship 
between the input joint rates and the end-effector output velocity 

x qJ x J q= 

 Where

Jx= f
x
∂
∂

and Jq= f
q
∂
∂

Inverse kinematic singularity occurs when different inverse 
kinematic solutions coincide that happens usually at the workspace 
boundary. Hence the manipulator loses one or more degrees of freedom. 
Mathematically they can detected by det (Jq)=0  

Forward kinematic singularity occurs when different forward 
kinematic solutions coincide. Hence the manipulator gains one or more 
degrees of freedom. That happens inside the workspace so it is a great 
problem. Mathematically they can detected by det (Jx)=0   

Manipulators Under Study
The architectures of the planar parallel manipulators under study, 

3-RPR, 3-PRR and 3-RRR, are illustrated in Figures 1a-1c, Where R,
P, R and P denote revolute, prismatic, actuated revolute and actuated
prismatic joints, respectively. For manipulators under study the three
fixed pivots A1, A2 and A3 define the geometry of the fixed base, and the 
three moving pivots C1, C2 and C3 define the geometry of the moving
platform, where point O and H are the centroids of the fixed base and
moving platform respectively. Three limbs connect the moving platform 
to the fixed base. Each limb of the 3-RPR is composed of a R, a P, and a

R joint in sequence. Each limb of the 3-PRR is composed of a P, a R, and 
a R joint in sequence. Likewise, each limb of the 3-RRR is composed 
of three R joints in sequence. The origin of the fixed coordinate frame 
is located at point A1.The x-axis points along the direction of A1A2 and 
the y-axis is perpendicular to A1A2. We assume that the manipulators 
under study are symmetrical, manipulators with equilateral base and 
moving platform [15]. The moving platform pose, i.e., its position and 
its orientation, is determined by means of the Cartesian coordinates 
vector H=[Hx,Hy]

T of operation point H and angle φ, namely, the angle 
between C1C2 and the positive direction of x-axis.      

Artificial Neural Networks
Artificial neural network (ANN) is an algorithm that model brain 

performs a particular task, and is usually implemented using electronic 
components or simulated in software on digital computers. It has the 
ability of imitating of the mechanisms of learning and problem solving 
functions of the human brain which are flexible, powerful, and robust. 
In artificial neural networks implementation, knowledge is represented 
as numeric weights, which are used to gather the relationships 
between data that are difficult to realize analytically, and this iteratively 
adjusts the network parameters to minimize the sum of the squared 
approximation errors using a gradient descent method [14]. One 
category of the artificial neural networks is the multilayer perceptron 
(MLP) which be considered a supervised back propagation learning 
algorithm. It consists of an input layer, some hidden layers and an 
output layer as shown in Figure 2. MLP is trained by back propagation 
of errors between desired values and outputs of the network using some 
effective algorithms such as gradient descent algorithm. The network 
starts training after the weight factors are initialized randomly. Weight 
adjusting takes place until, we get reasonable errors or no more weight 
changes occur. There is no available theoretical procedures to choose 
the appreciate network architecture, i.e. number of hidden layers and 
number of neurons of each layer. This depends on the problem under 
investigation and user’s experience.

Results of Numerical Simulations
Simulations have been conducted for the 3-RPR, 3-PRR, and 

3-RRR planar parallel manipulators to demonstrate the performance of 
the developed approach. First point H (the centroid of the end-effector) 
is moved along a given trajectory which passing through singular locus 
then the correct active prismatic joint or joint angle variables to track
this trajectory are calculated using the inverse kinematic model of the
simulated manipulator which give a unique solution for a given working 
mode. Then, those active prismatic joint or joint angle variables are fed

(a) 3-RPR (b) 3-PRR (c) 3-RRR 

Figure 1: The three planar parallel manipulators under study.

Figure 2: The topology of MLP network with a single hidden layer.
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to the MIP to track the trajectory and the tracking errors are calculated. 
The simulated manipulators are assumed to be ideal mechanisms with 
no flexibility and no joint clearance that affect the accuracy of the 
manipulator. Also, the prismatic joints are assumed to have unlimited 
length. A two-hidden layer MLP with back propagation learning is 
considered here. The input layer has as many nodes as the number of 
inputs to the map, namely three actuator variables. Similarly the output 
layer will have three nodes which represent the pose of the end-effector. 
The number of neurons in the hidden layers and its configuration are 
used as a design parameter. Sigmoid and linear activation functions 
are used for all hidden and output layer nodes respectively. Supervised 
learning scheme is used in which the network is taught to learn the 
map by observing the inputs and outputs. The network is trained by 
10,000 training input-output patterns generated, randomly within 
the workspace of the manipulator, from the inverse kinematic model. 
Random initialization is used for the weights. For each manipulator, 
different configurations of the MLP network were tested to get the 
optimal configuration used for solve the problem. About 36 multi-layer 
feed forward networks with two hidden layers are trained. All these 
networks were trained over 1,000 training epochs to ensure the success 
of the training process and to avoid over fitting the model. Simulation 
results showed that 40×60 multilayer perceptron neural network 
with two hidden layers had the best performance when the minimum 
tracking error is used as performance index. All manipulators under 
study are symmetric with three identical limbs. Each side of the moving 
end-effector equilateral triangle is 100 mm, while that of the base is 300 
mm. The lengths of the proximal links and the distal links are 120 mm
and 80 mm, respectively.

3 RPR planar parallel manipulator

Three end-effector trajectories are specified as straight lines which 
cross over singularity loci at H1(265, 58.499) mm and H2(265,114.706) 
mm as shown in Figure 3. The first trajectory is a vertical straight line 
starting at Hi(265,40) mm with orientation angle φ=15° and ending 
at point Hf(265,140) mm with the same orientation it is obvious the 
selected trajectory passes through singular points H1 and H2. The 
tracking errors in x- and y-directions are depicted in Figure 4. The 
maximum tracking error along the trajectory points is 0.0027 mm 
which happens in the vicinity of kinematic singularities. We also 
note that there is a significant increasing in the tracking error near 
the singularity points. Anyway, the developed approach can provide 
solution for the problem with reasonable errors.

The second trajectory is a horizontal straight lines starting at 
Hi(245,58.499) mm with orientation angle φ=15° and ending at point 
Hf(275,58.499) mm with the same orientation it is obvious the selected 
trajectory passes through singular point H1. The tracking errors in x- 
and y-directions are depicted in Figure 5. The maximum tracking error 

Figure 3: The 3-RPR cross singularity loci at H1(265,58.499) and 
H2(265,114.706).

Figure 4: Tracking error for the 3-RPR along a vertical trajectory passing 
through singularity points H1 (265, 58.499) and H2 (265,114.706).

Figure 6: Tracking error for the 3-RPR along a horizontal trajectory passing 
through singularity point H1 (265, 58.499).

Figure 5: Tracking error for the 3-RPR along a horizontal trajectory passing 
through singularity point H1 (265, 58.499).
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along the trajectory points is 0.0023 mm which also happens in the 
vicinity of kinematic singularities.

Finally, the third trajectory is a horizontal straight lines starting 
at Hi(245,114.706) mm with orientation angle φ=15° and ending at 
point Hf(275,114.706) mm with the same orientation. The selected 
trajectory passes through singular point H2. The tracking errors in x- 
and y-directions are depicted in Figure 6. The maximum tracking error 
along the trajectory points is 0.0027 mm which also happens in the 
vicinity of kinematic singularities.

3 PRR planar parallel manipulator

Two end-effector trajectories are specified as straight lines which 

cross over singularity loci at H1(200,115.470) mm as shown in Figure 7. 
The first trajectory is a vertical straight line starting at Hi (200,102) mm 
with orientation angle φ=0° and ending at point Hf(200,122) mm with 
the same orientation it is obvious the selected trajectory passes through 
singular point H1. The tracking errors in x- and y-directions are 
depicted in Figure 8. The maximum tracking error along the trajectory 
points is 0.0015 mm which happens in the vicinity of kinematic 
singularities.

The second trajectory is a horizontal straight lines starting at 

Figure 7: The 3-PRR cross singularity loci at H1(200,115.47).

Figure 9:  Tracking error for the 3-PRR along a horizontal trajectory passing 
through singularity point H1 (200,115.470).

Figure 8:Tracking error for the 3-PRR along a vertical trajectory passing 
through singularity point H1 (200,115.470).

Figure 10: The 3-RRR cross singularity loci at H1(155, 4.845).
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Hi(187,115.470) mm with orientation angle φ=0° and ending at point 
Hf(207,115.470) mm with the same orientation it is obvious the selected 
trajectory passes through singular point H1. The tracking errors in x- 
and y-directions are depicted in Figure 9. The maximum tracking error 
along the trajectory points is 0.0015 mm which also happens in the 
vicinity of kinematic singularities.

3 RRR planar parallel manipulator

In the same way, two end-effector trajectories are specified as 
straight lines which cross over singularity loci at H1(155, 4.845) mm as 
shown in Figure 10. The first trajectory is a vertical straight line starting 
at Hi(155,4) mm with orientation angle φ=0° and ending at point 
Hf(155,24) mm with the same orientation it is obvious the selected 
trajectory passes through singular point H1. The tracking errors in x- 
and y-directions are depicted in Figure 11. The maximum tracking 
error along the trajectory points is 0.005 mm which happens in the 
vicinity of kinematic singularities.

The second trajectory is a horizontal straight lines starting at 
Hi(142,4.845) mm with orientation angle φ=0° and ending at point 
Hf(162,4.845) mm with the same orientation it is obvious the selected 
trajectory passes through singular point H1. The tracking errors in x- 
and y-directions are depicted in Figure 12. The maximum tracking 
error along the trajectory points is 0.0053 mm which also happens in 
the vicinity of kinematic singularities.

Conclusion
In this paper, we proposed to use neural networks for forward 

kinematic solution of three different architectures of planar parallel 
manipulators, which can be elaborated to generate the best estimation of 
forward kinematics of the manipulators under study. Even though the 
manipulators passing through the kinemaic singularities, the proposed 
approach can provide solution for the problem with reasonable errors. 
The results of this paper can be used to find the forward kinematics 
solutions at critical points (singularity points) which can be then 
avoided, as long as we specify them, in dynamic control stage.

Figure 12:  Tracking error for the 3-RRR along a horizontal trajectory 
passing through singularity point H1 (155, 4.845).

Figure 11:  Tracking error for the 3-RRR along a vertical trajectory passing 
through singularity point H1 (155, 4.845).
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