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Abstract
In this paper a feed-forward back-propagation type of neural network as well as the multi nonlinear regression 

model using statistical programming were used to determine the critical depth and discharge passing over the end-
depth model, free overfall. This was achieved by training and validating (215) experimental data. The results of the 
trained verified and tested for neural network model are compared to the experimental measurements. There were well 
agreements with the measured values.
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Notations

B: Bed width; C1, C2: Constants; Cd: Discharge coefficient; Fr: 
Froude number; G: Acceleration due to gravity; K: Channel bed 
roughness; Q: Discharge per unit depth; Re: Reynolds number; So: 
Channel bed slope; yb: Brink depth; yc: Critical depth; yn: Uniform flow 
depth; μ: Viscosity of water; ρ: Density of water

Abbreviations
ANN: Artificial neural network; ARE: Absolute relative error; 

FFBP: Feed forward back propagation; MSE: Mean square error; NLR: 
Nonlinear regression; R2: Determination coefficient; SPSS: Statistical 
package for the social sciences

Introduction
A free overfall which means end depth drop refers to the downstream 

portion of a rectangular channel horizontal or sloping terminating 
abruptly at its lower end. If it is not submerged in the tail water, it is 
referred to as the free overfall [1].

In Figure 1 for rectangular channel of bed width is (b), yb=brink 
depth (end depth); Q=discharge; yn=uniform flow depth; yc= critical 
depth; k=channel bed roughness and So=channel bed slope. If the 
slope of the upstream channel is steep the flow will be super critical and 
determined by the upstream conditions, while if the channel slope is 
mild, horizontal or adversely, the flow will be critical [2].

Because of this, it can be used as a measuring device, author's 
deal with studying free overfall experimentally and theoretically. 
Rajaratnam et al. [1] and Davis et al. [3] investigated the effect of slopes 
and roughness on the brink depth. They found that the influence of 
roughness is negligible, but the ratio of brink depth to critical depth 
was affected by the ratio of bed slope to critical slope. Where analytical 
solutions for circular overfall based on the momentum equation and 
the simulation of a free overfall with a sharp-crested weir were given 
by Dey [4] considering the streamline inclination and curvature. The 
solutions of momentum and extended energy equations were put 
forward by Hager [5]. Another analytical approach, termed conidial 
wave theory, was reported by Marchi [6] to solve the two-dimensional 
free overfall. Anastasiadou-Partheniou and Hatzigiannakis [7] and 
Ferro [8] simulated the free overfall with a sharp-crested weir. The effect 
of bottom roughness on rectangular overfalls was studied by Dey [9].

Literature Review
Dey [10,11] studied free overfalls in circular channels with flat base, 

inverted semicircular channels, respectively. Ahmed et al. [12] studied 
two models of free overfall, straight vertical and skewed end lip, and 
found the relationship between brink and critical depth, discharge 

equation for two models, and showed that the discharge for the skewed 
lip model was greater 13% than straight vertical. Ahmed Y.M. [13] 
presented an experimental study and analysis for effect of channel slope 
on straight vertical and skew free overfall for a rectangular channel with 
different slopes and find the discharge over skewed model is greater by 
(21%) from straight vertical. Ahmed Y.M. [14] studied the behavior of 
free surface flow on a rectangular free overfall which has a triangular 
shape, the results prevail, that the ratio of brink depth to critical depth at 
center line for falls inclined with flow direction was greater by (3%) than 
that falls in the opposite direction, this value increased to (27%) when 
Froud number increased. Most of the ANNs applications were related to 
the fields of water engineering and were presented in Negm et al. [15] 
and Nakhaei [16] for estimating the saturated hydraulic conductivity of 
granular material.

The main goal of this study is to make an artificial neural network 
ANN model for flow over free overfall using feed-forward back-
propagation (FFBP), as well as nonlinear regression model NLR model 
and compared the experimental data with these two models. The 
experimental data presented by Mowafaq et al. [17], Mowafaq et al. 
[18] and Ahmed Y.M. [19], was used to train and validate the ANN and 
compared with the results of regression equations that were developed 
to estimate the critical depth and discharge.

Artificial Neural Networks (ANN)
Artificial neural networks ANNs are classified based on the 

number of layers: single layer, multilayer, and based on the direction 
of information flow and processing feed forward. ANNs are massively 
parallel systems composed of many processing elements connected by 
links of variable weights. Of the many ANN paradigms, the multi-layer 
back propagation network (MLP) is by far the most popular [20,21]. 
Mathematically, an ANN is often used as a universal approximate. 
The ability of identifying a relationship from giving patterns makes it 
possible for ANNs to solve large-scale complex problems such as pattern 
recognition, nonlinear modeling, classification, association and control 
[22]. A neural network is characterized by its architecture that represents 
the pattern of connection between nodes, its method of determining the 
connection weights, and the activation function [23].
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Yb = f (q, yn, b, So, g, µ, ρ, k)		                                    (1)

Using dimensional analysis, the functional relationship can be 
obtained:

b
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Where;

eR (Reynolds number) = qρ
µ

, and rF (Froude number) = 
n n

q
y gy

From experimental data shown in Table 1, the (NLR) statistical 
analysis was used to estimate a relationship for brink to critical depth 
calculation, this will be achieved by using Statistical Package for the 
Social Sciences (SPSS, V.17) programming and the following equations 

detected after neglecting parameters Re because its little affecting in 

open channel and 
n

b
y

 in wide open channels:
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Where; C1 and C2 are constants.

For rectangular flume the critical depth can be calculated using: 
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Eq. 3 can be rewritten by replacing yc in Eq. 3 with Eq. 4 such that:
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From experimental data shown in Table 1, the (NLR) statistical 

Neural network structure

In the FFBP used in training, the input variables determine the 
number of input nodes in the input layer, the number of nodes in the 
middle called hidden layer, the output layer is processed and sent to an 
external source. The number of hidden layer nodes in the hidden layer 
is determined by trial and error procedure until the error is minimized. 
The number of neurons in the hidden layer influences the performance 
of a network, so, too few and too many nodes in the hidden layer lead 
the network to poor performance thus to avoid failing of convergence, it 
is recommended that the total number of hidden layer nodes is at least 
three times of the total number of input layer nodes [24].

The parameters considered in this study are; b, S
o
, y

b
, y

n
, k, y

c and Q. 
The parameters; b, So, y

b
, y

n and k was used as inputs to the ANN for the 
estimation of yc and Q respectively, depend on 215 experimental data, in 
this study, 15% of data series was selected for cross validation (30 data), 
15% data series was selected for testing (30 data) and 70% data series 
was selected for training (155 data) (Figure 2). The model results were 
evaluated using the absolute relative error (ARE) and determination 
coefficient (R2) statistics.

In the Figure 2 the size of the network is 5 nodes in the input layer 
representing the input to the network (b, So, yb, yn and k); 15 nodes in the 
hidden layers and 2 nodes in the output layers (yc and Q).

For this network architecture, Figure 3 shows the results variation 
of mean squared error (MSE) for training, validation and tested 
considering the critical depth and discharge. The figure gives the best 
validation performance (1.89e-006).

ANN and NLR analysis

For a rectangular free overfall the following variables are affecting 
of the brink depth: yb= Brink Depth (L); q= Discharge per Unit 
Depth (L2/T); yn= Uniform Flow Depth (L); b=Channel Width (L); 
So= Channel Bed Slope (-); g= The acceleration due to gravity (L/T2); 
μ= Viscosity of water (M/LT); ρ= Density of water (M/L3); k= depth 
Roughness (L), the dimensional equation parameter can be written as:

Figure 1: Definition sketch of free overfall.
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Figure 2: The neural network architecture.

Figure 3: ANN system runs for (5-15-2) architecture.

analysis was used to estimate a relationship for discharge calculation, 
from the following equation:

3/ 2
d bQ C y b= 	  	     			                    (6)

Where Q: discharge and
1/ 2

3/ 2
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A program code including neural network toolbox was written in 
Matlab language ver. R2010a for the ANN simulations.

The measured critical depth yc as well as discharge Q is computed 
with those obtained by the ANN and NLR technique. The ARE statistics 

of the measured and computed Q and yc values using ANN and NLR 
are given in Table 1.

It can be obviously seen from Table 1 that the ANN approximates 
measured Q and yc values with high accuracy. The mean ARE of ANN 
and NLR are 3.8% and 10.1% respectively for Q while these values reach 
to 2.0% and 6.8% respectively for yc. The measured and computed Q 
and yc using ANN and NLR technique are compared in Figures 4 and 5.

It can be seen from the fit line equations (assume that the equation 
is y=ax) for the ANN with higher R2 values (0.986 and 0.988 for Q and 
yc respectively) while these values are (0.8491 and 0.8688 respectively) 
for NLR. The ANN seems to be much better than the NLR based on 
ARE statistics confirms that the ANN seems to be much better than the 
NLR as shown in Table 1.
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Figure 4: Comparison of measured and computed discharge (Q) using the ANN and NLR techniques.

Figure 5: Comparison of measured and computed critical depth (yc) using the ANN and NLR techniques.

Inputs Measured Computed ARE(%)

b(m) So yb (m) yn(m) k(m) yc (m) Q (m3/s)
yc(m)  
ANN 

Q(m3/s) 
ANN

Q(m3/s) 
NLR

yc(m) 
NLR Q ANN yc ANN Q NLR yc NLR

0.3 0 0.046 0.099 0.002 0.0791 0.021 0.08 0.0215 0.021 0.079 2.7092 0.6348 0 1.25
0.3 0 0.039 0.075 0.002 0.0625 0.015 0.062 0.0146 0.016 0.064 0.2434 0.4034 6.667 3.226
0.3 0 0.03 0.067 0.002 0.0541 0.012 0.049 0.0105 0.012 0.051 11.393 8.6003 0 4.082
0.3 0 0.028 0.057 0.002 0.0458 0.009 0.045 0.0089 0.01 0.046 3.2096 2.4235 11.111 2.222
0.3 0 0.018 0.05 0.002 0.0333 0.006 0.033 0.0055 0.005 0.031 4.4734 1.6438 16.667 6.061
0.3 0.01 0.045 0.094 0 0.0791 0.021 0.08 0.0211 0.022 0.077 0.7547 1.3008 4.762 3.75
0.3 0.01 0.035 0.077 0 0.0625 0.015 0.06 0.0139 0.015 0.061 5.4231 3.7277 0 1.667
0.3 0.01 0.03 0.069 0 0.0541 0.012 0.054 0.0117 0.011 0.052 1.1979 1.0876 8.333 3.704
0.3 0.01 0.027 0.059 0 0.0458 0.009 0.046 0.0096 0.01 0.046 4.5764 1.1599 11.111 0
0.3 0.01 0.017 0.046 0 0.0333 0.006 0.034 0.006 0.006 0.03 4.5252 1.2 0 11.765
0.3 0.005 0.047 0.095 0 0.0791 0.021 0.08 0.0209 0.022 0.079 0.1175 0.6505 4.762 1.25
0.3 0.005 0.037 0.078 0 0.0625 0.015 0.062 0.0141 0.016 0.062 3.5225 1.0689 6.667 0
0.3 0.005 0.033 0.07 0 0.0541 0.012 0.054 0.0117 0.013 0.056 1.2922 0.163 8.333 3.704
0.3 0.005 0.029 0.06 0 0.0458 0.009 0.046 0.0094 0.01 0.047 2.6093 0.7367 11.111 2.174
0.3 0.005 0.017 0.047 0 0.0333 0.006 0.033 0.0057 0.005 0.029 0.3747 1.2297 16.667 12.121
0.3 0 0.05 0.096 0 0.0791 0.021 0.079 0.021 0.023 0.081 0.2323 0.4936 9.524 2.532
0.3 0 0.04 0.079 0 0.0625 0.015 0.061 0.0143 0.017 0.065 2.6149 1.5849 13.333 6.557
0.3 0 0.035 0.071 0 0.0541 0.012 0.052 0.0112 0.013 0.059 5.4564 4.062 8.333 13.462
0.3 0 0.032 0.061 0 0.0458 0.009 0.047 0.0097 0.011 0.052 5.328 2.9946 22.222 10.638
0.3 0 0.02 0.048 0 0.0333 0.006 0.034 0.0059 0.006 0.034 2.795 1.5351 0 0
0.3 0.01 0.04 0.097 0.006 0.0791 0.021 0.079 0.0203 0.019 0.069 3.1044 0.2115 9.524 12.658
0.3 0.01 0.03 0.08 0.006 0.0625 0.015 0.063 0.0148 0.014 0.059 1.2232 0.8858 6.667 6.349
0.3 0.01 0.026 0.066 0.006 0.0541 0.012 0.051 0.0108 0.01 0.048 8.657 6.1255 16.667 5.882
0.3 0.01 0.022 0.062 0.006 0.0458 0.009 0.046 0.0093 0.007 0.039 0.5207 0.1242 22.222 15.217
0.3 0.01 0.014 0.049 0.006 0.0333 0.006 0.032 0.0057 0.004 0.028 0.1908 2.5487 33.333 12.5
0.3 0.005 0.043 0.097 0.006 0.0791 0.021 0.078 0.0203 0.02 0.075 2.9807 0.852 4.762 3.846
0.3 0.005 0.032 0.08 0.006 0.0625 0.015 0.063 0.0149 0.013 0.059 1.914 1.4768 13.333 6.349
0.3 0.005 0.028 0.066 0.006 0.0541 0.012 0.051 0.011 0.011 0.047 6.8251 5.3312 8.333 7.843



Volume 8 • Issue 3 • 1000316J Civil Environ Eng, an open access journal
ISSN: 2165-784X

Citation: Mohammed AY (2018) Artificial Neural Network (ANN) Model for End Depth Computations. J Civil Environ Eng 8: 316 doi: 10.4172/2165-
784X.1000316

Page 5 of 5

0.3 0.005 0.023 0.062 0.006 0.0458 0.009 0.044 0.0088 0.008 0.039 3.9659 3.4329 11.111 11.364
0.3 0.005 0.016 0.049 0.006 0.0333 0.006 0.033 0.0056 0.005 0.028 1.7366 0.6598 16.667 15.152
0.3 0 0.045 0.098 0.006 0.0791 0.021 0.08 0.0208 0.021 0.076 0.6436 0.6927 0 5
0.3 0 0.034 0.081 0.006 0.0625 0.015 0.062 0.0145 0.014 0.058 1.2481 0.4526 6.667 6.452
0.3 0 0.03 0.067 0.006 0.0541 0.012 0.05 0.0107 0.012 0.051 9.6089 6.9285 0 2
0.3 0 0.025 0.063 0.006 0.0458 0.009 0.043 0.0085 0.009 0.044 7.907 5.0365 0 2.326
0.3 0 0.018 0.05 0.006 0.0333 0.006 0.034 0.0054 0.005 0.03 4.6102 0.9833 16.667 11.765
0.3 0.01 0.042 0.091 0.002 0.0791 0.021 0.081 0.0212 0.02 0.071 1.4441 1.8425 4.762 12.346
0.3 0.01 0.033 0.074 0.002 0.0625 0.015 0.061 0.0144 0.013 0.056 1.8373 1.7811 13.333 8.197
0.3 0.01 0.028 0.069 0.002 0.0541 0.012 0.055 0.0123 0.011 0.049 4.3695 2.0231 8.333 10.909
0.3 0.01 0.025 0.062 0.002 0.0458 0.009 0.049 0.0104 0.009 0.042 13.288 6.8256 0 14.286
0.3 0.01 0.015 0.046 0.002 0.0333 0.006 0.032 0.0053 0.005 0.028 6.4539 4.4908 16.667 12.5
0.3 0.005 0.04 0.092 0.002 0.0791 0.021 0.077 0.0202 0.019 0.068 3.3987 2.1637 9.524 11.688
0.3 0.005 0.037 0.075 0.002 0.0625 0.015 0.064 0.0152 0.016 0.063 3.3972 2.2062 6.667 1.563
0.3 0.005 0.032 0.07 0.002 0.0541 0.012 0.057 0.0128 0.013 0.054 8.0188 5.1303 8.333 5.263
0.3 0.005 0.027 0.063 0.002 0.0458 0.009 0.048 0.0101 0.01 0.046 9.9589 5.29 11.111 4.167
0.3 0.005 0.017 0.047 0.002 0.0333 0.006 0.032 0.0052 0.005 0.029 8.1446 4.0091 16.667 9.375
0.3 0 0.043 0.093 0.002 0.0791 0.021 0.077 0.0202 0.02 0.073 3.5303 2.0797 4.762 5.195
0.3 0 0.04 0.076 0.002 0.0625 0.015 0.064 0.0152 0.017 0.068 3.63 2.2776 13.333 6.25
0.3 0 0.035 0.071 0.002 0.0541 0.012 0.056 0.0125 0.015 0.059 5.6783 3.1941 25 5.357
0.3 0 0.03 0.064 0.002 0.0458 0.009 0.048 0.0101 0.011 0.051 9.7641 5.7453 22.222 6.25
0.3 0 0.02 0.048 0.002 0.0333 0.006 0.034 0.0058 0.006 0.034 1.0069 2.055 0 0

Table 1: The ARE percentage for computed Q and y
c using ANN and NLR models (sample computations).

Discussion and Conclusions
In this study, multilayer feed forward artificial neural network with 

back propagation learning algorithm (FFBP) is used to model the end 
depth drop, as well as NLR is developed to determine the discharge 
and critical depth of the free overfall. The results of the models were 
compared to each other with 215 experimental data. A network of 
size of 5-15-2 is found suitable for this purpose. The determination 
coefficient (R2) and mean absolute, relative error (ARE) of predicted 
outputs were 0.986 & 3.849 for Q and 0.988 & 2.022 for yc for this 
optimum configuration. The results of the trained, verified and tested 
ANN model compare to the experimental measurements. These values 
were in close agreement with those obtained by systematic investigation 
by Mowafaq et al. [17], Mowafaq et al. [18] and Ahmed Y.M. [19].  It was 
found that the artificial neural network models could be successfully 
used in computation of discharge and critical depth and powerful tools 
for modeling of hydraulic characteristics of flow over free overfall.
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