

Artificial Intelligence in Predicting Aesthetic Periodontal Outcomes

Manulis Colores*

Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Introduction

Artificial Intelligence (AI) is transforming many fields of medicine and dentistry, particularly through its ability to analyze large datasets and generate predictive models. In periodontology, where aesthetic outcomes are closely tied to tissue response and anatomical variation, AI offers a promising approach for anticipating treatment results. Predicting aesthetic outcomes has traditionally relied on clinical experience, subjective judgment, and patient-specific factors such as gingival biotype and smile dynamics. However, these assessments can be inconsistent and prone to error. AI algorithms, especially those based on machine learning, can synthesize clinical, radiographic, and photographic data to forecast post-treatment gingival contours, papilla regeneration, and symmetry. This allows for more accurate planning and better patient communication. By integrating AI into periodontal diagnostics, clinicians may enhance predictability, efficiency, and satisfaction in aesthetic treatment planning [1].

As aesthetic standards in periodontal care become increasingly individualized, AI offers the ability to provide objective predictions tailored to each patient's morphology and treatment response. Through the analysis of thousands of treatment cases, AI systems can identify subtle patterns and variables such as crown-to-root ratios, bone support, and gingival phenotype that may influence aesthetic success. This enables clinicians to evaluate likely outcomes before surgery or soft tissue procedures, reducing uncertainty and aligning expectations. Furthermore, AI can be integrated with imaging systems and digital scanners to generate visual simulations, improving patient understanding and consent. While still in early stages of clinical adoption, these tools hold significant potential to revolutionize periodontal aesthetic forecasting. As the accuracy of AI-driven models improves, they are poised to become standard components in modern, data-guided aesthetic periodontal therapy [2].

Description

Artificial intelligence in periodontal treatment planning leverages large datasets to model and predict treatment outcomes, including those related to aesthetics. Using machine learning techniques, AI can process clinical photographs, radiographs, periodontal charting, and digital impressions to identify variables that correlate with ideal gingival contours, papillary fill, and symmetry post-treatment. Unlike traditional assessment methods that rely heavily on subjective expertise, AI provides a data-driven, consistent analysis that accounts for complex interdependencies among anatomical, procedural, and healing factors. For instance, AI can evaluate the likelihood of papilla regeneration between implants, anticipate root coverage success based on gingival biotype, or forecast the final smile line following surgical recontouring. These predictions allow

clinicians to make more informed decisions about flap design, graft choice, and tissue handling techniques, especially in cases involving high aesthetic demand. The ability to simulate results digitally before treatment improves communication between dentist and patient, fostering trust and better alignment of expectations. As AI systems learn from more diverse and detailed datasets, they refine their accuracy and adaptability, making them increasingly useful for both routine and complex cases. By incorporating AI tools into aesthetic periodontal planning, clinicians can improve predictability, reduce chair time, and achieve more consistent, patient-pleasing results in soft tissue management [3].

In clinical practice, the integration of AI into periodontal diagnostics and treatment planning can enhance precision and efficiency, especially in aesthetics-driven cases. AI algorithms trained on high-resolution images and longitudinal outcome data can identify risk factors for poor aesthetic results, such as thin gingival biotypes, root prominence, or incomplete papillary fill. These insights guide clinicians in customizing procedures like root coverage, papilla reconstruction, or soft tissue augmentation. Moreover, AI can assist in determining when less invasive interventions might achieve similar cosmetic outcomes, thus promoting conservative care. Predictive models can also aid in timing interventions identifying optimal healing phases or planning staged procedures to maximize tissue response. When combined with 3D imaging and intraoral scanning, AI can generate simulations of gingival outcomes, providing both dentist and patient with a realistic preview of expected changes. This reduces patient anxiety, enhances informed consent, and strengthens the therapeutic alliance. However, successful implementation depends on clinician understanding of AI limitations, such as overfitting or data bias. Regular validation of algorithms and integration into clinical workflows are necessary to maintain relevance and accuracy. As AI tools become more sophisticated and accessible, they will play an increasingly central role in refining aesthetic periodontal strategies and elevating the standard of patient-specific care [4].

The ethical and practical implications of using AI to predict aesthetic periodontal outcomes warrant thoughtful consideration. While AI offers enhanced diagnostic and predictive capabilities, reliance on algorithmic output must not override clinical judgment or patient autonomy. Dentists should use AI tools as decision aids rather than replacements for comprehensive clinical evaluation. Transparency in how predictions are generated is essential, especially when presenting visual simulations to patients who may interpret them as guarantees. Clinicians must communicate that these models are probabilistic, not definitive, and discuss the range of possible outcomes. Another concern is data bias; if the AI is trained on limited or non-diverse populations, its predictive value may be reduced for patients with atypical anatomical or ethnic characteristics. Additionally, privacy and data security must be maintained when using cloud-based AI platforms. Despite these challenges, AI can support ethical, patient-centered care when used responsibly. It allows clinicians to present clearer, evidence-informed treatment pathways, improves documentation, and facilitates interdisciplinary collaboration. As AI systems continue to evolve, regulatory oversight and ethical frameworks will be necessary to ensure their safe and fair application. Used appropriately, AI can enhance not replace the art and science of periodontal aesthetics, improving outcomes while preserving the integrity of personalized dental care [5].

*Address for Correspondence: Manulis Colores, Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; E-mail: manulisco@peridont.gr

Copyright: © 2025 Colores M. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 03 November, 2025, Manuscript No. OHCR-25-167877; Editor Assigned: 05 November, 2025, PreQC No. P-167877; Reviewed: 17 November, 2025, QC No. Q-167877; Revised: 22 November, 2025, Manuscript No. R-167877; Published: 29 November, 2025, DOI: 10.37421/2471-8726.2025.11.218

Conclusion

Artificial intelligence is poised to transform aesthetic periodontal treatment by improving the predictability, personalization, and transparency of care. Through advanced algorithms capable of analyzing complex clinical data, AI can assist in forecasting gingival outcomes, identifying procedural risks, and simulating treatment effects tools that empower both clinician and patient. These technologies hold particular value in high-aesthetic cases, where small variations in gingival contour or papilla height can significantly affect satisfaction. By integrating AI into planning workflows, clinicians can align treatment approaches with realistic, data-driven expectations, enhancing decision-making and patient communication. However, the ethical use of AI demands clarity about its limitations, protection of patient data, and a firm grounding in professional expertise. AI should complement, not replace, the clinician's role in assessing, advising, and executing treatment. As the technology becomes more refined and widely adopted, it will likely become a standard asset in aesthetic periodontal care. When applied thoughtfully and ethically, AI has the potential to improve clinical outcomes, strengthen patient trust, and elevate the precision and quality of soft tissue management. In an increasingly digital era, its integration signals a shift toward smarter, more accountable, and visually refined periodontal therapy that honors both science and patient-centered values.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Vigil, MS Antony, V Gowri, SS Subashka Ramesh and MS Bennet Praba, et al. "ADGRU: Adaptive DenseNet with gated recurrent unit for automatic diagnosis of periodontal bone loss and stage periodontitis with tooth segmentation mechanism." *Clin Oral Investig* 28 (2024): 614.
2. Ozden, F O, O Ozgonenel, B Ozden and A H M E T Aydogdu. "Diagnosis of periodontal diseases using different classification algorithms: A preliminary study." *Niger J Clin Pract* 18 (2015): 416-421.
3. Alam, Mohammad K, Nawadir H Alanazi, Abdulsalam Dhafer A Alshehri and Farhana Chowdhury. "Accuracy of AI algorithms in diagnosing periodontal disease using intraoral images." *J Pharm Bioallied Sci* 16 (2024): S583-S585.
4. Chatzopoulos, Georgios S, Vasiliki P Koidou, Lazaros Tsalikis and Eleftherios G Kaklamanos. "Clinical applications of artificial intelligence in periodontology: A scoping review." *Medicina* 61 (2025): 1066.
5. Gunpinar, Sadiye, Ayse Sinem Sevinc, Zeynep Akgül and A Alper Tasmekepligilc, et al. "Patient-specific gingival recession system based on periodontal disease prediction." *Int J Comput Dent* (2023).

How to cite this article: Colores, Manulis. "Artificial Intelligence in Predicting Aesthetic Periodontal Outcomes." *Oral Health Case Rep* 11 (2025): 218.