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Abstract

Computers and information technology has played a pivotal role in the advancement of healthcare. Artificial
Intelligence (AI) in medicine has significantly evolved over the last few decades, now making it possible to initiate its
involvement in real world clinical practice. AI can also be incorporated in a personalized, integrated, adaptive and
context aware environment creating the so called Ambient Intelligence (AmI). Neurology is a discipline of medicine
that deals with the disorders of nervous system. Large amount of literature exist in regards to utilization of AI and
AmI in several aspects of neurology. Using AmI, individual’s neurological function can be monitored around the clock
for early recognition of neurological disorders. Electroencephalography and electromyography data can be
interpreted by AI with high accuracy. Treatment responses can be monitored objectively by AmI in many conditions
like movement disorders and epilepsy. Large quantity of data produced in the neurocritical care units can be
processed by AI for better monitoring, treatment and outcome prediction. AI can reduce the cost of care and may
potentially benefit remote parts of the world by playing role of an expert adviser. In this brief article, author has
discussed the application and potential of AI and AmI in neurology. Some obstacles in their development are briefly
discussed and several speculations about their future are made.
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Introduction
Medical knowledge has significantly expanded in the era of

information technology making it impossible for a single human to
keep track of all the knowledge. This has led to heavy utilization of
computer and information technology in medicine. While artificial
intelligence (AI) in medicine has been around since 1970s, the initial
systems (e.g. INTERNIST-1 [1], MYCIN [2], ONCOCIN [3]) had
major limitations requiring extensive programming by humans and
exhibited little or no self-learning behavior. Since then, the field of
artificial intelligence has significantly evolved with introduction of a
number of sophisticated algorithms, some of which are capable of self-
learning. Rule based fuzzy expert systems [4] and supervised learning
algorithms like artificial neural networks [5] and support vector
machines [6,7] are the examples of most widely utilized AI techniques
in healthcare; but the list is by no means limited to them. Despite of
many advances in the AI, some experts believe that its application in
healthcare is still far from its true potential and that our efforts are
limited [8].

The concept of pervasive health monitoring involves deploying
electronic sensors and wireless networks in the individual’s
surroundings that are ubiquitous and allows real time personalized
health monitoring of every individual in the population, irrespective of
location and time [9,10]. It includes smart monitoring devices
embedded in the living environment (including cell phones, homes,
hospitals, work places, automobiles, etc.), wearable intelligent textiles
that continuously records a number of physiological parameters,
wearable motion sensors, brain computer interface and many more
[11-18]. Ambient Intelligence (AmI) incorporates AI and pervasive

health monitoring to create a personalized, integrated, intelligent and
context aware environment for the individuals [19].

Neurology is a discipline of medicine that deals with the disorders
of nervous system. Clinical examination of the nervous system is an
integral part of the diagnosis and treatment of neurological disorders.
Some aspects of clinical examination, like cognitive and motor
function assessment, may readily be performed by AmI with
reasonable accuracy over a prolonged period of time. AI may be able to
assist humans even in many non-clinical aspects of neurology. In this
article, author has discussed the application, impact and potential of
AI and AmI in neurology. Some obstacles in their development are
briefly discussed and several speculations about their future are made.

Applications in Neurology
Stroke is one of the most common neurological disorders and AmI

can potentially have heavy impact on its epidemiological and clinical
course. Stroke occurs when there is either an interruption of blood
supply to part of brain (known as ischemic stroke) or the rupture of a
blood vessel in the brain causing hemorrhage (known as hemorrhagic
stroke). Treatments for ischemic as well as hemorrhagic strokes are
time sensitive and are most effective when administered within first
few hours of onset [20-22]. However, the patients commonly don’t
recognize the symptoms or they may be rendered disabled to activate
emergency medical services. Therefore, these treatments are largely
underutilized [23,24] due to delayed hospital presentation [25,26] or
unclear time of symptom onset (as in patients waking up with strokes)
[27]. Using AmI, individual’s neurological function can be monitored
around the clock [28-30] and presence of any alarming neurological
signs can activate emergency medical services, even without patient’s
knowledge [19]. AmI in conjunction with tele-stroke networks [31],
automated imaging interpretation [32-34] and prehospital
thrombolysis [35] can exclude significant sources of delay in the
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management of acute stroke. Prognosis of stroke can also be predicted,
even prior to treatment using the AI [36,37]. AmI can detect cardiac
arrhythmias (especially atrial fibrillation) in cryptogenic strokes and
can even potentially prevent the first cerebrovascular event by
monitoring every individual in the population [38-40]. Stroke recovery
can be improved as well using AmI in the neurorehabilitation
[18,41,42].

Seizures are defined as transient, synchronous activation of a large
number of neurons that results in focal or generalized dysfunction in
brain activity and consciousness. Such disturbance in the electrical
activity of the brain can sometimes be recorded using a number of
recording electrodes on the scalp in form of an electroencephalogram
(EEG). Due to transient duration of the event, the abnormality may
not be recorded on the EEG and therefore, continuous EEG
monitoring with automatic seizure detection could dramatically
change the management of these patients. AI algorithm based seizure
detection techniques for scalp EEG [43-48] and intracranial EEG
[49-53] have evolved significantly and even surpassed human ability in
certain aspects [44]. Responsive cortical stimulation involves
implantation of seizure detection device that not only detects seizures,
but can also suppress the seizure from spreading [54]. Ambulatory/
home EEG and accelerometers as parts of AmI can yield critical
information on seizure frequency and semiology in certain patients
[55-58]. Algorithms have been developed that can predict risk of
recurrent seizures in the future based on several patient risk factors
[59]. AmI can ensure better compliance in taking seizure medications
[19], as forgetting a single dose may result in a breakthrough seizure.
Self-driving cars will be able to provide more mobility and
independence to the millions of patients across the world living with
seizures or other neurological disabilities [60,61]. Similar to the EEG
recordings, electrical potential recordings of the muscle and nerves
(electromyography) can also be interpreted by AI [62,63] and then
integrated with clinical [64] and imaging [65] data to help with the
diagnosis of a number of neuromuscular disorders.

Neurodegenerative disorders (e.g. Alzheimer’s disease, Parkinson’s
disease, Lou Gehrig’s disease etc.) result in a very gradual decline in
individual’s cognitive and/or functional status, and such conditions
may be diagnosed earlier with help of AmI that monitors individual’s
neurological function over a prolonged period of time. AmI can assist
with activities of daily living in the cognitively impaired [66,67]. A
brain computer interface device has been successfully implanted in a
patient of Lou Gehrig’s disease, enabling her to communicate better
[68]. AI has been extensively studied in the field of movement
disorders, especially in Parkinson’s disease that often leads to disabling
tremors and muscle rigidity. It can differentiate different types and
subtypes of movement disorders [69-73] and can even interpret the
neuroimaging [74]. Quantification of movement abnormalities can be
utilized in the medical and surgical management [75]. Electrical
stimulation of certain deep structures in the brain (also known as deep
brain stimulation) significantly improves the symptoms of Parkinson’s
disease. Various stimulation parameters require frequent adjustments
to obtain optimal clinical response and certain closed loop systems
have been developed that can optimize these parameters automatically
for individual patient by feedback information received from the body
motion sensors [76,77].

Several catastrophic neurological emergencies like neurotrauma,
large strokes, status epilepticus and brain infections require more
frequent monitoring of neurological and other bodily functions, which
is usually done by nurses and physicians. Neurocritical care units are

equipped with a number of patient monitoring systems that generate
large quantity of data pertaining to ventilation, hemodynamics,
intracranial pressure, body temperature, fluid intake-output, serial
neurological examinations and neurophysiologic parameters (e.g.
electromyography, continuous EEG). Many of these parameters may
require expert supervision around the clock that can potentially be
provided by a single intelligent computer system to a large number of
patients simultaneously. Closed-loop AI systems can potentially
perform real time adjustment of ventilator settings [78-81],
antiepileptic drugs, anesthetics/analgesics [82-84], neuromuscular
blockade [85,86], glucose management [87], and blood pressure, fluids
and electrolytes management [88,89] etc. with little or no human input
[90,91]. Intelligent algorithms have been developed that can predict
mortality in hemorrhagic stroke [92] and outcome after traumatic
brain injury [93,94]. Prediction of intracranial pressure has also been
achieved by AI [95,96]. More complex predictive algorithms in the
future may take thousands of variables into account in order to predict
complications and outcome with fair degree of certainty, well ahead of
time. Wealth of data produced in the neurocritical care units makes
them an ideal environment to incorporate AI techniques that can
efficiently handle such data.

Future Direction and Limitations
AI systems have been developed which can learn from the

electronic medical records and develop their own optimal treatment
plan [97]. Such selection of optimum path can be individualized for
each patient and can dynamically change over time to adapt the
changes in clinical scenario. Nowadays, large scale projects are under
progress to develop cloud based intelligent computer systems to
integrate and analyze enormous amount of patient data and medical
literature [98]. These platforms may thrive on the exponentially
increasing healthcare data and learn from it. The expected final
product might be a capable expert computer system that is always up
to date with medical knowledge, contain medical records of every
individual, may guide physicians and surgeons around the world and
may even learn from its own experience to become better over time.
Initial goal would be to incorporate these systems effectively in
physician’s workflow and then eventually to replace the physician in
performing many tasks. Complex medical conditions might be
managed with the guidance of these systems at a very little or no cost,
even in the remote parts of the world.

Very small number of professionals with both clinical and
programming proficiency, lack of international biomedical
information sharing network platforms and lack of credible
international standards for communication and data exchange has
been few of the major obstacles resulting in slow development and
underutilization of AI [8]. Furthermore, new ethical, legal and privacy
issues may arise [99,100] and dramatic shifts in the role and demand of
medical personnel as well as in their reimbursement may occur. Major
changes in the education curriculum of medical professionals may
have to take place. Thus, the path towards utilizing AI in real world
medicine may not always be straightforward. But the rising cost of
healthcare [101-104] may prove to be an independent driving force to
develop these technologies. We know that the health information
technology not only improves the quality of care, but also reduces its
cost significantly [105,106]. Many of these observations led to
formation of funding programs (e.g. HITECH) by the US federal
government to stimulate investment in the electronic health records
[107]. Similarly, AI may also potentially reduce the cost of care
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markedly [97] and in future, this may translate into creation of
promotional policies to accelerate investment in AI by rewarding the
hospitals and the physicians who incorporates it into their workflow.
Initial monetary investments can eventually be paid off by the
numerous advantages of AI. Despite of certain limitations, the
advantages of these systems are numerous. With the aid of advanced AI
and AmI, acute neurological emergencies may be timely managed,
chronic neurological diseases may be recognized early, treatments may
be individualized and the quality of life with neurological disability
may be improved.
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