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Abstract

Deposition of arsenic in mice through groundwater is well documented but little is known about the histological 
changes of organs by the metalloid. Present study was designed to evaluate arsenic-induced histological alterations 
in kidney, liver, thoracic artery and brain of mice which are not well documented yet. Swiss albino male mice were 
divided into 2 groups and treated as follows: Group 1: control, 2: arsenic (sodium arsenite at 10 mg/kg b.w. orally 
for 8 wks). Group 2 showed marked degenerative changes in kidney, liver, thoracic artery, and brain whereas Group 
1 did not reveal any abnormalities on histopathology. We therefore concluded that arsenic induces histological 
alterations in the tested organs.
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Introduction
Around 200 million people (NRC 2001) worldwide are at risk 

from health effects associated with high concentrations of arsenic in 
their drinking water [1]. Unfortunately, 75 millions of those people 
are living in Bangladesh. Hence, in the current century, Bangladesh is 
under a big threat of arsenic disaster. Humans are chronically exposed to 
arsenic, which is present in food, water, soil, and air. Chronic exposure 
to inorganic arsenic (iAs) that occurs as a natural contaminant in 
drinking water is associated with the development of skin cancer [2,3] 
and other severe health problems such as diabetes, liver, kidney, CNS 
disorders [4] and also causes many other toxic effects [5,6]. Recently, 
a series of animal and human epidemiological studies have indicated 
an association between As exposure and adverse reproductive and 
developmental outcomes [7-9]. Several line of studies [10,11] have 
indicated tissue architecture change in heart and hepatic organs 
by sodium arsenite (Sa). Exposure of Sa showed haemorrhages in 
myocardium, and degeneration and separation of muscle bundles. 
However, histopathological examination of the lungs after arsenic 
exposure showed a normal alveoli spaces and with normal alveoli cell 
[12]. Deposition of high concentrations of arsenic in the liver, kidney, 
lungs, hair and nails have been well reported [6]. Epidemiological 
studies have shown association between chronic arsenic exposure 
and liver disease and kidney failure [6]. The relationship between 
chronic arsenic exposure and the development of specific target organ 
toxicity is not completely understood. Moreover, the risk involvement 
of this metal on some organs like thoracic artery and brain is poorly 
understood. Understanding the organ specific histological effect of 
arsenic is necessarily important to know the details mechanism of 
arsenic mediated toxicity in mammals. Organ specific histological 
evaluation is currently the gold standard to determine the degree of 
organ injury during chronic metal exposure. Interestingly, organ 
function markers alter during histological degeneration. However, still 
there is no report describes the histological effect of arsenic on some 
organs such as artery, and brain where as other organs like kidney 
and liver are not well defined. This study was designed to evaluate 
the histological changes by chronic arsenic exposure on some tissue 
architecture in mice. A better understanding of the effect of arsenic at 
target organs with an emphasis on observation of tissue architecture at 
critical sites will aid in defining a mode(s) of action for arsenic-induced 

toxicity in mammals and reduce the uncertainty in the risk assessment 
for this metalloid.

Material and Methods
Animals and housing conditions

Swiss albino male mice (6 weeks of age) of average body weight (30 
gm) were purchased from Animal Division of International Center for 
Diarrhoeal Disease Research, Bangladesh (ICDDR, B). The mice were 
randomly selected and kept in plastic cages with wood-cobe bedding (5 
mice/cage). After five days of acclimation, mice were divided into two 
groups namely control and sodium arsenite (Sa) induced mice. They 
were maintained with 12-h:12-h dark light cycle with available supply 
of distilled water and feed. Sa was given to the mice with water (10 mg/
kg body weight/day). The amounts of water consumed were recoded 
every day. Ethical approval for the study was duly obtained from the 
ethical committee of Faculty of Biological Sciences, University of 
Rajshahi, Bangladesh.

Chemical and dosing

Sa(NaAsO2; Cat. No.30110, BDH (England) was dissolved in 
distilled water, and served as drinking water for mice. The dose levels of 
Sa, used in the present study, was set as: 2 ml of water (150 mg/L) per 
day; was reported to be 10 mg/Kg b.w. Same dose level was used in a 
series of studies [13,14]. Control mice were maintained with available 
supply of distilled water and normal mice feed. These two different 
groups of mice were maintained for 8 weeks. All these procedures 
and experiments using mice were undertaken following the ethical 
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issues set by the Faculty of Biological Sciences, University of Rajshahi, 
Bangladesh.

Histopathological study

At the end of 16 weeks, mice were euthanized and kidney, liver, 
thoracic artery and brain were collected in 10% buffered formalin 
solution, passed through ascending series of ethanol baths, cleared 
in toluene and embedded in paraffin. Tissues were sectioned at 4 μm 
and stained with Haematoxylin and Eosin (H&E). The sections were 
examined by light microscope.

Sample collection and assessment of serum

Blood specimens were collected from the thoracic artery of the 
mice after anaesthetization with diethyl ether. For coagulation, blood 
was kept about 20 minutes at room temperature. After centrifugation at 
1600 g for 15 minutes at 4°C, serum was drawn off and stored at-80°C 
until the experiments were performed.

Liver and kidney function tests 

 The analyzer (CHEM-5 V3, Erba, Mannheim, Germany) were used 
for the measurement of serum indices by using commercially available 
kits according to the manufacture’s protocol. The level of blood urea 
nitrogen (BUN) and serum glutamate-pyruvate transaminase (SGPT) 
were measured by the kits from Human, Germany. All samples were 
analyzed in triplicate and then mean values were taken.

Statistical analysis

Statistical analyses were performed with SPSS for windows, version 
15.0 (SPSS, Chicago, IL). Data are expressed as mean ± SD or mean ± 
SE. Differences between the body weights and serum indices of different 
groups of mice were analyzed by using t-test.

Results
To understand the arsenic induced tissue alterations, we have 

performed histopathology for four types of tissue. We have observed 
fat bodies, tubular degeneration, intratubular degeneration, congestion 
in arsenic treated mice kidney tissue. In contrast, tissue architecture, 
glomerulas were normal in control kidney tissue (Figure 1). Heavy 
metals are prominent to necrosis in tissue especially in liver. We have 
also found some necrosis in Sa exposed liver tissue (Figure 2). In control 
liver tissue, hepatic lobules were intact. There were some alterations of 
morphological structure in arsenic exposed mice thoracic artery than 
normal tissue. In control artery, we have found good capillary wall. On 
the other hand, capillary wall was destructed in group 2, but there were 
no visible inflammatory infiltrate (Figure 3). We have also checked 
the architecture of brain tissue by histopathology. We have found 
well arrangement of tissue in normal brain tissue, whereas edema, 
intracellular space, edematous changes have seen in arsenic exposed 
brain tissue (Figure 4). The degree of serum SGPT and BUN can 
predict level of histological damage in liver and kidney, respectively. We 
therefore, checked the level of these biochemical parameters to further 
support the findings described above. Serum SGPT level was found to 
be significantly increased only in As exposure group as compared to the 
control group (Figure 5). Next, the level of BUN was also significantly 
increased in arsenic exposure group (Figure 6).

Discussion
Increased oxidative stress in tissue due to arsenic exposure is 

seemed to be the major cause for arsenic-induced toxicity in mice. 
Arsenic mediated oxidative stresses are indicated for changing the 

Figure 1: A) Photomicrograph of kidney showing normal architecture H&E 
X200 Group 1, B) Photomicrograph of kidney showing fat bodies, tubular 
degeneration, intratubular degeneration, and congestion, H&E 200X Group 2.

Figure 2: A). Photomicrograph of liver showing normal architecture H&E 
200X Group 1, B). Photomicrograph of liver showing necrosis, H&E 200X 
Group 2.
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Figure 6: Comparison of blood urea nitrogen (BUN) levels (mean ± SE) 
between control and arsenic-treated mice. Blank and black bar represent 
the control and arsenic-treated mice, respectively. *Significantly different 
from control group at p<0.05. p value was from Independent sample t-test.

Figure 3: A). Photomicrograph of thoracic artery showing normal 
architecture H&E 200X Group 1, B). Photomicrograph of thoracic artery 
showing capillary wall was destructed, H&E 200X Group 2. 

organ degeneration during exposure. Arsenic concentrates in the 
kidney during its urinary elimination that affects the function of 
proximal convoluted tubules [15]. We have observed the degenerative 
changes in kidney tissue in arsenic treated mice (Figure 1). These 
findings may be justified by a recent observation which has shown 
hyperplasia in the bladder epithelium in mice treated with Sa in the 
diet [16]. Further we have observed the elevated level of BUN in arsenic 
exposed mice sample (Figure 6). BUN test is primarily used to evaluate 
kidney function in a wide range of circumstances, to monitor people 
with acute or chronic kidney dysfunction. We therefore interlinked 

Figure 4: A). Photomicrograph of brain showing normal architecture H&E 
X200 Group 1, B). Photomicrograph of brain showing edema, intracellular 
space, edematous change, H&E 200X Group 2.

Figure 5: Comparison of serum glutamate-pyruvate transaminase  (SGPT) 
levels (mean ± SE) between control and arsenic-treated mice. Blank and 
black bar represent the control and arsenic-treated mice, respectively. 
*Significantly different from control group at p<0.01.  p value was from 
Independent sample t-test.
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between kidney tissue degeneration and elevated level of BUN, we have 
observed in our study. Earlier, another kidney function marker urinary 
NAG (N-acetyl-beta-glucosaminidase) was increased during arsenic 
exposure which presents a significant adverse impact on the kidney 
function in arsenic endemic areas [17]. We have also shown the arsenic 
exposure-related elevation of plasma uric acid (PUA) levels may be 
implicated in arsenic-induced cardiovascular diseases (CVDs). These 
series of reports support our current findings on the effect of arsenic 
on mice kidney. Kidney is an organ that is rich in phospholipids and 
leads to the oxidative degradation of phospholipids. We, therefore, 
hypothesized that arsenic-induced lipid peroxidation in kidney induces 
oxidative damage leading to functional deterioration. 

There was a strong dose-response relationship between systemic 
arterial disease and cumulative arsenic exposure [18]. Pulmonary trunk 
and branch dilatation in chronic arsenicosis is a frequent abnormality 
seen in chest of arsenicosis patients. More recently, the association 
between low-level arsenic exposure and carotid artery intimal-medial 
thickness (IMT) is reported in human [19]. Although, concentration 
is given to establish the association between carotid arterial disease 
and chronic arsenic exposure, little is known on its effect on thoracic 
arterial system. This is the first time we have observed the arsenic 
mediated tissue degeneration in thoracic artery (Figure 3). We have 
observed the destruction of capillary wall of thoracic artery but no 
visible inflammatory infiltrate was seen.

Earlier, inorganic arsenicals have been reported to be accumulated 
in brain astrocytes [20]. Arsenic can disturb the mitosis of granule cells 
and interfere with the normal development of mice cerebellum [21]. 
Moreover, exposure of As with Cd and Pd impairs myelin and axon 
development in rat brain [22]. Early life exposure of arsenic develops 
neurotoxicity which disrupts normal behavioral pattern in human [23] 
also causes brain dopaminergic alterations in rats [24]. Despite the line 
of reports on arsenic mediated brain disorders, none has evaluated 
the histological changes in brain by arsenic. In the current report, we 
have found edema, intracellular space, as well as edematous change in 
arsenic exposed mice brain tissue (Figure 4). Chronic arsenic exposure 
induces oxidative damage in brain of rats [25]. We, therefore, assume 
that the brain architectural alteration is due to the oxidative stress 
mediated by Sa. 

Liver has long been identified as a target organ of arsenic 
exposure. Because of its unique metabolic functions and related 
to the gastrointestinal tract, liver is an important target of toxicity 
to xenobiotics. The sections of liver in Sa group showed moderate 
degeneration and necrosis in hepatic parenchyma with mild to 
moderate fatty change where as control did not reveal any lesions 
of pathological significance (Figure 2). Earlier, arsenic mediated 
hepatocytic degeneration was characterized by vacuolar degeneration 
followed by hepatic necrosis observed in case of rat [11]. Further, we 
have observed increased SGPT level in arsenic exposed mice (Figure 
5). Earlier, we and others have observed the elevated level of serum 
hepatic enzymes, alkaline phosphatase (ALP), aspartate transaminase 
(AST) and alanine transaminase (ALT) used for the liver function tests 
(LFTs) in the individuals exposed to arsenic [26-28]. Exposure of mice 
to arsenic in drinking water causes elevation of liver enzymes in plasma 
[29]. Like other toxic elements Sa primarily increased the generation 
of free radical species and cause an imbalance between pro-oxidation 
and antioxidant homeostasis in liver system as a result causes hepatic 
degeneration. 

Arsenic mediated oxidative stress is associated with expression 

of antioxidant genes [30]. Moreover, arsenic-induced pathological 
changes may be caused by oxidative DNA damage other than nitrative 
DNA damage [21]. Oxidative stress through chronic arsenic exposure 
is associated with methyl insufficiency and loss of DNA methylation in 
animals [31-34] may be reason for the histological changes. We therefore 
believe that oxidative stress is associated with tissue architectural change 
in arsenicosis. The results of present study are in agreement with previous 
observation [35]. However, further investigation is necessarily important to 
know the details mechanism of Sa mediated changes in tissue architecture 
to better understand the mode of arsenic mediated toxicity.
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