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Editorial
Recent advances in Integrated Circuits (IC) and Micro Electro

Mechanical Systems (MEMS) technologies have allowed the design
and construction of low-cost low-power smart sensor nodes with
sensing, computing, signal processing and wireless communication
capabilities that can form distributed wireless sensor network systems.
Wireless sensor networks have been recognized as one of the most
important technologies in the 21st century, and the systems hold the
promise to revolutionize the sensing paradigm and can be used to
perform detection, localization, tracking, and identification of objects
in a broad spectrum of military, scientific, industrial, and home
applications like infrastructure health monitoring, disaster
management, and battlefield surveillance [1].

An essential problem in wireless sensor networks is localization or
position determination, which consists of two categories of
requirements: localization of the sensor nodes or the mobile units
themselves and localization of intruders or objects [2]. In general,
location estimates are derived from two types of measurements: angle
and range. The widely used range estimation models include Received
Signal Strength (RSS), Time of Arrival (TOA) and Time Difference of
Arrival (TDOA), where the synchronization and cooperation between
the transmitter and the receiver are required. These techniques are well
suited to the problem of sensor node self-localization because the
direct communication links between each other in a neighborhood
region are available; however, will find difficulties in a passive
configuration to localize the intruders or objects. Estimation of the
incident signals’ directions, or Angle of Arrival (AOA) estimation, is
potentially able to locate the signal sources in a non-cooperative,
stealthy and passive manner, which is highly desirable in surveillance
applications. The benefits of AOA measurements for location
estimation in wireless sensor networks have been widely investigated
and a couple of AOA-alone and AOA-range hybrid systems have been
developed [3-5].

In addition to location estimation, AOA measurements can be
exploited to enhance communication efficiency and network capacity,
and support location-aided routing, dynamic network management,
and many location-based services [6-8]. A chief goal of wireless
communication research has long been to enhance the network
capacity, data rate and communication efficiency. In comparison with
solutions to increasing the spectrum usage, smart antenna technology
provides a more practical and cost-efficient solution. With smart
antennas, the sender can focus the transmission energy towards the
desired user while minimizing the effect of interference, and the
receiver can form a desired beam towards the sender while
simultaneously placing nulls in the directions of the other transmitters.
This spatial filtering capability potentially leads to improved user
capacity; reduced power consumption, lower Bit Error Rates (BER),
and extended range coverage [9]. A key component that aids the

sensor array to be smart and adaptive to the environment is AOA
estimation of the desired emitters and co-channel interferers. To fully
exploit the AOA capability, various Medium Access Control (MAC)
protocols have been developed.

A standard data model for the problem of AOA estimation is a
narrow-band model with far-field geometry. Assume the sources
having the same known center frequency illuminate a sensor array, and
the sources are located sufficiently far from the array such that in
homogenous isotropic transmission media, the wave fronts are planar.
An AOA problem is classified as narrow-band if the signal bandwidth
is small compared to the inverse of the transit time of a wave front
across the array aperture, and the array response is not a function of
frequency over the signal bandwidth. The number of sources is
assumed known (given or estimated from the signal detection
algorithms [10]) and less than the number of sensors, this is to
guarantee the uniqueness of AOA estimation [11]. Additive stationary
white Gaussian noise is present at all sensors. Regarding the source
signals, there are two different types of models in current use:
conditional model, which assumes the signals to be deterministic (i.e.
the same in all realizations) and unconditional model, which assumes
the signals to be random [12,13]. Noting that the narrow-band
assumption implies that for all possible propagation delays caused by
the space extent of the array, the effect of a time delay on the received
waveforms is a simply a phase shift.

In the recent decades, AOA estimation with a sensor array has
received considerable attention from a variety of research communities
like radar, sonar, radio astronomy, mobile communications, and
wireless sensor networks, and a range of useful and complementary
algorithms have been developed, such as delay-and-sum beam
forming, Multiple Signal Classification (MUSIC), Estimation of Signal
Parameters via Rotational Invariance Technique (ESPRIT), Minimum
Variance Distortion less Response (MVDR), Maximum Likelihood
(ML), and others [14-27]. In general, the AOA estimation algorithms
explore the statistical information and structure of the data covariance
matrix computed from a batch of array snapshots or data samples.

Delay-and-sum beam forming, or known as Digital Beam Forming
(DBF) is one of the oldest and simplest array processing algorithms
[18]. The underlying idea is quite simple: when a propagating signal is
present in an array’s aperture, if the sensor element outputs are delayed
by appropriate amounts and added together, the signal will be
reinforced with respect to noise or waves propagating in different
directions. The delays that reinforce the signal are directly related to
the length of time it takes for the signal to propagate between sensor
elements. The AOA measurement process is similar to that of
mechanically steering the array in different directions and measuring
the output power. When a set of data samples is given, the DBF power
spectrum is evaluated, and the AOA estimates are obtained by viewing
the peaks in the spectrum.
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The Minimum Variance Distortion less Response (MVDR)
approach is also known as the Capon’s algorithm [26,27]. Since it
explicitly produces an optimal weight vector, it can be used as a beam
former as well as an AOA estimator. The AOA measurement is
performed similarly to that of delay-and-sum beam forming or
mechanically scanning, however, the weight vector is the solution to a
constrained optimization problem, where the array output power is
minimized while the signal coming from the array looking direction is
passed to the beam former’s output undistorted. Solving this
optimization problem leads to finding the set of weights that result in
the lowest-power array output subject to the directional constraint,
while minimizing power presumably reduces the deleterious effects of
noise and unwanted interference.

The Multiple Signal Classification (MUSIC) algorithms [28] exploit
the eigen-structure of the data covariance matrix, and can be classified
as eigen-based methods. The rationale for this category of algorithms is
related to the division of information in the covariance matrix of the
data received by the array elements into two vector subspaces, namely,
the signal subspace and the noise subspace. These algorithms assume
that the signal of interest lies in a lower dimensional signal space than
the full dimensional space spanned by the vectors of data samples
received by the sensor elements. It assumes that the principal
eigenvectors are linear combinations of the array steering vectors
associated with the sources, and vice versa. Equivalently, the principal
eigenvectors and the source steering vectors span the same vector
subspace – the signal subspace. And the noise eigenvectors span the
noise subspace, which is orthogonal to the signal subspace. Once the
noise subspace has been estimated, a search for AOA estimates is made
by looking for steering vectors that are as orthogonal to the noise
subspace as possible.

The Maximum Likelihood (ML) AOA estimation method is a nearly
optimal technique. In theory, it gives a superior performance
compared to other methods, providing asymptotically unbiased and
efficient estimates, especially in the threshold region [14,16,17]. The
AOA estimates are obtained by solving a multi-dimensional
unconstrained optimization problem. However, the complexity and
computational load of maximizing the complex, multi-model, and
highly nonlinear likelihood function has prevented it from popular use
for a long time. Several researchers have proposed various schemes to
optimize the likelihood function, with an aim to obtain global
convergence with less computing cost. It proves that for uncorrelated
sources, the statistical performances of maximum likelihood
estimators with Conditional (CML) data model (assuming the signals
to be the same in all realizations) and the maximum likelihood
estimators with Unconditional (UML) data model (assuming the
signals to be random) are similar; while for highly correlated or
coherent sources, UML is significantly superior [29].

In summary, array signal processing has been a fundamental and
essential problem in numerous applications like radar, sonar and
mobile communications, and will be a promising area in wireless
sensor networks with significant practical interests. A variety of high-
resolution algorithms have been investigated and evaluated in different
scenarios and settings. The development of this theme will benefit and
enable more research on detection, localization, tracking,
communication, networking, and next-generation sensor platforms.
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