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Abstract

Emitter Direction-of-Arrival (DOA) estimation is a fundamental problem in a variety of applications including radar,
sonar, and wireless communications. The research has received considerable attention in literature and numerous
methods have been proposed. Maximum Likelihood (ML) is a nearly optimal technique producing superior estimates
compared to other methods especially in unfavorable conditions, and thus is of significant practical interest. This paper
discusses in details the techniques for ML DOA estimation in either white Gaussian noise or unknown noise environment.
Their performances are analyzed and compared, and evaluated against the theoretical lower bounds.
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Introduction

Estimation of the emitters’ directions with an antenna array,
or Direction-of-Arrival (DOA) estimation, is an essential problem
in a large variety of applications such as radar, sonar, mobile
communications, and seismic exploration, because it is a major
method for location determination. In wireless communications, DOA
estimation may significantly improve communication efficiency and
network capacity, supportand enhancelocation-aided routing, dynamic
network planning and different types of location-related services
and applications. In radar and sonar, accurate target localization is a
fundamental objective. The problem has been an active research area
for decades, and many high resolution methods have been investigated,
such as Multiple Signal Classification (MUSIC), Estimation of Signal
Parameters via Rotational Invariance Technique (ESPRIT), Minimum
Variance Distortionless Response (MVDR), and Model of Direction
Estimation (MODE). An introduction to DOA estimation and array
processing can be found, e.g., in Li, et al. [1] and the references therein.

Maximum Likelihood (ML) represents an important category of
DOA estimators that determines source DOAs by maximizing the log-
likelihood function, which signifies that signals from those directions
are most likely to cause occurrence of the given samples. ML produces
superior estimates compared to other methods, especially in unfavorable
conditions involving low SNR, short data samples, highly correlated or
coherent sources, and small array apertures, and thus is of practical
interest. It can be used as a caliber to evaluate the performance of other
methods. ML DOA estimation has received considerable attention in
literature [2-39]. GA-ML is presented in the study of Li and Lu [2],
which utilizes an enhanced Genetic Algorithm (GA) to find the exact
solutions to the highly nonlinear and multi-modal likelihood function.
With the newly introduced features, carefully selected operators and
fine-tuned parameters, GA-ML achieves fast global convergence.
In order to accurately resolve closely spaced sources, a resampling
scheme is investigated in [3], where a single data set is resampled to
create multiple snapshots in parallel. The computational burden of
DOA estimation with large arrays is often prohibitively extensive. To
address this challenge, a robust solution for data reduction (and thus
computation reduction) in array processing is presented in the study of
Liand Lu [4,5]. In many practical scenarios, the antenna arrays are not

well calibrated, due to amplitude and phase mismatch of the receivers,
inaccurate sensor locations, and imperfect sensor gain or phase
characteristics, or a combination of these effects; DOA estimation
using partially calibrated arrays is addressed in in the study of Li and
Lu [6,7]. In real radar or communication systems, the noise often
tends to become correlated along the array if the external noise and
the coupling between antenna elements cannot be ignored. As a result,
the noise covariance is generally unknown and may change slowly with
time. Algorithms for DOA estimation without the statistical knowledge
of the noise environment are discussed in the study of Li and Lu [8].
The DOA processing techniques have been investigated in a variety
of applications including radar [9-11], mobile communications [12-
14], wireless sensor networks [15-18], and ultrasound non-destructive
evaluation and imaging [19-24].

In this paper, we focus on maximum likelihood DOA estimation.
Section 2 presents the general array data model. Section 3 and 4 discuss
in details the techniques for DOA estimation in white Gaussian noise
and colored noise fields, respectively. Simulation results are given in
Section 5.

Data Model and Problem Formulation

Consider a general scenario of an array of M elements arranged
in an arbitrary geometry immersed in the far field (planar wave) of N
point sources at unknown locations. To simplify the exposition, our
discussion is confined to azimuth-only systems, i.e., the sensors and
signals are assumed to be co-planar. However, the data model and
algorithms presented here are general and the extension to azimuth-
and-elevation systems is straightforward.
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A standard data model for the problem of DOA estimation is:
y()=A0)s(H)+n(¢), t =1,2,...,L, (1)

where y(¢) is the array output, s(f) is the unknown vector of signal
waveforms, n(f) is an immeasurable noise process, L denotes the
number of data samples (snapshots). The matrix A(0) has the following
special structure:

A(0)=[a(8)...a(8)], )

where a(6) is the so-called steering vector that describes a mapping
between DOA and array response, and 6={6,,..., 6} are parameters
of interest or DOAs. The exact form of a(f) depends on the array
geometry, and is not specified in this section.

In most literature, the number of sources N is assumed to be known
(given or estimated). We also assume that the number of sensors is
greater than the number of sources, M>N, to guarantee the uniqueness
of DOA estimation [28]. Assuming that the noise and signals are
independent in (1), the data covariance matrix is given by

R=E{y(£)y"(t)}=APA#+Q. 3)

where E[e] stands for the expectation operator, («)" denotes the
conjugate transpose, P=E{s(t)s"(s)}, and Q=E{n(#)n”(s)}. When only
L data samples are available, an unbiased estimate of the covariance
matrix can be obtained using an averaging scheme

R=—3 y0y" (). @

The problem addressed herein is the estimation of 8 (and if
necessary, along with the parameters in P and Q), from a batch of L
measurements y(1), ..., y(L).

DOA Estimation in White Gaussian Noise

The noise in most receiving systems consists of internal noise and
external noise. The internal noise is produced by the electronic device
and includes thermal noise and weak versions of other signals in the
system, such as clocks and local oscillators. The external noise is defined
as an unwanted random signal that is intercepted by the sensors. If
the system is designed well, so that there is no coupling between the
antennas, and it is assumed that the thermal noise is dominant, a good
model for the noise is white Gaussian noise with covariance being a
scaled identity matrix in (3),

Q=o0,1 (5)

where o is the noise power, and I is an identity matrix. This
model assumes that the noise intensity is the same in all sensors and
that there is no correlation between the noises at any two elements.
Regarding the source signals, there are two types of models in current
use: conditional model, which assumes the signals to be deterministic
and unknown sequences; and unconditional model, which assumes the
signals to be random. These two models lead to different ML methods,
termed CML and UML respectively [29].

Conditional Maximum Likelihood (CML) estimator

Assume the signals s(f) to be deterministic and unknown sequences,
and the noise n(t) to be stationary zero-mean white Gaussian process,
E{n ()n” (t)} =021, therefore y(1)~ G(As(z), Uj[) , where G(s)

denotes Gaussian distribution.

The likelihood function of the snapshots y(1), ... ,y(L) is given by

L 1
. y(L)) = Hiﬂdet[dzl] exp(_

t=1

;yM—MMj,@

where det[e] stands for the determinant. Thus, the log-likelihood
function is

L
InL=—Llnz-MLIno? ——3|y(r) - As(e)] . @)

O, =1

In (7), o, 0 (in A(8)) and s(t) are unknown parameters.

Firstly, we fix 6 and s(f), and calculate the derivatives of (7) with
respect to o,

olnL ML 1

42M¢AWW. (8)

0t o o5
We then get,

’ 1 & 2

=— —-A . 9
O-” ML ;‘y(t) S(l‘)‘ ( )

Secondly, fixing Gj and 0, we calculate the derivatives of (7) with
respect to s(t),

olnL 2 3

%M_EA[ﬂQAWH, (10)
it arrives at

s(t)=(A"A)AFy(2). (11)

Finally, substituting (9) and (11) back into (7), we obtain the
following maximization problem,

1 L -1 2

argmax< —MLIn— ) -A(ATA) A" l‘ R 12

g ML S ()~ A(AA) A5 (0) a2
which is equivalent to the following minimization problem

L y 2
: _ H H

argmem{; [I A(A A) A ]y(t)‘ }, (13)
or in a different form,
S (0) =arg mein {tr[(l - A(AHA)*1 AH)f{]} , (14)

where #[+] denotes the trace, and R is the sample covariance matrix
asin (4).

Unconditional Maximum Likelihood (UML) estimator

If we assume that both the signals and the noise are stationary,
temporally white, zero-mean complex Gaussian random processes
with second-order moments satisfying (3) and (5), following a similar
derivation procedure, we may conclude that the UML estimator is
given by minimizing (15)

o (0) =Indet| APA" +41], (15)

where

P=(A"A) A"RA(AYA) -G(A"A) ",
! tr{[I—A(A”A)" A”}f{},
-N

and In[+] denotes the natural logarithm.

=
I

Literature [29] demonstrates that for uncorrelated sources, the
statistical performances of CML and UML are similar; while for highly
correlated or coherent sources, UML is significantly superior. For
UML, the stochastic Cramer-Rao Bound (CRB) can be achieved as
N-oco, or SNR->o0; while for CML, the corresponding bound cannot be
attained if M<eo, even though N->co, or SNR->eco.
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The optimization of the likelihood functions (14) and (15) is a
nonlinear optimization problem. In the absence of a closed form
solution, it requires iterative schemes for solutions. A couple of
such schemes have been proposed for solving this problem, such as
alternating projection [30], simulated annealing [31], expectation
maximization [32], and data supported grid search [33]. A rapid
technique [2] using an enhanced genetic algorithm is presented for
solutions in general cases.

DOA Estimation in Unknown Noise Environment

In this section, we assume the noise covariance Q to be completely
unknown, except for the fact that it is a Hermitian positive definite
matrix. Under the assumption of additive Gaussian noise and Gaussian
distributed signals, the normalized (with L) negative log-likelihood
function of the data vectors takes the form (ignoring the parameter
independent terms) [34]

/(0P.Q)=Indet[R]+ 0 RR], (16)
where Indet[+] denotes the natural logarithm of the determinant.
ML estimation based on parametric noise covariance

Based on a Fourier series expansion of the spatial noise power
density function, the noise covariance Q is assumed to be modeled by
the following linear parameterization:

J
Q=Y N,z (17)

where n=[n,..., 0] is a vector of unknown noise Fourier

coeflicients, 3. is a known function of the array geometry given by
J

T jodd
Zj: (~j n2 J (18)
X Jjeven

where

3 I 0)cos(16)do

5] a( 0)sin(16)do

1=0,1,2,---. Similar noise models have appeared in the literature

[35-37]. We assume that the number of signals N and the number of
noise parameters J are known or have been estimated [36].

By solving for P in terms of 8 and Q(n) and then substituting back
to (16), similar to the derivation in Section 3.1, we get an Exact ML
(EML) function that depends on both 6 and n [8]

fo (M) = Indet[Q] + Indet[ GRG+H |+ [ HR |, (19)
Where

A — Qfl/ZA

G=A(A"A) A"

f{ _ Qfl/zﬁQq 2

H=1-G

The ML estimates of 8 and n are obtained by minimizing (19).
Further derivation of a function merely depending on the DOAs seems
impossible. However, using the large sample assumption and least
square criteria, we can get the following approximation of (19) [8]

Fon (0)= HH(I ~B(B"TIB)" BHH)d B (20)

where
d= Vec{f{}

B=A"®A

I=[vec{Z },...vec{Z}]
[=I- T(T" )~ T#

vec{s} is a concatenation of the columns of the bracketed matrix,

ML estimation based on parameterized signals

In this method, the signals are assumed to be linear combinations
of p known basis functions:

s()=T"b(t), (21)

where T is an unknown pxN matrix, and the p-vector b(f) contains
the basic functions that are uncorrelated with the noise. Possible
applications where this assumption is reasonable include active radar
or sonar, and mobile communications [38].

The exact ML estimates of source parameters are the minimizing
argument of the following function [8]

fn(0,0)=1n det[T+A ], (22)
where
A, -R I/ZRHW V2P AN 1/2R R 12
bb bb
m=1- W—I/ZA(AHW—IA) AlW2
W=R-R R

»

1 L
ZZY(’ )b (1)

~ 1& "

Rbb *Zb(t)b (l)

LT

ﬁyb = ﬁybﬁ;ll/z .

¢ contains the unknown parameters in basis functions b(t).
Provided b(¢) is completely known and the samples are large enough,
(22) can be simplified. Since A is small (of order O(1/L)) for large L

and near the true 6, we may approximate In det[I+A ] by the first term
of the Taylor series expansion

_%,F[Aé}L..., (23)

Hence, the approximate ML (AML) function merely depending on
0 can be obtained as follows [8]:

L (8) =t [ TTW PR RURY W2 . (24)

It should be noted that, the AML estimator has the form of
a standard signal subspace fitting structure, for which several
minimization techniques have been proposed, for instance alternating
projection [30] and the modified Newton technique [39].

Indet[I+A,]=1r[A,

Simulation Studies

The main performance indices for a DOA estimator include bias,
variance, and resolution probability, which are complicated functions
of source SNR, the number of snapshots, number and directions of
sources, and the array geometry. A poor estimate generally results from
using shorter snapshots and sources with lower SNR. Even though bias
and variance both play important roles in direction estimation, the

J Electr Electron Syst
ISSN: 2332-0796 JEES an open access journal

Volume 3 ¢ Issue 1+ 1000117



Citation: Li M, Lu Y, He B (2013) Array Signal Processing for Maximum Likelihood Direction-of-Arrival Estimation. J Electr Electron Syst 3: 117.

doi:10.4172/2332-0796.1000117

Page 4 of 5

effect of bias is more critical in the threshold region. The variance is
often evaluated against the CRB, which provides a lower bound on the
covariance matrix of any unbiased estimators, and is expected to be a
good performance predictor for large samples.

In the follows, we present two numerical examples to compare
the performances of ML estimators with other popular techniques
including MUSIC, ESPRIT and MVDR, and evaluate them against the
CRB. Each simulated point is calculated from 500 independent Monte-
Carlo trials. The performances of those methods are compared at two
aspects: 1) DOA estimation Root-Mean-Squared Error (RMSE), and 2)
resolution probability.

An 8-element Uniform Linear Array (ULA) with half-wavelength
element spacing is considered in Example 1. Two equal-power
correlated signals with the correlation factor y=0.8 are assumed to
illuminate the array from 61° and 64° relative to the end-fire. The
number of snapshots is 40, and the SNR is varied. The noise is assumed
to be white Gaussian noise.

Figure 1 depicts the DOA estimation RMSE obtained by UML,
ESPRIT, MUSIC and MVDR, and compares them with the CRB.
Figure 2 shows the resolution probabilities for the same methods. As
can be seen from Figure 1 and Figure 2, UML demonstrates much
better performance than the other techniques as a whole, producing
more accurate estimates in terms of RMSE, and better source resolving
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SNR (dB)
Figure 1: DOA estimation RMSE versus SNR.
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Figure 4: DOA resolution probability versus SNR.

power in terms of resolution probabilities. UML asymptotically attains
the CRB when SNR gets higher. ESPRIT performs better than MUSIC
and MVDR in the cases of correlated sources, and MVDR demonstrates
the strongest threshold effect when SNR is low.

Example 2 is provided to demonstrate the performance of the ML
estimator in correlated noise fields, and evaluate it against MUSIC and
UML. We consider the data model with the noise covariance being a
linear combination of known matrices as in (17). J=3, and the noise
parameters are n=[1,1/4,1/9]. Assume that two equal-power correlated
signals with the correlation factor r=0.95 impinge on a four-element
ULA from 90° and 95°relative to the end-fire. The number of snapshots
is 80.

Figure 3 depicts the DOA estimation RMSE obtained using EML
(19), MUSIC and UML as a function of SNR, and compares them with
the corresponding CRB. Figure 4 shows the resolution probabilities
for the same methods. As can be seen from Figure 3 and Figure 4,
the EML technique that takes the noise correlation into account
yields significantly superior performance over MUSIC and UML
as a whole, by demonstrating lower estimation RMSE and higher
resolution probabilities. EML produces excellent estimates with RMSE
approaching and asymptotically attaining the theoretic lower bound.
On the other hand, as a standard high-resolution method in white
Gaussian noise, MUSIC fails almost in the whole SNR range. Although
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UML is an optimal technique in white noise, it completely fails when
SNR is lower than 15dB and only produces acceptable estimates in high
SNR region. The results can be explained by the fact that UML and
MUSIC are sensitive to modeling errors due to noise correlation. It is
worth noting that the advantages of EML over the other techniques are
more prominent when SNR is low, and the benefits can be extended to
other unfavorable scenarios involving short samples, clustered sources,
and small array apertures.

Conclusions

This paper explains how DOA estimation can be obtained using
antenna arrays, and discusses the data model and various signal
processing algorithms. ML DOA estimation is a nearly optimal
technique, which produces superior estimates compared to other
methods. A detailed treatment of the ML algorithms for DOA
estimation in white Gaussian noise and colored noise environment has
been provided by including the description, analysis and performance
evaluation with numerical simulations.

References

1. Li MH, Lu YL, Chen HH, Wang B, Chen IM (2009) Angle-of-arrival (AOA)
estimation in wireless networks. Wireless networks: Research, technology and
applications, Nova Science Publishers, Inc., New York, USA, 5: 135-164.

2. LiMH, Lu YL (2007) A refined genetic algorithm for accurate and reliable DOA
estimation with a sensor array. Wireless Pers Commun 43: 533-547.

3. Li MH, Lu YL (2004) Improving the performance of GA-ML DOA estimator with
a resampling scheme. Signal Process 84: 1813-1822.

4. Li MH, Lu YL (2006) Dimension reduction for array processing with robust
interference cancellation. IEEE T Aero Elec Sys 42: 103-112.

5. Li MH, Lu YL (2005) Null-steering beamspace transformation design for robust
data reduction. Proceedings of 13th European Signal Processing Conference.

6. Li MH, Lu YL (2009) Source bearing and steering-vector estimation using
partially calibrated arrays. IEEE T Aero Elec Sys 45: 1361-1372.

7. Li MH, Lu YL (2007) Maximum likelihood processing for arrays with partially
unknown sensor gains and phases. Proceedings of 7th International
Conference on Intelligent Transportation Systems Telecommunications.

8. Li MH, Lu YL (2008) Maximum likelihood DOA estimation in unknown colored
noise fields. IEEE T Aero Elec Sys 44: 1079-1090.

9. Haykin S, Litva J, Shepherd TJ (1993) Radar Array Processing. Springer-
Verlag, New York, USA.

10. Yoke LS, Agatonovic M, Zwick T (2012) Neural network based direction of
arrival estimation for a MIMO OFDM radar. Proceedings of 9th European Radar
Conference.

11.Li MH, Lu YL (2002) Genetic algorithm based maximum likelihood DOA
estimation. Proceedings of Radar Conference.

12. Abdalla MM, Abuitbel MB, Hassan MA (2003) Performance evaluation of
direction of arrival estimation using MUSIC and ESPRIT algorithms for mobile
communication systems. Proceedings of 6th Wireless and Mobile Networking
Conference.

13. Madyastha R, Aazhang B (1997) Delay and DOA estimation in CDMA
communication systems via maximum likelihood techniques. Proceedings of
IEEE International Symposium on Information Theory.

14. Li MH, Wang B, Lu YL, Zhou MT, Chen IM (2010) Smart antenna in intelligent
transportation systems. Wireless Technologies in Intelligent Transportation
Systems, Nova Science Publishers, Inc. New York.

15.Li MH, Lu YL, Wee L (2006) Target detection and identification with a
heterogeneous sensor network by strategic resource allocation and
coordination. Proceedings of 6th International Conference on Intelligent
Transportation Systems Telecommunications.

16. Wang B, Li MH, Lim HB, Ma D, Fu C (2009) Energy efficient information

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

processing in wireless sensor networks. Guide to Wireless Sensor Networks,
Springer, London, UK.

. Li MH, Lu YL (2007) Optimal direction finding in unknown noise environments

using antenna arrays in wireless sensor
7th International Conference on Intelligent
Telecommunications.

networks. Proceedings of
Transportation Systems

.Li MH, Lu YL (2008) Angle-of-arrival estimation for localization and

communication in wireless networks. Proceedings of 16th European Signal
Processing Conference.

. Li MH, Hayward G (2012) Ultrasound nondestructive evaluation (NDE) imaging

with transducer arrays and adaptive processing. Sensors 12: 42-54.

Gongzhang R, Li MH, Lardner T, Gachagan A, Hayward G (2012) Robust
defect detection in ultrasonic nondestructive evaluation (NDE) of difficult
materials. Proceedings of 2012 IEEE International Ultrasonics Symposium.

Lardner T, Li MH, Gongzhang R, Gachagan A (2012) A new speckle noise
suppression technique using cross-correlation of array sub-apertures in
ultrasonic NDE of coarse grain materials. Proceedings of Review of Progress
in Quantitative Nondestructive Evaluation (QNDE).

Li MH, Hayward G, He B (2011) Adaptive array processing for ultrasonic non-
destructive evaluation. Proceedings of 2011 IEEE International Ultrasonics
Symposium.

Li MH, McGuire M, Ho KS, Hayward G (2010) Array element failure correction
for robust ultrasound beamforming and imaging. Proceedings of 2010 IEEE
International Ultrasonics Symposium.

He B, Liang Y, Feng X, NianR, Yan T, et al. (2012) AUV SLAM and experiments
using a mechanical scanning forward-looking sonar. Sensors 12: 9386-9410.

Li K, Lu YL, Li MH (2005) Approximate formulas for lateral electromagnetic
pulses from a horizontal electric dipole on the surface of one-dimensionally
anisotropic medium. IEEE T Antenn Propag 53: 933-937.

Li MH, Ho KS, Hayward G (2009) Beamspace transformation for data reduction
using genetic algorithms. Proceedings of |EEE International Ultrasonics
Symposium.

Li MH, Ho KS, Hayward G (2010) Accurate angle-of-arrival measurement using
particle swarm optimization. Wireless Sensor Network 2: 358-364.

Wax M, Ziskind | (1989) On unique localization of multiple sources by passive
sensor arrays. IEEE T Acoust Speech 37: 996-1000.

Stoica P, Nehorai A (1990) Performance study of conditional and unconditional
direction-of-arrival estimation. IEEE T Acoust Speech 38: 1783-1795.

Ziskind I, Wax M (1988) Maximum likelihood localization of multiple sources by
alternating projection. IEEE T Acoust Speech 36: 1553-1560.

Sharman K (1988) Maximum likelihood estimation by simulated annealing.
Proceedings of ICASSP-88.

Miller M, Fuhrmann D (1990) Maximum likelihood narrow-band direction finding
and the EM algorithm. IEEE T Acoust Speech 38: 1560-1577.

Stoica P, Gershman A (1999) Maximum-likelihood DOA estimation by data-
supported grid search. IEEE Signal Proc Let 6: 273-275.

Ottersten B, Viberg M, Stoica P, Nehorai A (1993) Exact and large sample
maximum likelihood techniques. Radar Array Processing, Springer-Verlag,
New York, USA.

Fuchs J (1992) Estimation of the number of signals in the presence of unknown
correlated sensor noise. IEEE T Signal Proces 40: 1053-1061.

Vanpoucke F, Paulraj A (1995) A harmonic noise model for direction finding in
colored ambient noise. IEEE Signal Proc Let 2: 135-137.

Goransson B, Ottersten B (1999) Direction estimation in partially unknown
noise fields. IEEE T Signal Proces 47: 2375-2385.

Viberg M, Stoica P, Ottersten B (1997) Maximum likelihood array processing
in spatially correlated noise fields using parameterized signals. IEEE T Signal
Proces 45: 996-1004.

Ye H, DeGroat RD (1995) Maximum likelihood DOA estimation and asymptotic
Cramér-Rao bounds for additive unknown colored noise. IEEE T Signal Proces
43: 938-949.

J Electr Electron Syst
ISSN: 2332-0796 JEES an open access journal

Volume 3 ¢ Issue 1+ 1000117


http://link.springer.com/article/10.1007/s11277-007-9248-5
http://link.springer.com/article/10.1007/s11277-007-9248-5
http://www.sciencedirect.com/science/article/pii/S0165168404001446
http://www.sciencedirect.com/science/article/pii/S0165168404001446
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1603408&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1603408
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1603408&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1603408
http://www.eurasip.org/Proceedings/Eusipco/Eusipco2005/defevent/papers/cr1075.pdf
http://www.eurasip.org/Proceedings/Eusipco/Eusipco2005/defevent/papers/cr1075.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5310304&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5310304
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5310304&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5310304
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4295858&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4295858
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4295858&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4295858
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4295858&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4295858
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4655365&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4655365
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4655365&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4655365
http://dl.acm.org/citation.cfm?id=573055
http://dl.acm.org/citation.cfm?id=573055
file:///E:/Journals/TotalFiles/JMBT/JMBTVolume.5/JMBT5.4/JMBT5.4_AI/ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6450703&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6450703
file:///E:/Journals/TotalFiles/JMBT/JMBTVolume.5/JMBT5.4/JMBT5.4_AI/ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6450703&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6450703
file:///E:/Journals/TotalFiles/JMBT/JMBTVolume.5/JMBT5.4/JMBT5.4_AI/ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6450703&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6450703
http://digital-library.theiet.org/content/conferences/10.1049/cp_20020337
http://digital-library.theiet.org/content/conferences/10.1049/cp_20020337
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6549043&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6549043
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6549043&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6549043
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6549043&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6549043
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6549043&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6549043
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=613281&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D613281
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=613281&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D613281
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=613281&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D613281
http://strathprints.strath.ac.uk/14700/
http://strathprints.strath.ac.uk/14700/
http://strathprints.strath.ac.uk/14700/
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4068753&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4068753
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4068753&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4068753
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4068753&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4068753
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4068753&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4068753
http://link.springer.com/chapter/10.1007/978-1-84882-218-4_1
http://link.springer.com/chapter/10.1007/978-1-84882-218-4_1
http://link.springer.com/chapter/10.1007/978-1-84882-218-4_1
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4295888&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4295888
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4295888&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4295888
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4295888&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4295888
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4295888&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4295888
http://www.eurasip.org/Proceedings/Eusipco/Eusipco2008/papers/1569105149.pdf
http://www.eurasip.org/Proceedings/Eusipco/Eusipco2008/papers/1569105149.pdf
http://www.eurasip.org/Proceedings/Eusipco/Eusipco2008/papers/1569105149.pdf
http://www.mdpi.com/1424-8220/12/1/42/pdf
http://www.mdpi.com/1424-8220/12/1/42/pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6562509&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6562509
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6562509&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6562509
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6562509&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6562509
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4789135
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4789135
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4789135
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4789135
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5935820&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5935820
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5935820&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5935820
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5935820&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5935820
http://www.mdpi.com/1424-8220/12/7/9386
http://www.mdpi.com/1424-8220/12/7/9386
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1406222&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1406222
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1406222&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1406222
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1406222&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1406222
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5442004&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5442004
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5442004&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5442004
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5442004&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5442004
http://strathprints.strath.ac.uk/25824/
http://strathprints.strath.ac.uk/25824/
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=32277&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D32277
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=32277&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D32277
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=60109&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D60109
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=60109&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D60109
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7543&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D7543
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7543&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D7543
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=60075&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D60075
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=60075&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D60075
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=789608&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D789608
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=789608&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D789608
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=134468&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D134468
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=134468&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D134468
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=392404&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D392404
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=392404&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D392404
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=782181&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D782181
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=782181&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D782181
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=564187&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D564187
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=564187&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D564187
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=564187&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D564187
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=376846&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D376846
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=376846&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D376846
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=376846&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D376846

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Data Model and Problem Formulation 
	DOA Estimation in White Gaussian Noise 
	Conditional Maximum Likelihood (CML) estimator 
	Unconditional Maximum Likelihood (UML) estimator 

	DOA Estimation in Unknown Noise Environment 
	ML estimation based on parametric noise covariance 
	ML estimation based on parameterized signals 

	Simulation Studies 
	Conclusions
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	References

