
Journal of Generalized Lie Theory and Applications Vol. 3 (2009), No. 4, 297–310

Arithmetic Witt-hom-Lie algebras

Daniel LARSSON

Høgskolen i Oslo, Pb 4, St. Olavs plass, 0130 Oslo, Norway

E-mail: daniel.larsson@iu.hio.no

Abstract

This paper is concerned with explaining and further developing the rather technical
definition of a hom-Lie algebra given in a previous paper which was an adaption of the
ordinary definition to the language of number theory and arithmetic geometry. To do this
we here introduce the notion of Witt-hom-Lie algebras and give interesting arithmetic
applications, both in the Lie algebra case and in the hom-Lie algebra case. The paper
ends with a discussion of a few possible applications of the developed hom-Lie language.
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1 Introduction

The main purpose of this note is to explain the rather technical definition of a hom-Lie
algebra given in [4] (in addition to motivating why I made that definition) and to provide
a few novel examples of distinct number theoretical flavour.

Let me point out, however, that in order to draw any serious and deep conclusions of
a number-theoretical nature from the association with hom-Lie algebras, one needs to know
more of the finer structure of hom-Lie algebras, something that is yet to be investigated. On
the other hand, a recent preprint [1] proves that hom-Lie algebras are actually Lie algebras
in a suitably braided category1. This should certainly aid in the study of the structural
characteristics of hom-Lie algebras. In fact, this result implies that every structural result on
Lie algebras should have a precise hom-Lie analogue. Therefore, most results on Lie algebras
should be transferrable (in principle, at least) to a hom-Lie version. This is something that
certainly should be studied further.

The contents of the paper is as follows. Section 2 deals with the definition of hom-Lie
algebra and hom-Lie structure, both as given in [4] and in a slightly different, but equivalent,
way that might be more easily understood from a purely algebraic point of view. Section
3 introduces Witt-Lie algebras in a general way and shows that already this “un-twisted”
case is full of potential number theory, such as Gauss sums and CM-elliptic curves. Section 4
generalizes the Witt-Lie algebras to Witt-hom-Lie algebras and this is then studied in some
detail. Interspersed throughout the text are questions and suggestions for further study.

In the final few subsections of the paper, we give some “teasers” how the constructions
introduced might be used in arithmetic. I am rather confident that there are interesting
structures here waiting to be unveiled, both with respect to the study of hom-Lie algebras
and the study of arithmetic and geometry.

Finally let me issue a warning: Some parts of this paper require more background than
others and I do not always indicate what this background is. However, in most instances,
I give pointers to the relevant literature where details may be found.

1This is something the present author has suspected for some time, see [4].
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Notations. The following notations will be adhered to throughout.

• Λ will denote a commutative, associative integral domain with unity.
• Com(Λ) (Com(B), etc.) denotes the category of commutative, associative Λ-algebras

(B-algebras, etc) with unity. Morphisms of Λ-algebras (B-algebras, etc.) are always
unital, i.e., φ(1) = 1.
• A× is the set of units in A (i.e., the set of invertible elements).
• EndΛ(A) denotes the Λ-module of Λ-algebra morphisms on A.
• 	a,b,c (·) will mean cyclic addition of the expression in bracket.
• Sch denotes the category of schemes; Sch/S denotes the category of schemes over S

(i.e., the category of S-schemes) where S is some base scheme.
• When writing actions of group elements, we will alternatively use σ(a) and aσ, depend-

ing on the context.
• The notation Ag, AG will denote the fixed ring of g ∈ G and G, respectively, i.e.,

Ag :=
{
a ∈ A | ag = a

}
, AG :=

{
a ∈ A | ag = a, for all g ∈ G

}
• A will always denote an abelian group.

2 The basic constructions

Here we work “backwards” compared to the definition given in [4], as we feel that this might
give a somewhat more natural (i.e., less “Bourbaki-ist”) introduction going from the special
to the general.

2.1 Hom-Lie structures

2.1.1 Hom-Lie algebras

Let A be a Λ-algebra and L an A-module. (Those who prefer can think of Λ = A = F, a field,
and L, an F-vector space.) Assume that σ is a Λ-linear endomorphism on L.

Definition 2.1. A hom-Lie algebra on L is a tuple (L, 〈·, ·〉, σ), where 〈·, ·〉 is Λ-bilinear
product satisfying

(hL1.) 〈a, a〉 = 0, for all a ∈ L;
(hL2.) 	a,b,c

(
〈aσ + a, 〈b, c〉〉

)
= 0.

A morphism of hom-Lie algebras (L, 〈·, ·〉, σ) and (L′, 〈·, ·〉′, σ′) is a Λ-module morphism
f : L→ L′ such that σ′ ◦ f = f ◦ σ.

Remark 2.2. One could wonder why the Λ-module A is there at all since everything in the
definition is Λ-linear. But this is to allow greater flexibility as it will hopefully become clear
later.

Let G be a group of endomorphisms on L. We define a G-hom-Lie structure on L to
be a collection of hom-Lie algebras parametrized by the elements of G. More to the point,
a G-hom-Lie structure on L is a family of hom-Lie algebras

L(G) :=
{

(L, 〈·, ·〉σ, σ) | σ ∈ G
}

Morphisms of G-hom-Lie structures are bit more subtle to define: let L(G) and L′(G′) be
two G-hom-Lie structures (with different G’s and underlying A-modules). Then a morphism
L(G) −→ L′(G′) is a pair (φL, φG) consisting of a Λ-module morphism φL : L → L′ and a
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group morphism φG : G→ G′ such that

φL ◦ σ = φG(σ) ◦ φL for all σ ∈ G

and such that

φL
(
〈a, b〉σ

)
=
〈
φL(a), φL(b)

〉
φG(σ)

The fact that G is a group means that any G-hom-Lie structure includes a Lie algebra
corresponding to the unit element of G. This Lie algebra may, or may not, be the abelian
Lie algebra. In this way, the G-hom-Lie structure can be viewed as a family of “deforma-
tions” of the Lie algebra in L(G) (strictly speaking there could be Lie algebras in the family
corresponding to group elements different from the unit), making the notion of G-hom-Lie
structure a very pleasing and intuitive construction.

Let me also remark that the “deformations” in the hom-Lie families are not “quasi-
deformations” in the sense of [5]. To recall, the quasi-deformation concept, can loosely be
thought of as “deformations” of certain representations of Lie algebras. On the other hand,
here the Lie algebras themselves are “deformed” (while not in any continuous, flat or other
“geometric” ways) in the category of hom-Lie algebras.

The following base-change result was proved in [4]; here it is rephrased in the present
usage of hom-Lie algebras.

Theorem 2.3. Let (L, σ, 〈·, ·〉) be a hom-Lie algebra over a ring A and let A → B be a
morphism of Λ-algebras. Then(

L⊗A B, σ ⊗ id, 〈·, ·〉 ⊗ ( ◦ )
)

where ( ◦ ) denotes the multiplication in B, is a hom-Lie algebra over B.

It is very easy to prove this directly; we leave this to the reader.

2.1.2 Substructures

It is obvious what is to be meant by sub-hom-Lie algebra. However, there is another notion
that is natural to consider here, namely, sub-hom-Lie structures.

Let (L,G) be a G-hom-Lie structure, where L is an A-module and G a group acting on
L (and possibly also A). Then an H-sub-hom-Lie structure of (L,G) is a pair (K,H)
together with two injections K ↪→ L and H ↪→ G. Notice that this includes the cases where
either of these is the identity.

2.1.3 Quotient structures

Dualizing, let (L,G) be a G-hom-Lie structure over A; then a quotient hom-Lie structure
is an H-hom-Lie structure (K,H) and a pair of surjections L� K and G� H.

2.1.4 Changing groups

Let H → G be a group morphism and L a G-hom-Lie structure. Notice that this means,
in particular, that we have a representation ρ : G → End(L). Clearly, restriction induces a
H-hom-Lie structure on L via

End(L)

H

;;w
w

w
w

w
// G

ρ

OO

Hence, in particular, this holds for H a subgroup of G, thus inducing a sub-hom-Lie structure.
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Similarly, for a surjection φ : G � H and a G-hom-Lie structure L, we get an induced
quotient H-hom-Lie structure on Lker(φ).

2.2 Global Hom-Lie structures

The “global” definition given in [4] was a bit more restrictive than necessary. Therefore, there
is some discrepancies in the wording of the one below and the one from [4]. I think that the
one given here should be inclusive enough for most arithmetic circumstances.

Fix a scheme S ∈ ob(Sch). Let (S)fl denote the (big) flat site associated with S. To recall,
this is the category of morphisms U → S (the “open sets” of S), locally of finite type, with
the obvious morphisms, U ∈ ob(Sch). The covering families are families of flat morphisms
(Ui → U)i, where i ∈ I for some index set I. For more details on this see [6] for instance. By
G we denote a sheaf of groups on (S)fl. Let W be a sheaf of G-sets over (S)fl, i.e., a sheaf W
over (S)fl together with an action of G(U) on W(U) for U → S.

The reason for this generality is that for arithmetic and geometric purposes, it is advan-
tageous to allow for more general topologies than the Zariski topology; for instance étale
topology [6] or the positive topology [8]. (Of course, we could use any topological space as
base here, i.e., not necessarily restricting our discussion to schemes.)

Let O be the structure sheaf on (S)fl in the sense that OU,fl := O(U) := H0(U,OU ) for
U ∈ ob((S)fl) and let A be a sheaf of O-algebras. We denote by F an A-module. Let G be a
sheaf of groups over (S)fl acting O-linearly on F .

Definition 2.4. Given the above data, a hom-Lie structure for G, or G-hom-Lie structure, on
(S)fl is a G-sheaf of A-modules F together with, for each covering (Ui → U)i, U ∈ ob((S)fl),
an O(Ui)-bilinear product 〈 ·, · 〉i := 〈 ·, · 〉(Ui) on F(Ui) such that

(hL1.) 〈a, a〉i = 0, for all a ∈ F(Ui);
(hL2.) 	a,b,c

(
〈ag + a, 〈b, c〉i〉i

)
= 0, for all g ∈ G(Ui).

A morphism of hom-Lie structures (F ,G) and (F ′,G′) is a pair (f, ψ) consisting of a morphism
of O-modules f : F → F ′ and a morphism of group schemes ψ : G → G′, such that
f ◦ g = ψ(g) ◦ f , and fi(〈a, b〉F ,i) = 〈fi(a), fi(b)〉F ′,i, where we have put fi := f(Ui).

We thus get a category HomLieStrucS of all hom-Lie structures on (S)fl with morphisms
given in the definition.

Hence, a hom-Lie structure is a family of (possibly isomorphic) products parametrized by
G. A product 〈 ·, · 〉g, for fixed g ∈ G, is a hom-Lie algebra on F .

In all cases, G is a constant sheaf of groups, i.e., G(U) = G, for all U → S, where G is a
group (or group scheme over S). We will assume this from now on.

2.2.1 Specialization

When we only consider one open set U = S, Definition 2.4 specializes to

• OX  o ∈ ob(Com(k));
• A A ∈ ob(Com(o));
• 〈 ·, · 〉g,i  〈 ·, · 〉g (only one product for each g ∈ G).

When we need to specify the difference of the above case and Definition 2.4, we call this the
special case and Definition 2.4 the global case (and so the global case includes the special).
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3 Arithmetic Witt-Lie algebras

We will now introduce the notion of “arithmetic Witt algebras”. These are graded Lie alge-
bras coming endowed with obvious number-theoretical content. The notion of “generalized
Witt algebras” have been around for a few decades and there are several more or less equiv-
alent ways to define this; we have chosen one that is suitable for our present needs, namely,
number theory. We have not been able to find this arithmetic application anywhere in the
literature. In the next section we will generalize this to “Witt-hom-Lie algebras”, taking into
account “Galois structures”.

3.1 Witt-Lie algebras

The classical Witt-Lie algebra WC(Z, 1) (the reason for the unorthodox notation will be clear
from the discussion below) is defined as the complexified polynomial vector fields on the unit
circle. More to the point

WC(Z, 1) = C
[
z, z−1

][
∂z
]

with 〈zn∂z, zm∂z〉 = (m− n)zn+m∂z

induced from the commutator. It is clearly Z-graded.
This can be generalized as follows. Let A be an abelian group written additively and

let χa : A → Λ, where Λ is an integral domain (this assumption is kept throughout), be a
1-dimensional character, i.e., a group morphism into the additive group of Λ (the superscript
“a” is there to remind us that the character is additive). Denote by WZ(A) the free Z-module
spanned by the formal symbols {w(g) | g ∈ A}. Let Λ → T be a Z-algebra morphism, i.e.,
T ∈ ob(Com(Λ)). First define

w(g) ·w(h) := α(g, h)w(g + h)

where α : A × A → Λ is a Λ-valued, symmetric group 2-cocycle, i.e., a map α : A × A → Λ
satisfying

α(h, k)α(g, h+ k) = α(g, h)α(g + h, k), α(g, h) = α(h, g)

Then define a Λ-linear product on the base extension to T ,

WT

(
A, χa, α

)
:= WZ(A)⊗Z T

as follows:〈
aw(g), bw(h)

〉
:=
(
aw(g)

)σ · (bw(h)
)
−
(
bw(h)

)σ · (aw(g)
)
, a, b ∈ T (3.1)

where (aw(g))σ := −aχa(g)w(g) and similarly for (bw(h))σ. Notice that (·)σ does not define
a multiplicative map unless χa is multiplicative2. The above construction gives the structure
constants〈

aw(g), bw(h)
〉

= abχa(h− g)α(h, g)w(g + h) (3.2)

and it is easy to check that this defines an A-graded Lie algebra called the Witt algebra of
(A, χa, α).

2The reason for introducing this slightly awkward construction is to keep a suitable analogy with a later
one; see Section 4.
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As to not be drown in awkward notation we will most often, instead of the correct χa(g),
simply write g, remembering that g is strictly an element of a group and not of the ring T .
This will certainly not cause any severe confusion. When confusion does lurk, χa is favored
and used. Consequently, we also drop χa from the notation WT (A, χa, α).

Notice that the above WT (A, α) actually is, as a T -module, the (twisted) group algebra

T [A] =

{∑
finite

agw(g) | g ∈ A, ag ∈ T, w(g)w(h) = α(g, h)w(g + h)

}

We will find this description more suitable in what follows. Therefore, it is strongly graded
and crystalline in the sense of [7].

Remark 3.1. The above can be considered the “rank one” case of the following construction.
Let S be an A-set (i.e., a set together with an action of A). Form the set of formal symbols
{ws(g) | s ∈ S, g ∈ A}. Define the multigraded Lie product〈

ws(g),wt(h)
〉

:= h(s)ws(g + h)− g(t)wt(g + h)

We will however stick to the “rank one” case.

Remark 3.2. We remark also that this construction is functorial. Indeed, define the category
Ab(3) as the category whose objects are triples (A, χa, α) and morphisms group morphisms

A
f−→ B such that χa

B ◦ f = χa
A and αB ◦ (f × f) = αA. Then WT is a functor from Ab(3) to

the category Lie of Lie algebras.

To show that this is actually a very general notion (although we will generalize further),
let us give a few simple examples.

Example 3.3. We first consider two simple examples.

(a) The classical case is the Witt algebra for (Z, 1) with T = Λ = C, the unit (principal)
character Z→ C and α the constant 2-cocycle 1 : (g, h) 7→ 1.

(b) Take A = Fp and T = Λ = Fp, α = 1. Now, WFp(Fp, 1) is the algebra that E. Witt ac-
tually studied. This can be given the following more conventional description. Consider
the following Fp-vector space:

DerFp

(
Fp[t]/

(
tp
))

=
p−1⊕
i=0

Fpti∂t

This is a Lie algebra under the commutator. In fact, we have the following isomorphism
of Lie algebras:

WFp

(
Fp, 1

) '−−→ DerFp

(
Fp[t]/

(
tp
))
, aw(i) 7−→ ati∂t, for i ∈ Fp

When p 6= 2, these are simple (modular) Lie algebras.

Clearly, more elaborate versions of these examples can be constructed by varying A and/or α.

We will now give two more sophisticated examples coming from arithmetic.
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3.1.1 Witt algebras from elliptic curves

Let K be a field and let E be an elliptic curve over K. Let D be a K-algebra.
By the Mordell-Weil theorem, the group of L-rational points E (L), for L/K a finite

extension of number fields, is a finitely generated abelian group. In addition, the group of N -
torsion points E [N ] := E (Kalg)[N ], where Kalg denotes the algebraic closure of K, i.e., the
group of all points p ∈ E (Kalg) such that N ·p = p+p+ · · ·+p = 0 (N times), is isomorphic
to (Z/NZ)2. This holds in general when K is a field of characteristic prime to N . The full
group of torsion points Etors is the union of all E [N ] (we assume here that char(K) = 0).

Using these groups we can now form three natural Witt algebras. Namely,

• WD(E (L), α) = D[E (L)], with χa : E (L)→ K, α : E × E → K;

• WD(E [N ], α) = D[E [N ]], with χa : E [N ]→ K, α : E [N ]× E [N ]→ K;

• WD(Etors, α) = D[Etors], with χa : Etors → K, α : Etors × Etors → K.

There are several interesting possibilities for the K-algebra D. For instance, (a) D = L, a
field over K; (b) D = oL, considered as an oK-algebra; (c) D = End(E ), where K = Z; (d)
D = Kν , where ν is a (discrete) valuation of K, and Kν the completion of K with respect
to ν; of course, we could also consider the ring of integers oν .

The case (c) is interesting only when End(E ) ⊃ Z, the complex multiplication (CM) case.

Remark 3.4. Assume thatK is a field. Since D is an oK-algebra,WD(E [N ], α) (for instance)
is also an oK-module. This means that WD(E [N ], α) sheafifies to a quasi-coherent sheaf

˜WD(E [N ], α) on the 1-dimensional arithmetic scheme Spec(oK). Therefore, we get a sheaf
of Lie algebras over Spec(oK).

This example will be even more interesting in the context of hom-Lie algebras.

3.1.2 A cyclotomic Witt-Lie algebra

Let A = Z/pZ, where p is prime. We will also consider the multiplicative group A× = (Z/pZ)×

of units. In this case, a natural choice of additive character will be χa(a (mod p)) := a ∈ Z.
Furthermore, let µ

n
be the group of nth roots of unity. Take T = Λ = Q(µ

n
), the nth

cyclotomic field, and pick a Dirichlet character ϑ : A× → µ
n
⊂ Q(µ

n
), i.e., a character ϑ

such that ϑ(gh) = ϑ(g)ϑ(h). Extend ϑ to a character on the whole A by defining ϑ(0) = 0,
unless ϑ is the principal (unit) character ϑ0 in which case we define ϑ0(0) = 1. There is
nothing stopping us from letting T 6= Λ below. In fact, convenience is the only reason for
assuming equality here.

We get

WQ(µ
n

)(A, α) = WZ(A)⊗Z Q
(
µ
n

)
=

{∑
finite

agw(g) | ag ∈ Q
(
µ
n

)}

where α is a 2-cocycle, with the Q(µ
n
)-linear Lie algebra structure given by (3.2). Inside

this Q(µ
n
)-vector space there is an element on the form

G(ϑ) := −
∑
g∈A

ϑ(g)w(g)
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a so-called Gauss sum. Recall that (h − g) is actually χa(h − g). Letting ϑ∗ be another
character, we can compute〈

G(ϑ),G
(
ϑ∗
)〉

=
∑
g

∑
h

ϑ(g)ϑ∗(h)(h− g)α(h, g)w(g + h)

Introducing the anti-symmetric pairing

·⊥· : A× A −→ Q
(
µ
n

)
defined by

(·⊥·)(a, b) := a⊥b := ϑ(a)ϑ∗(b)− ϑ(b)ϑ∗(a),

we have the following nice description of 〈G(ϑ),G(ϑ∗)〉.

Proposition 3.5. Given the above, we have

〈
G(ϑ),G

(
ϑ∗
)〉

=
∑
k∈A

 ∑
g+h=k

(h− g)α(g, h)(g⊥h)

w(k)

Proof. The proof is a simple computation and is omitted.

Example 3.6. For an explicit example consider the two Dirichlet characters on (Z/5Z)×

(extended to Z/5Z) defined by

ϑ :=
{
ϑ(1) = 1, ϑ(2) = i, ϑ(3) = −i, ϑ(4) = −1

}
and

ϑ∗ :=
{
ϑ∗(1) = 1, ϑ∗(2) = −1, ϑ∗(3) = −1, ϑ∗(4) = 1

}
Now we compute{ 1⊥2 = −(1 + i), 1⊥3 = i− 1, 1⊥4 = 2,

2⊥3 = −2i, 2⊥4 = i− 1, 3⊥4 = −(1 + i)

}
and so, using the proposition, we get〈

G(ϑ),G
(
ϑ∗
)〉

=
(
3α(1, 4)(1⊥4) + α(2, 3)(2⊥3)

)
w(0) + α(2, 4)(2⊥4)w(1)

+ α(3, 4)(3⊥4)w(2) + α(1, 2)(1⊥2)w(3) + α(1, 3)(1⊥3)w(4)

=
(
6α(1, 4)− 2iα(2, 3)

)
w(0) + (i− 1)α(2, 4)w(1)− (1 + i)α(3, 4)w(2)

− (1 + i)α(1, 2)w(3) + (i− 1)α(1, 3)w(4)

Notice that, even in the case α = 1, 〈G(ϑ),G(ϑ∗)〉 is not a Gauss sum, since the coefficients
are not the image of some Dirichlet character (the images of which are all roots of unity).
But there is more: even though, by definition, G(ϑ) and G(ϑ∗) have no w(0) term, their
product 〈G(ϑ),G(ϑ∗)〉 in general has. Hence, this product is in general not even a Q(µ

n
)-

linear combination of Gauss sums.
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Remark 3.7. Normally, when computing with Gauss sums, the symbols w(g) are powers
of some primitive mth root of unity ζm, e.g., w(g) = ζgm. Therefore, the Gauss sums are
elements in the relative extension Q(µ

n
)(ζm). These extensions are rather cumbersome to

work with, even when gcd(m,n) = 1, so working with symbols, as we have done, clarifies
computations in our opinion.

We will use a generalization of Gauss sums further on. Therefore, let L/K be a finite
Galois extension. Choose a multiplicative character ϑ : Gal(L/K) → L× such that ϑn = 1,
n ≤ [L/K]. Then the so-called resolvent is the group algebra element(

· | ϑ
)

:=
∑

σ∈Gal(L/K)

ϑ(σ)w(σ) ∈ L
[
Gal(L/K)

]
= WL

(
Gal(L/K), α

)
(where the last equality is as vector spaces). We consider (· | ϑ) as an operator on L:(

· | ϑ
)
(x) :=

(
x | ϑ

)
:=

∑
σ∈Gal(L/K)

ϑ(σ)xσ

In other words, w(σ) acts on L as σ. The element (· | ϑ) satisfies the following property: for
any τ ∈ Gal(L/K) and x ∈ L, we have

τ
((
x | ϑ

))
= ϑ−1(τ)

(
x | ϑ

)
(3.3)

where ϑ−1 is the inverse character. As consequences we have

τ
((
x | ϑ

)n) =
(
x | ϑ

)n
τn
((
x | ϑ

))
=
(
x | ϑ

)
Gauss sums are the result of the above when L/K=Q(µ

p
)/Q, in which case Gal(Q(µ

p
)/Q)

∼= (Z/pZ)×. Particularly interesting is the case when ϑ is the unique order-two character,
namely the Legendre symbol (·/p), or more generally of course, mth power residue symbols.
We leave it to the reader to express the product of two resolvents in analogy with the Gauss
sum above. Notice, however, that this is only possible for abelian extensions L/K.

For an idea of why Gauss sums (or resolvents) are of utmost importance in number theory,
see [2] for instance.

These examples show that there is indeed interesting arithmetic for ordinary Lie algebras.
Despite this we will up the stakes and give a hom-Lie algebra generalization of the above to
show that we can capture significantly more arithmetic by (for instance) explicitly involving
the Galois structure (where present). Actually, this case will in some sense be more natural
than the Lie algebra case given above.

4 Arithmetic Witt-hom-Lie structures

Let as before A be an abelian group with a character χa : A → Λ which will be (almost)
constantly suppressed. Furthermore, let T be a Λ-domain, G ⊆ AutΛ(T ) a subgroup together
with a representation ρ : G → GL(V ), where V is a Frac(T )-vector space (where Frac(T )
denotes field of fractions of T ). Let χ be the character of ρ. If the image of χ is not in T ,
make a base extension to T ⊗Z Z[imχ].

Consider WT (A, χ) = Z[A] ⊗Z T as the group algebra T [A], spanned by formal symbols
w(g), g ∈ A. Let σ ∈ G be an algebra endomorphism on T and extend to WT (A, χ) as

σ
(
w(g)

)
:= χ(σ)χ

a(g)w
(
gσ
)

= χ(σ)gw
(
gσ
)

(Tate twist)
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and then linearly as

σ
(
aw(g) + bw(h)

)
:= aσσ

(
w(g)

)
+ bσ

(
w(h)

)
This defines an algebra endomorphism on WT (A, χ); we define (g + h)σ := gσ + hσ, i.e., we
demand that σ acts as a group endomorphism on A. Notice that we have yet to decide how
to interpret w(gσ) and w(hσ). Define once again

w(g) ·w(h) := α(g, h)w(g + h) for α : A× A −→ Λ

a symmetric 2-cocycle. We assume that α(gσ, h) = α(g, h). Let E be a T -module and make
the base extension E(A) := E ⊗T T [A]. The T -module WT (A, χ) = T [A] acts on E(A) as

(ag)(e⊗ h) := (ae)⊗ (gh) for a ∈ T, g, h ∈ A, e ∈ E

Extend the action of G on T to a semilinear action on E:

(ae)σ̄ := σ(a)σ̄(e) for a ∈ T, e ∈ E and σ ∈ G

Now we twist the action of G on E (and thus on T ) as

(ae)∧σ̄ := `
(

id−σ̄
)
(ae) for ` ∈ T σ (4.1)

Then ∆σ := `(id−σ̄) (we suppress the dependence on ` in the notation) is a twisted derivation
on E, i.e., a linear map E → E satisfying

∆σ(ae) = δ(a)e+ aσ∆σ(e), a ∈ T, e ∈ E,

and where δ is the induced twisted derivation δ := `(id−σ) on T [A] = WT (A, χ). We extend
the action of σ̄ to E[A] via the Tate twist. Explicitly,

σ̄
(
e⊗w(g)

)
:= σ̄(e)⊗ σ

(
w(g)

)
= χ(σ)gσ̄(e)⊗w

(
gσ
)

This is a semilinear action of G on E[A]. It follows that ∆σ can be extended canonically to
E[A]. Assume that (Ann(∆σ))σ ⊆ Ann(∆σ), where

Ann
(
∆σ

)
:=
{
a ∈ T [A] | a∆σ(e) = 0, for all e ∈ E[A]

}
The left T [A]-module T [A] ·∆σ = T [A]∆σ is a hom-Lie algebra by [3, 4] under the product〈〈

aw(g)∆σ, bw(h)∆σ

〉〉
:=
(
aw(g)

)σ∆σ

(
bw(h)∆σ

)
−
(
bw(h)

)σ∆σ

(
aw(g)∆σ

)
We denote this by W hL

T (A, α, χ, σ)∆. Letting σ vary over G, we get the G-hom-Lie structure

WhL
T (G)∆ :=

{
W hL
T (A, σ)∆ | σ ∈ G

}
where we, as shown, often omit α and χ from the notation since these are fixed in the
G-hom-Lie structure.

Using the twisted Leibniz rule we find the structure constants:〈〈
aw(g)∆σ, bw(h)∆σ

〉〉
=
(
(aw(g)

)σ∆σ

(
bw(h)

)
−
(
bw(h)

)σ∆σ

(
aw(g)

))
∆σ

= `α(g, h)
(
aσbχ(σ)gw(gσ + h)− bσaχ(σ)hw(hσ + g)

)
∆σ

(4.2)

Notice that, unless gσ = g for all g ∈ A, this product is not graded. We refer to it as a
“σ-twisted grading”. In [3] there are explicit examples of this phenomenon.

Remark 4.1. The above constructions are all functorial on suitably defined categories, just
as in Remark 3.2. However, the constructions involve a lot of notation so, since this will not
be important for us, we omit it, but invite the interested reader to construct these possible
categories for her- or himself.
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4.1 Alternative construction

We keep the notation and conventions from before (but here T does not have to be a domain)
and introduce the product〈〈

aw(g), bw(h)
〉〉

:= `
(
(aw(g)

)σ · (bw(h)
)
−
(
bw(h)

)σ · (aw(g)
))

(4.3)

on the algebra WT (A, χ) = T [A]. The G-hom-Lie structure thus constructed is denoted by

WhL
T (G) =

{
W hL
T (A, σ) | σ ∈ G

}
(compare with WhL

T (G)∆ from the previous section). Now we compute〈〈
aw(g), bw(h)

〉〉
:= `

((
aw(g)

)σ
bw(h)−

(
bw(h)

)σ
aw(g)

)
= `
(
aσχ(σ)gw(g)σbw(h)− bσχ(σ)hw(h)σaw(g)

)
= `α(g, h)

(
aσχ(σ)gbw

(
gσ + h

)
− bσχ(σ)haw

(
g + hσ

))
There are two important points to make here: (1) Notice that〈〈

aw(g), bw(h)
〉〉

= aσχ(σ)gbw
(
gσ + h

)
− bσχ(σ)haw

(
g + hσ

)
(4.4)

from the above computation is the analogue of equation (3.2); (2) observe that (4.4) is exactly
the “algebra factor” in the structure constant equation (4.2). This means that (4.2) and (4.4)
define isomorphic hom-Lie algebras (under suitable conditions). That (4.4) indeed defines a
hom-Lie algebra follows as a special case of [4, Theorem 3.1] (or can be proven directly with
a straight-forward, albeit tedious, computation).

We will now use the above construction to generalize the Gauss sum construction from a
previous section.

4.1.1 Gauss sums in Witt-hom-Lie algebras

Let L/K be an abelian Galois extension and put A := Gal(L/K). By ϑ, ϑ∗ : Gal(L/K)→ L×,
we denote two multiplicative characters of order n ≤ #A. We will now consider the Gauss
sums (resolvents)

G(ϑ) :=
(
· | ϑ

)
:=
∑
g∈A

ϑ(g)w(g), G
(
ϑ∗
)

:=
(
· | ϑ∗

)
:=
∑
g∈A

ϑ∗(g)w(g)

and their products in W hL
L (A, χ, σ, α), where σ ∈ EndK(L) (not necessarily in Gal(L/K)),

α : A× A→ K, a 2-cocycle. We define the action of A on w(g) as

w(g)τ := χ(τ)χ
a(g)w(τ + g) = χ(τ)gw(τg)

To confuse things we will sometimes write the product in A as “+” and sometimes as com-
position “τg”. Also, we define gτ := τg. Just as for the previous case we can compute〈〈

G(ϑ),G
(
ϑ∗
)〉〉

=
∑
g∈A

∑
h∈A

ϑ(g)ϑ∗(h)
〈〈
w(g),w(h)

〉〉
Now, 〈〈

w(g),w(h)
〉〉

= w(g)σ ·w(h)−w(h)σ ·w(g)
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= χ(σ)gw(gσ)w(h)− χ(σ)hw
(
hσ
)
w(g)

= χ(σ)gα(g, h)w
(
gσ + h

)
− χ(σ)hα(h, g)w

(
hσ + g

)
= α(g, h)

(
χ(σ)g − χ(σ)h

)
w(σgh)

where we, in the last equality, used that A is abelian, α symmetric and that gσ = σg.
We now have the obvious generalization of Proposition 3.5 with essentially the same proof.

Proposition 4.2. Given the above, we have

〈〈
G(ϑ),G

(
ϑ∗
)〉〉

=
∑
k∈A

 ∑
g+h=k

(
χ(σ)g − χ(σ)h

)
α(g, h)(g⊥h)

w(k)

4.1.2 CM-Elliptic curves and Witt-hom-Lie algebras

In this subsection we freely use concepts from complex multiplication and class field theory.
Most (all?) of what is used here can be found in [9, Chapter 2].

Let K be an imaginary quadratic number field, i.e., K = Q(
√
−d), d > 0 a square-free

integer. Furthermore, let E be an elliptic curve over a field F with complex multiplication
by the ring of integers oK in K, i.e., End(E ) ' oK .

Then the theory of complex multiplication tells us that K(j(E )), where j(E ) is the j-
invariant of E , is the Hilbert class field of K. In addition, the field L(N) := K(j(E ),E [N ])
is a finite abelian extension of K(j(E )) for all N . The extension L(N)/K is not necessarily
abelian. In fact, we have the following exact sequence:

1 −→ Gal
(
L(N)/K(j(E ))

)
−→ Gal(L(N)/K) res−−−→ Gal

(
K
(
j(E )

)
/K
)
−→ 1

implying that Gal(L(N)/K) is the semi-direct product

Gal
(
L(N)/K

)
= Gal

(
K
(
j(E )

)
/K
)

n Gal
(
L(N)/K

(
j(E )

))
Now, we have[

Q
(
j(E )

)
/Q
]

=
[
K
(
j(E )

)
/K
]

= h(K)

where h(K) is the class number of K and the Artin (reciprocity) map induces an isomorphism

Cl
(
oK
) '−−→ Gal

(
K
(
j(E )

)
/K
)

with Cl(oK) denoting the class group of K.
Obviously, with this setup we have several interesting possibilities for constructing Witt-

hom-Lie structures. Consider, for instance,

T = L(N), A = Gal
(
K
(
j(E )

)
/K
)

Then Gal(L(N)/K) acts on both L(N) and the grading group via the restriction morphism

res : Gal(L(N)/K)� Gal
(
K
(
j(E )

)
/K
)

In this way we get a Gal(L(N)/K)-Witt-hom-Lie structure WhL
T (Gal(L(N)/K)), or, alterna-

tively, a Gal(L(N)/K)-structure WhL
T (Gal(L(N)/K))∆ (as discussed before).

Remark 4.3. The actual structure of the hom-Lie algebras (structures) thus constructed
remains to be investigated, but let me express some doubt as to whether such an investigation
will have any deep implications for number theory.
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4.1.3 Galois representations

We keep the assumptions from the previous subsection, except that E is not necessarily a
CM-curve.

Consider now the case when m = p a prime. Then

lim
←−

K
[
E
[
pn
]]

= lim
←−

K
[(

Z/pnZ
)2] = K

[(
Zp
)2]

, (the “Tate group algebra over K”)

where Zp is the ring of p-adic integers. Given α : Z/pZ× Z/pZ→ K a 2-cocycle, we can lift
this to a 2-cocycle αp : Zp × Zp → K via the successive Z/pn+1Z→ Z/pnZ.

Twisting the action of GK on (K
[
(Zp)2

]
, αp) to `(id−σ), for σ ∈ GK and ` ∈ K, gives us

a GK-Witt-hom-Lie structure

WhL
K (GK) :=

{
W hL
K

((
Zp
)2
, χ, αp, σ

)
| σ ∈ GK

}
Of course, there is nothing to stop you from taking some K-algebra instead of K and some
other 2-cocycle instead of the induced αp.

Ideally, this construction would give us alternative ways to study Galois representations,
i.e., representations of (absolute) Galois groups, in the form of hom-Lie structures. Thus, in
a sense, we are in this way constructing “twisted Galois representations”.

We can sheafify K[(Zp)2] to a sheaf over Spec(oK) and in this way we get a family of
modular twisted Galois representations. (The details here is yet to be worked out.)

4.1.4 Rational points on abelian varieties

The study of rational points on abelian varieties is of fundamental importance in arithmetic
and Diophantine geometry. Here we barely indicate how hom-Lie methods might aid in this
study, leaving a more detailed exposition to a later treatise.

Let A be an abelian variety over a number field K. Clearly, GK := Gal(Kalg/K) acts
on the L-rational points A (L) on A , where L ⊇ K is a field extension. The Mordell-Weil
theorem says that, if L ⊇ K is finite, then A (L) = Zr ⊕ A (L)tors. It is well known that
A (L)tors is finite for all finite extensions L ⊇ K. Equally well known is that the N -torsion
points

A [N ] = A (C)[N ] ' (Z/NZ)2d, where d = dimK A

Since A (L)tors is finite, we have that A (L)[N ] is finite. But A
(
Kalg

)
[N ] ⊆ A [N ], so

A (Kalg)[N ] is also finite.
By definition, A (L) is an abelian group, so K[A (L)] is a commutative group algebra and

GK acts on this in the obvious fashion. Therefore, we can form

WhL
A (L)

(
GK
)

:=
{
W hL
K

(
A (L), χ, α, σ

)
| σ ∈ GK

}
for χ a character χ : GK → K and α : A (L)×A (L)→ K a 2-cocycle.

The action of GK on A (K) induces an action on the quotient

A (K)�
A (K)
NA (K)

and so we get a surjective morphism of GK-hom-Lie structures

WhL
A (K)

(
GK
)
�WhL

A (K)/NA (K)

(
GK
)
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Fitting this into the fundamental sequence

0 −→ A (K)
NA (K)

−→ Sel(N)(A /K) −→ A (A /K)[N ] −→ 0

where Sel(N)(A /K) is the Nth Selmer group and A (A /K)[N ] the N -torsion part of the
Tate-Shafarevich group, we get a sequence of group algebras

K
[
A (K)

]
−→ K

[
A (K)
NA (K)

]
−→ K

[
Sel(N)(A /K)

]
−→ K

[
A (A /K)[N ]

]
The question that arises is, can this be extended to a sequence of hom-Lie structures? The
answer is yes, but in general not GK-hom-Lie structures. The reason for this general “failure”
is that the action of GK does not in general lift to an action on H1(GK ,A ), and hence, in
general, not to Sel(N)(A /K) or A (A /K)[N ]. Therefore, one needs to restrict to certain
subgroups of GK . Unfortunately, the details of this has to be postponed to another paper.

Remark 4.4. The above discussion gives us a way to see a hom-Lie structure as something
that is canonically given by the abelian group structure of A , much like the Lie algebra
structure of algebraic groups (in this case this is obviously abelian). In this sense, the hom-
Lie structure captures significantly more information than the Lie structure, since it involves
the rational points and the Galois action on these in a very explicit manner.
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