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Abstract
A structural model of metal-rich amorphous alloys is proposed. This model differs from the known models of 

the atomic structure of amorphous metal-rich alloys consisting of transition metal-early transition metal components 
or of transition metal-metalloid components. The atomic structures of these kinds of alloys were studied by means 
of synchrotron high energy X-ray diffraction. The results obtained are presented in the form of radial distribution 
functions suggesting that the atomic structures of amorphous transition metal-rich alloys consist of clusters with 
chemically disordered and structurally distorted bcc cells, irrespective of the crystal structure of the corresponding 
pure metallic elements.
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Introduction
Numerous experimental studies [1] of metallic glasses indicate that 

the arrangement of atoms in metallic glasses is aperiodic and isotropic. 
The presence of Short Range Order (SRO) and Medium Range Order 
(MRO) indicates that the atomic positions are correlated up to few 
interatomic distances.

Since the discovery of amorphous metallic alloys the following 
prominent structural models have been proposed: (a) The Dense 
Random Packing of Hard Spheres (DRPHS) [2-4], (b) the model 
based on the formation of structural units, such as trigonal prisms or 
icosahedral arrangements [5-9], and (c) the Cluster Model (CM) of 
glasses [10,11].

In fact, the analysis of the structure provides the suggestion that 
a uniform structure model of amorphous alloy is ineligible. In some 
cases, the chemical bonding is the decisive factor [12,13], then other 
factors such as metallic binding [13].

Recent reports on the structure of metal-rich amorphous alloys 

[1] as well as of the structure of isolated nanometer-sized Fe crystals
[14] suggest that new insight into the structure of amorphous metallic
materials consisting of transition metal-early transition metal
components or of transition metal-metalloid components may be
obtained by investigating (e.g., by means of the Radial Distribution
Function, RDF of these materials as well as of some of their physical
properties) the atomic arrangements in these materials. In fact, metal-
rich amorphous alloys consisting of transition metal-early transition
metal components or of transition metal–metalloid components seem
promising model systems for such studies. This view is supported by the 
following observations reported in the literature.

The results of Mössbauer measurements show that the distribution 
of the internal magnetic hyperfine fields and the quadrupole splitting 
distribution of pure nanometer-sized Fe crystals [14] and amorphous 
Fe90Sc10 [15] or Fe90Zr10 [16] are similar if the Fe crystals have a size of 
2 nm or less. These observations indicate that the atomic environments 
of 57Fe-atoms in both materials are similar because the quadrupole 
splitting, which is caused by the interaction of electrical field gradient 
and the quadrupole moment of nucleus is directly related to the 
atomic environment. Furthermore, Mössbauer experiments measured 

in external magnetic fields and at various temperatures have verified 
the existence of magnetic clusters in a-Fe90Sc10 with average cluster 
sizes close to the interatomic spacing as deduced from the Radial 
Distribution Function, RDF [17,18].

Moreover, additional structural information may be obtained 
by studying the photon energy because the photon energy is directly 
related to the vibrational dynamics of the atoms and hence to their 
structural arrangement. The shape and the position of the maximum 
of the phonon DOS amorphous Fe-rich alloys [19] and amorphous Fe 
[20] were found to be similar to nano-crystalline-Fe [21] indicating that 
the atomic environments of 57Fe-atoms in both materials are similar

Using genetic algorithm calculations, Nguyen et al., [22] have 
shown that by starting of random configurations, the structure of 
minimum-energy of the FeCo alloy is the bcc atomic arrangement. All 
of these observations suggest a structural similarity between crystalline 
Fe and amorphous Fe-rich alloys. Based on this observation, it is the 
aim of the study reported in this paper to investigate of the following 
two questions:

1- Is the atomic arrangement in transition metal–rich amorphous
alloys similar to the atomic arrangement in transition metal–
rich crystalline metals?

2- Does the atomic arrangement in transition metal-rich
amorphous alloys depend on their chemical composition?

Experimental
The materials systems chosen for the investigations that will be 

reported in this paper were the following two families of alloys. (1) 
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Transition metals-early transition alloys and (2) Transition metal-rich 
and metalloid alloys (produced by Hitachi Metals Ltd., Vacuumschmelze 
GmbH & Co. KG and in our laboratory by electrochemical deposition 
methods). Early transitions metals (such as Sc) and metalloids (such as 
P, B, and Si) are known as glass forming element.

All the metallic glasses studied by us - except of amorphous Ni86P14 
and Co80P20 alloys - were prepared by melt spinning. The preparation of 
Ni90Sc10, Co90Sc10 and Fe90Sc10 alloys was performed in a high vacuum 
chamber. The amorphous Ni86P14 and Co80P20 alloys were prepared by 
the electrochemical deposition methods [23,24].

The atomic structures of the metallic glass were studied using high-
energy XRD (HE-XRD) with a photon wavelength of 0.21 Å at the 
beamline BL04B2 at SPring-8. The beamline BL04B2 is designed for 
diffraction and scattering experiments at photon energies larger than 
37 keV. The main advantage of the beamline is the ability to structurally 
characterize disordered samples by employing a wide range of scattering 
vectors Q and a low instrumental background. Further advantages 
are small correction terms (especially for absorption correction) and 
reduction of truncation errors. The analysis of High-Energy X-Ray 
Diffraction (HE-XRD) data and the transformation from k space to the 
real space is described elsewhere [18].

Results 
Figure 1 shows the radial distribution function of crystalline bcc-Fe, 

fcc-Ni and hcp-Co and of the amorphous transition metal-rich Fe90Sc10 
alloy. As may be seen with the similarity exists between pattern of the 
peaks of the RDF of amorphous Fe90Sc10 alloy and crystalline Fe with 
a bcc structure. However, the peaks of the amorphous alloy (Figure 1) 
are broader than the ones of the Fe bcc crystals and the positions of 
the peaks are shifted which indicates different interatomic spacing in 
the amorphous Fe90Sc10 alloy and crystalline Fe. The similarity between 
pattern of the peaks of the RDF of amorphous Fe90Sc10 alloy and 
crystalline Fe with a bcc structure indicates that the atomic structure 
of the amorphous alloy can be described as arrangements of distorted 
cluster with a bcc structure (the peaks of the amorphous alloy were 
broader than the ones of the Fe bcc crystals) and a distribution of 
interatomic spacing centered on those of bcc-Fe with a certain shift 

of the peak positions. In pure bcc-Fe, the nearest neighbor (nn) and 
the next nearest neighbor (nnn) atoms are located at 2.48 Å and 
2.87 Å, respectively, with 8 atoms and 6 atoms as nn and nnn in the 
corresponding distances. Due to the small difference between the 
nn and nnn shells in bcc-Fe, the nn and nnn shells overlap in the 
amorphous alloy so that the nn and nnn shells become - in amorphous 
metal-rich alloy - indistinguishable.

As may be seen from Figures 2 and 3, the RDF’s of crystalline 
bcc-Fe and the RDF’s of amorphous Co90Sc10 and Ni90Sc10alloys yields 
the same result as for Fe90Sc10 alloy. The following two main features 
of the peak pattern of all three alloys are as follows: (1) All the peak 
patterns of the RDFs are identical; (2) The major differences between 
them are the enhanced peak widths and the shifts of peaks of the 
individual amorphous metal-rich alloys relative to the peaks of the 
bcc-Fe. In other words, the SRO and MRO of metal-rich alloys can 
be described to consist of chemically disordered and structurally 
distorted clusters with a bcc atomic arrangement. Figure 4 shows a 
schematic drawing of two-dimensional atomic arrangements of the 
nn and the nnn in a bcc cluster and the corresponding arrangements 
in a distorted bcc cluster with a Sc-atom in the center. Because of 
the different electronegativity of Fe and Sc, the Sc-atoms have the 
tendency to attract the Fe- atoms.

On the other hand, it may be noted that according to the results 
reported above, the bcc clusters making up the amorphous structures 
seem not to be correlated with the crystal structure of main transition 
metal, i.e., bcc for Fe, fcc for Ni and hcp for Co.

Figure 1: RDF of crystalline hcp-Co, fcc-Ni. bcc-Fe, and amorphous Fe90Sc10 
alloy. The values of RDF in y-axis are valid for bcc-Fe and hcp-Co. In order to 
see the different RDFs, the values for amorphous alloy and fcc-Ni are shifted 
with a constant.

Figure 2: RDF of crystalline bcc-Fe, and amorphous Co90Sc10 alloy. 

Figure 3: RDF of bcc-Fe and distorted bcc structure of crystalline Ni90Sc10 alloy 
with long-range order.
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In summary, the similarities of the RDFs of amorphous transition 
metal-rich alloys of Fe, Ni and Co, indicate that the structure of all of 
these alloys consist of distorted bcc clusters. For amorphous alloys with 
transition metal compositions larger ≥ 78 at percentage, the structure 
seems independent of the second components of these alloys with 
such as Sc, B, Si or P as presented in Figure 5. Finally, let’s address the 
question: Why are the distorted bcc clusters the preferred structural 
units of the amorphous metal–rich alloys. In order to discuss this 
question, the structure factor, S(Q), of amorphous Fe90Sc10 alloy as a 
function of Q=4Π⁄λ was compared, Figure 6 [25] by means of the pair 
correlation functions with the S(Q) of molten Fe at T=1870 K and at 
1830 K (the melting temperature of Fe is Tm=1811 K) and with the S(Q) 

of an undercooled melt of Fe at T=1750 K, 1730 K and 1670 K. As may 
be seen, the position of peaks in the S(Q) plots (up to about 1 Å) and 
the number of the nn are similar in the amorphous Fe90Sc10, in the melt 
and in the undercooled Fe melt. This experimental observation suggests 
that in rapidly quenched melts bcc clusters are the preferred structural 
units.
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