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Panel Data
Serial annual cognitive assessments minimize participant burden 

and practice effects, but introduce interval censoring, since conversions 
to impaired cognitive states occur between visits. The time interval 
between visits is often one year, but could be longer [1,2]. In addition, 
since these are elderly subjects, the effect of the competing risks of 
death and drop out is significant, and missed visits occur frequently. 
This is a natural setting for the use of semi-Markov models, since they 
can accommodate a mix of interval censoring for important transitions 
and exact times for deaths, as well as missed visits [3]. However, these 
applications have assumed that transitions are to the right (in one 
direction), and there are no time dependent covariates, such as strokes 
or late-life depression that might impact transitions [4,5].  

Selection Bias
Participants in panel studies may be asked to donate their brains 

upon death, and/or contribute serial cerebrospinal fluid samples, and/or 
undergo neuroimaging to help identify early biomarkers for the disease. 
Not all participants volunteer for these studies, which creates missing 
data/selection bias issues. Even without biomarkers, this bias frequently 
occurs since almost all panel studies are observational studies of 
volunteers, which creates a healthy cohort effect. For example, cohorts 
that do not allow seriously impaired elderly to enroll create significant 
bias, when identifying risks for transition to dementia [6].

Classifying Cognitive States
Dementia is currently incurable, and the dearth of therapy trial’s 

success is not due to lack of effort or resources, but rather to the 
insidious nature of the underlying diseases. Recent data show that the 
Alzheimer’s Disease (AD) process (thinning of the neuronal structure 
in the pre-frontal cortex of the brain) begins years prior to a clinical 
diagnosis of AD, as evidenced by a heavier amyloid load observed 
in neuroimages of the brain decades, before dementia onset [7,8]. 
Therefore, current emphasis is on transitions into pre-dementia states, 
with the target being to identify and possibly treat groups of subjects 
who are at a high risk for mild impairments [9,10]. 

There is little unanimity on the definition of an impaired state, 
with terms like age associated memory impairment, not seriously 
cognitively impaired, and MCI appearing in various studies. Even the 
currently popular MCI state has various definitions depending on the 
criteria used to define it (amnestic MCI, mixed MCI, MCI due to AD, 
etc.). Complex clinical criteria lead to MCI states that rarely involve 
backflow, while simpler criteria, such as poor performance on cognitive 
tests, lead to transient states with significant backflow between serial 
assessments [11] (Figure 1). This has serious modeling consequences, 
since only Markov chains are flexible enough to handle backflow. 

The use of random effects in the Markov chain, first introduced 
by Salazar et al. [12], leads to issues related to estimating the random 
effects, when making predictions on the next subjects flow into and 
out of impaired MCI states. And even in these models, as Song et al. 
[13] demonstrated by introducing a scaling parameter into a random
effects model for a Markov chain with backflow to show how to identify
subjects who might undergo such reversions, multiple considerations
remain. This approach can accommodate the use of time-dependent
covariates, but this complicates the arithmetic, when studying the long
run behavior of the chain [14].

Finally, concordance studies between clinical and neuropathological 
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Abstract
Markov chains and semi-Markov models are standard tools used to describe the flow of subjects from health 

into various stages of a disease. Applications of these techniques face challenges, when modeling the flow of elderly 
subjects through cognitive states into dementia, due to the interval censoring of the entry into cognitive states, the 
transient nature of pre-dementia cognitive states, time-dependent risk factors, missing data, selection bias, and clinical 
diagnoses that may not agree with the gold standard diagnoses obtained at autopsy. There is a need to make these 
tools more flexible, if they are to be used effectively, when analyzing cognitive panel data. 

The purpose of this editorial is to discuss the use of Markov chains and semi-Markov processes to analyze panel 
data that routinely arise, when modeling the flow of elderly subjects from cognitively intact into impaired cognitive 
states, including various forms of Mild Cognitive Impairment (MCI) and the absorbing state of dementia. While these 
approaches have been used successfully to model the flow of subjects through various health states associated with 
cancer and AIDS, their application to dementing diseases presents challenges not necessarily encountered in these 
other contexts.
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diagnoses show that misclassification of the etiology of clinical 
impairments is common [15]. The risk factors for pure Alzheimer’s 
disease, for example, likely differ from a mixed dementia, involving 
both AD and Lewy body disease, both of which likely differ from those 
for vascular dementia. This etiological misclassification tends to dilute 
the effect of a risk factor, depending heavily on the correlation between 
the clinical and neuropathological diagnoses within a study. 

In closing, with the current emphasis on discovering who is at 
risk for dementing diseases like AD well before dementia occurs, 
the modeling of risk factors for dementia relying on traditional tools 
of Markov and semi-Markov processes presents challenges to the 
biostatistician. Since AD is now the sixth leading cause of death in the 
United States, and since the number of cases is rising exponentially 
[16,17], the problems outlined above are worth pursuing.
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Figure 1: Flow diagram for a Markov chain illustrating the back flow among 
transient states: normal cognition, Amnestic and Mixed MCI are based on 
cognitive test results. Clinical MCI is based on several criteria. This state, 
dementia, and death are considered to be absorbing state [13].
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