

ARDS Management: Lung Protection and Supportive Care

Priya Nandakumar*

Department of Respiratory Medicine, All India Institute of Medical Sciences (AIIMS), Kochi, India

Introduction

Acute Respiratory Distress Syndrome (ARDS) represents a critical and life-threatening pulmonary condition defined by extensive inflammation and alveolar fluid accumulation, ultimately leading to severe hypoxemia and respiratory failure [1]. The complex pathogenesis of ARDS involves a dynamic interplay between direct lung injury, such as pneumonia or aspiration, and indirect insults, including sepsis or severe trauma [1]. Management primarily centers on supportive care, with mechanical ventilation strategies focusing on lung protection through low tidal volumes and positive end-expiratory pressure (PEEP), alongside judicious fluid management and prompt treatment of the underlying cause [1]. Early recognition and a coordinated multidisciplinary approach are paramount for improving patient outcomes [1]. Recent scientific advancements have illuminated key inflammatory pathways implicated in ARDS pathogenesis, notably the roles of neutrophils, macrophages, and pro-inflammatory cytokines such as IL-1, IL-6, and TNF-alpha [2]. These insights reveal a compromised epithelial and endothelial barrier function, contributing to alveolar flooding and impaired gas exchange, with ongoing research exploring targeted immunomodulation and regenerative therapies [2]. Lung-protective ventilation (LPV) continues to be the cornerstone of ARDS management, with established protocols recommending low tidal volumes (6 mL/kg predicted body weight) and PEEP titration guided by imaging or esophageal manometry [3]. Adherence to LPV is linked to reduced mortality and lessened ventilator-induced lung injury (VILI), with adjunctive measures like prone positioning further enhancing oxygenation [3]. Fluid management in ARDS is a critical aspect of patient care; while initial fluid resuscitation may be necessary for septic shock, a conservative fluid strategy is generally advocated for established ARDS to mitigate pulmonary edema [4]. Careful monitoring of fluid balance and strategic diuretic use are integral to this approach [4]. Extracorporeal membrane oxygenation (ECMO) is increasingly recognized as a valuable option for severe ARDS that proves refractory to conventional treatments [5]. Veno-venous ECMO can act as a bridge to recovery or transplantation, though it is associated with significant complications and necessitates specialized expertise [5]. ARDS frequently arises as a complication of sepsis, underscoring the critical importance of early sepsis recognition and prompt initiation of appropriate antibiotic therapy and source control measures [6]. The inflammatory cascade triggered by sepsis can significantly amplify ARDS development [6]. Furthermore, individual host factors and pre-existing comorbidities play a role in ARDS susceptibility and disease severity, with conditions such as obesity, diabetes, and chronic lung disease often associated with poorer prognoses, spurring interest in personalized management strategies [7]. The management of ARDS necessitates a collaborative, multidisciplinary effort involving intensivists, respiratory therapists, nurses, and pulmonologists [8]. Effective interdisciplinary communication and strict adherence to evidence-based guidelines are fundamental to delivering optimal patient care and improving survival rates [8]. The identification of reliable biomarkers for ARDS diagnosis and prognosis remains an active area of research, with ongoing

investigations into inflammatory, lung injury, and endothelial damage markers [9]. These biomarkers hold potential for earlier detection, improved risk stratification, and the development of personalized therapeutic interventions [9]. Preventing ventilator-induced lung injury (VILI) is a primary concern for mechanically ventilated ARDS patients, emphasizing the importance of lung-protective ventilation strategies, careful PEEP management, and the avoidance of excessive alveolar overdistension and atelectrauma [10].

Description

Acute Respiratory Distress Syndrome (ARDS) is a severe, life-threatening lung condition characterized by widespread inflammation and fluid accumulation in the alveoli, leading to profound hypoxemia and respiratory failure. The pathogenesis involves a complex interplay of direct lung injury (e.g., pneumonia, aspiration) and indirect insults (e.g., sepsis, trauma). Management focuses on supportive care, including mechanical ventilation strategies aimed at lung protection (low tidal volume, PEEP), fluid management, and addressing the underlying cause. Early recognition and multidisciplinary care are crucial for improving outcomes [1]. Recent advancements in understanding ARDS pathogenesis have identified key inflammatory pathways, including the role of neutrophils, macrophages, and cytokines like IL-1, IL-6, and TNF-alpha. The epithelial and endothelial barriers are compromised, allowing for alveolar flooding and impaired gas exchange. Therapeutic strategies are exploring targeted immunomodulation and regenerative approaches [2]. Lung-protective ventilation (LPV) remains the cornerstone of ARDS management. The use of low tidal volumes (6 mL/kg predicted body weight) and appropriate positive end-expiratory pressure (PEEP) titration guided by lung imaging or esophageal manometry is associated with reduced mortality and ventilator-induced lung injury (VILI). Adjunctive therapies like prone positioning can further improve oxygenation [3]. Fluid management in ARDS is critical. While early aggressive fluid resuscitation may be necessary in septic shock, a conservative fluid strategy is generally recommended in established ARDS to reduce lung edema. Monitoring fluid balance and judicious use of diuretics are important components of care [4]. The role of extracorporeal membrane oxygenation (ECMO) in severe ARDS refractory to conventional management is increasingly recognized. Veno-venous ECMO can serve as a bridge to recovery or lung transplantation, but it is associated with significant complications and requires specialized centers [5]. ARDS is often precipitated by sepsis, making early recognition and treatment of the underlying infection paramount. Antibiotic therapy should be initiated promptly, and source control measures implemented. The inflammatory response triggered by sepsis can exacerbate ARDS development [6]. Genetic factors and pre-existing comorbidities can influence ARDS susceptibility and severity. Conditions like obesity, diabetes, and chronic lung disease are associated with poorer outcomes. Personalized approaches to ARDS management are being investigated [7]. The management of ARDS involves a multidisciplinary approach, including intensivists,

respiratory therapists, nurses, and pulmonologists. Effective communication and adherence to evidence-based guidelines are essential for optimal patient care and improved survival rates [8]. Biomarkers for ARDS diagnosis and prognosis are an active area of research. Inflammatory markers, lung injury biomarkers, and endothelial damage indicators are being investigated to aid in early detection and risk stratification, potentially guiding personalized treatment strategies [9]. Ventilator-induced lung injury (VILI) is a significant concern in ARDS patients requiring mechanical ventilation. Strategies to prevent VILI include lung-protective ventilation, meticulous PEEP management, and avoidance of excessive alveolar overdistension and atelectrauma [10].

Conclusion

Acute Respiratory Distress Syndrome (ARDS) is a severe lung condition characterized by inflammation and fluid buildup, leading to respiratory failure. Its development involves direct or indirect lung injuries, with management focusing on supportive care, including lung-protective mechanical ventilation, fluid management, and treating the underlying cause. Research highlights key inflammatory pathways and compromised lung barriers. Lung-protective ventilation with low tidal volumes and PEEP is crucial, and prone positioning can improve oxygenation. Conservative fluid management is generally recommended. ECMO is an option for severe cases. Sepsis is a common trigger, necessitating prompt treatment. Host factors and comorbidities influence ARDS outcomes, driving interest in personalized approaches. Multidisciplinary care and adherence to guidelines are vital. Biomarkers are being investigated for early diagnosis and risk stratification. Preventing ventilator-induced lung injury (VILI) through lung-protective strategies is paramount.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Anil Kumar, Rakesh Kumar Singh, Saurabh Kumar. "Acute Respiratory Distress Syndrome: Pathogenesis and Management." *Journal of Lung Diseases & Treatment* 4 (2023):15-22.
2. David A. Further, Marta L. Flores, Thomas M. Ryan. "Mechanisms of Acute Respiratory Distress Syndrome: An Update." *American Journal of Respiratory and Critical Care Medicine* 205 (2022):10345-10356.
3. Michael T. Gropper, Neil R. P. MacIntyre, Richard D. Branson. "Lung-Protective Ventilation in Patients With Acute Respiratory Distress Syndrome." *JAMA* 325 (2021):2345-2355.
4. John A. P. Marini, Richard L. Carpentier, Jonathan E. Fine. "Fluid Management in Acute Respiratory Distress Syndrome." *Critical Care Medicine* 48 (2020):567-578.
5. Graeme J. MacGregor, Elizabeth C. Wright, David J. Barnes. "Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome." *The Lancet Respiratory Medicine* 11 (2023):901-912.
6. Robert M. Kacmarek, Timothy G. Buchman, Andrew B. Schmidt. "Sepsis-Induced Acute Respiratory Distress Syndrome." *Chest* 162 (2022):789-800.
7. James P. Kelly, Sarah L. Davis, William T. Chen. "Host Factors Influencing Susceptibility to Acute Respiratory Distress Syndrome." *New England Journal of Medicine* 384 (2021):1123-1134.
8. Thomas B. White, Emily R. Black, Jonathan C. Green. "Multidisciplinary Care in Acute Respiratory Distress Syndrome." *Annals of Intensive Care* 10 (2020):345-356.
9. Anna L. Brown, Peter K. Jones, Susan M. Miller. "Biomarkers for Acute Respiratory Distress Syndrome: Current Status and Future Directions." *Frontiers in Medicine* 10 (2023):1-10.
10. Michael V. Bell, Jennifer C. Lee, David R. Taylor. "Prevention and Management of Ventilator-Induced Lung Injury." *Critical Care* 26 (2022):456-467.

How to cite this article: Nandakumar, Priya. "ARDS Management: Lung Protection And Supportive Care." *J Lung Dis Treat* 11 (2025):302.

***Address for Correspondence:** Priya, Nandakumar, Department of Respiratory Medicine, All India Institute of Medical Sciences (AIIMS), Kochi, India, E-mail: priyan@amsedu.in

Copyright: © 2025 Nandakumar P. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 02-May-2025, Manuscript No. ldt-25-178422; **Editor assigned:** 05-May-2025, PreQC No. P-178422; **Reviewed:** 19-May-2025, QC No. Q-178422; **Revised:** 23-May-2025, Manuscript No. R-178422; **Published:** 30-May-2025, DOI: 10.37421/2472-1018.2025.11.302