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Abstract
Aqueous two-phase extraction (ATPE), unique liquid-liquid extraction, involves a transfer of solute from one aqueous 

phase to another. ATPE includes polymer–polymer type and polymer–salt type systems for the recovery of proteins. 
The protein must be recovered in a highly purified form in order to improve its quality, decrease energy consumption, 
reduce waste and minimize costs. To acquire the high value and achieve good control over processes, the reliable, 
multi-component products are required especially those with the ability to investigate complex processing conditions. 
The current reviewing paper discusses the most recent progresses for the recovery of biomolecules by using the ATPE, 
covering the mechanism, which controls the phase formation and the behavior of solute partitioning in aqueous two-
phase systems (ATPS) processes. The review discusses also the increasing application for the recovery of high-value 
bioproducts, the recent development of alternative low cost ATPS and disadvantages attributed to ATPS.
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Introduction
Aqueous two-phase extraction (ATPE) system is composed of 

either two different immiscible mixing polymers, or one polymer with 
salt, which are water-soluble in a certain concentration [1,2]. It has 
been well known as a useful technique for separation and purification 
of biomolecules, such as proteins [3-14] and antibodies [15-17]. 
Partitioning of biomolecules in ATPE systems is affected by many 
factors, including molecular weight/size of polymer and concentration 
of polymer. Also, the ionic strength of salt and the addition of salts, 
such as NaCl, improve the hydrophobic resolution of the system. 
Furthermore, the partitioning of biomolecules can also be influenced 
by the degree of pH and affinity of the macromolecule for the phase-
forming polymer [1,18-21]. 

The conventional liquid–liquid extraction using organic-aqueous 
phase systems was previously established. However, due to the poor 
solubility and possible denaturation of the protein in organic solvents, 
the technique leads to limit their application in partitioning of many 
bimolecular products [22]. Now, the application of liquid–liquid 
extraction based on aqueous two-phase systems (ATPS) has been 
increased. The recoveries of high-value biomolecules were achieved 
from various plants using different applications, such as papain from 
Papaya fruit [23], α- and β -amylases from Zea mays malt [9], glutenin 
flour from special wheat [24] and recombinant protein from alfalfa [25]. 
In addition, the high-value bioproducts also are obtained from different 
fruits, such as bromelain (EC 3.4.22.33) from pineapple [26], serine 
protease from Mango [12], invertase from tomato [11] and papain 
from Papaya fruit [23]. In recent years, the high-quality biomolecules 
have been recovered from various sources, such as theanine from waste 
liquid of tea [27] and flavonoids from pigeon pea roots [28]. There are 
also other bioproducts, such as recombinant human serum albumin 
from Pichia pastoris broths [29], luciferase from fireflies [30] and 
immunoglobulin G [17,31]. 

The ATPE has some advantages in the downstream processing of 
biomolecules, for instance, the system characterized with high-water 

content (70–80%, w/w) and low interfacial tension between conjugated 
phases. This, in fact, provides a secure separation and purification 
technique for biomolecules [1,32,33]. In addition, it decreases energy 
consumption, reduces waste and minimizes costs due to a few steps of 
unit operation, which require low-energy input and easy to scale up. 
The ATPE also increases biomolecules recovered in a highly purified 
form. Moreover, it can be used in combination of other separation 
methods such as liquid chromatography [1,34], packed column [17], 
magnetic particle adsorption [35]. 

The ATPE in downstream processing of biomolecules in the 
bench-scale prototype has been successful with potentially commercial 
application. However, the scale-up of the ATPS of some biological 
products were not achieved [15]. Most of those methods have some 
limitations such as low capacity, several steps and fewer chemicals and 
proteolytic stability, which may lead to the contamination of the final 
product [36,16]. Moreover, there are maybe some difficulties during 
the large scale-up of the ATPS in the industry, especially polyethylene 
glycol (PEG)/salt system causing corrosion of equipment and 
precipitation of target product. Thus, the development of alternative 
methods is very important to achieve the desired biomolecules in high 
quality and purity. The objective of this paper reviews recent progresses 
for the recovery of biological products by using the ATPE and the 
factors affecting partitioning in ATPS processes. The paper also reviews 
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the modern development of the alternative low cost ATPS, and some 
disadvantages associated with the ATPS. 

Separation and Purification of Bioproducts by the Atpe 
System

The ATPS is considered a powerful and versatile technique, having 
low-cost and good efficiency downstream process, A high-water 
content (>70 % (w/w) water) generates low interfacial tension, non-
flammable, slightly toxic and safe to the environment. This system 
has high selectivity and recovery yield of biomolecules [37,38]. It has 
been widely used in the field of biotechnology for separation and 
purification of various biological products, such as proteins, amino 
acids, enzymes, cells, antibodies and other bioproducts [1,7,39,40]. 
Also the ATPS method has received a special application in the area of 
non-biotechnology, including the recovery of glycosaminoglycans from 
tannery wastewater [41], crocins from saffron stigmas [42], papaverin 
from pericarpium papaveris [43]. 

Protein is one of the most important bio-molecules in the living 
organism, which is responsible for many reactions and functionalities, 
such as metabolism, bioprocess, signal transduction, cellular and 
extracellular structures [44]. A protein in a purified form would be very 
useful in the applications (e.g. food, chemical and pharmaceuticals). 
The challenging problem is that the downstream processing mostly 
accounts for 50 – 80% of the total production costs of proteins [45]. 
Conventional methods for separation and purification of proteins 
usually are expensive, time-consuming and difficult to scale up [44,46]. 
The good news is that the ATPE, an achievable alternative method, has 
been recognized as an economical and effective technique for recovery 
and purification of proteins with a variety of advantages, such as simple, 
fast, low-cost and easily scaled-up. These make it possible strategy for 
purification of a desired protein in large-scale [35,47]. Partitioning of 
proteins in the ATPS depends on many factors, namely, hydrophobicity, 
molecular size, weight and conformation, net electrical charge and 
environmental conditions [48-50]. A protein purified by this method 
will be considered to be very important bimolecular product for the 
bioprocess as it can be used in commercial scale at low cost with relative 
reliability and accessibility. Optimizing conditions of some selected 
examples of bioproducts (proteins, enzymes and other products) are 
summarized in Tables 1-3, respectively. 

Mechanism Controlling Phase Formation and the 
Behavior Solute Partitioning in the Atps Processes

Partitioning of biomolecules in the ATPS is decided by main 

electrostatic, hydrophobic and steric hindrance interactions that are 
very important to the ATPS composition. The ATPS made up by the 
polymer and the nonionic surfactant results in hydrophobic interaction, 
[8]. Although electrostatic interactions and salting-out effects during 
protein extraction in ionic liquid-based aqueous two-phase extraction 
are important for the transfer of the proteins, the thermodynamics 
of hydrophobic interactions plays the most important role as a main 
driving force [44]. 

Generally, the partitioning of biological products is a result 
of Van der Waals and ionic interactions of biomolecules with the 
surrounding phase [37]. However, it is still not well understood the 
responsible mechanism for the partitioning of biomolecules in the 
ATPS, which is very important for developing the reliable technique 
for the industrial application. Therefore, the factors influencing the 
partitioning of biomolecules are a useful way to study the behavior of 
solute partitioning in the ATPS process.

Factors Influencing Partitioning of Biomolecules in the 
Atps 
Impact of polyethylene glycol (PEG) characteristics

The PEG characteristics, including weight, size and concentration, 
are very important factors in the properties of the phase-forming system 
[51]. The influences of these factors on the partitioning of biomolecules 
have been reported previously [11,33,41,52]. 

Molecular weight and size: The partitioning of biomolecules 
depends on the molecular weight of polymers and the other components 
constituting the phase. Molecular weight has a strong effect on the 
partitioning behavior of biomolecules [11,12,53]. Higher molecular 
weight of PEG has less coefficient factor and then lower polymer 
concentration needed for high separation [38]. The low molecular 
weight of PEG has a hydrophilic end group with shorter polymer 
chains that reduces the hydrophobicity [41], while better partitioning 
can be achieved due to the low interfacial tension of low molecular 
weight. An increase in the PEG molecular mass reduces free volume by 
increasing the chain length of the PEG polymer [11,25,30], resulting in 
partitioning of the biomolecules to the bottom phase [4]. The increase 
in polymer weight causes the reduction of free volume of the top phase, 
so the partition of biomolecules in the salt-rich bottom phase decreases 
the partitioning coefficient [54]. 

Another study indicated the influence of different molecular weights 
of PEG (4,000, 6,000, and 8,000) on partitioning of myoglobin and 

Kp = partition coefficient of protein, TLL= Tie line length,  (-) = the value was not given, α-la= α-lactalbumin, β-lg= β-lactoglobulin, Gmp= glycomacropeptide, α-AI= 
α-amylase inhibitor, FBP= fructose-1,6-bisphosphate, OVA= Ovalbumin

Table 1: Optimizing partitioning of proteins in the various ATPS recovered from foods.

Bioproduct Source System and Composition (%w/w) Kp Yield (%) TLL (%w/w) pH Reference
Protein Cheese whey PEG6000/potassium phosphate (11.7/10%) 0.9 83.4 23.9 7.0 [67]
Glutenin Wheat flour PEG1500/Li2SO4 (14.0/13.23%) 5.90 84.9 35.51 - [24]

Recombinant protein Alfalfa PEG8000/phosphate
(16.1/10.0%) 0.1 88 35.7 7.0 [25]

(α-la), (β-lg) and (Gmp) Milk whey PEG2000/phosphate
(13.0/13.0%)

0.48, 
0.01, 
0.92

81.1, 
97.3,
97.8

- 6.7 [6]

OVA Chicken egg PEG4000/poly(acrylic acid) (PAA) + 1 M NaCl 5.5 87.4 54.7 8.0 [37]
Protein Zea mays malt PEG 6000/CaCl2 4.2 - - 7.0 [39]

Bromelain Pineapple Peel PEG3000/MgSO4
(15/ 20%) 2.93 108.45 - 9.0 [71]

(α-AI) Wheat flour PEG2000/(FBP) trisodiumsalt (11.7/19%) - 79 - 7.0 [69]
Protein Corn PEG1450/Na2SO4-8.5% NaCl - 93 - 7.0 [5]
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ovalbumin, the partitioning of both proteins is higher if the molecular 
mass of PEG is lower [37]. In PEG (4,000)–phenylacetic acid (PAA) 
system, the percentage yields of extracted myoglobin at 20oC and pH 
8.0 in 1 M NaCl increases from 75.2% to 95.2% with the increase of 
tie line length (TLL). This is due to the increase of hydrophobicity and 
partitioning coefficient of the ATPS. It also affects the partitioning of 
proteins present in the phase system, whereas in the case of ovalbumin, 
the increase is from 67% to 87.4%. Different molecular weights of PEG 
(1,000, 2,000, 3,000, 4,000, 6,000 and 8,000) have been used to purify 
invertase enzyme from tomato, while the partitioning of invertase in 
PEG–Na2SO4 system is strongly dependents on the molecular weight 
of the PEG [11]. Nearly all invertases partitioned into the top phase 
with PEG-3,000, while most contaminating proteins were partitioned 
into the lower phase in the ATPS containing the other PEGs (1,000, 
2,000, 4,000, 6,000 and 8,000). A wide range of molecular weight PEG 
(400, 1000, 1,500, 4,000, 6,000 and 8,000) was screened for differential 

partitioning of α-galactosidase and β-glucosidase from the barley 
[53]. For low molecular weight PEG, both the enzymes partitioned to 
top phase whereas for high molecular weight PEG, both the enzymes 
partitioned to bottom phase. PEG 1,500 had better partitioning of both 
of enzymes. The highest partitioning (97.22%) of luciferase enzyme 
from fireflies (Photinus pyralis) was obtained in 1,500PEG/(NH4)2SO4 
system [30]. In the smaller molecular mass PEG (300, 400 and 600), 
there was a tendency for glucose-6-phosphate dehydrogenase (G6PDH) 
to stay in the top phase (PEG phase) [55]. In the higher value of PEG 
(1,000 and 1,500), the larger amount of G6PDH stayed in the bottom 
phase. However, the low molecular mass PEG is also unsuitable for 
adequate partitioning, due to the decrease of the exclusion effect [56]. It 
allows the polymer to attract all the proteins to the upper phase. Thus, 
the choice of the most suitable intermediate molecular mass of PEG 
is very important for increasing the extraction efficiency of the ATPE 
system [54,57,58].

Kp = partition coefficient of protein, TLL= Tie line length,  IDA= Iminodiacetic acid, G6PDH= Glucose-6-phosphate dehydrogenase, pk= purification factors, β-gala 
=β-galactosidase, β –glu =β –glucosidase, PheDH= phenylalanine dehydrogenase, PPL= porcine  pancreatic  lipase, (-) = the value was not given

Table 2: Optimizing partitioning of different enzymes recovered in the various ATPS. 

Bioproduct Source System and Composition (%w/w) Kp Yield% TLL% pH Reference

Serine Protease Mango Peel PEG8000/ phosphate
(-/ 4.5%) 84.2 97.3 17.2 7.5 [12]

Inverts Tomato PEG 3000/ Na2SO4
(15/12%) +5% KCl 1.1 90 - 4.5 [11]

Serine Protease Kesinai (Streblus 
asper)

PEG6000/rich- MgSO4
(16/ 15%) - 96.7 - 7.0 [59]

Papain Papaya PEG6000/ (NH4)2SO4
(8/ 15%) - 89.9 - 5.0 [23]

Phytase Aspergillus niger PEG6000+8000/ Citrate
(10.5/ 20.5%) 0.96 96.0 - 5.6 [13]

Protease Tuna (Thunnus 
alalunga) PEG2000/MgSO4(15/15%) 0.86 89.1 - - Nalinanon et al.

Soybean peroxidase Soybean PEG4000–IDA–Cu2+/Na2SO4
(4/ 10%) 0.05 64 - - [72]

G6PDH Sigma
(USA)

PEG)/phosphate
buffer(17.5/ 15%) 351 97.7 - 7.5 [55]

β-gala.; β –gluc. Barley PEG1500/ (NH4)2SO4
(14/ 13%) 2.7; 2.8 98.26; 

92.58 19.65 6.9;
6.5 [53]

Lipase (E.C. 3.1.1.3) Burkholderia 
pseudomallei 2-propanol/phosphate (ATPS) (16/ 4.5%) 13.5 99 - 9.0 [40]

PPL Sigma  (USA) PEG1500/potassium  phosphate (17/13%) 12.7 94.7 - 7.0 [14]

PheDH Bacillus sphaeri-
cus PEG-6000/(NH4)2SO4 (8.5/17.5%) 0.027 94.42 39.89 8.0 [56]

Invertase Baker’s  yeast PEG3000/MgSO4(15/123%)+5%MnCl2 - 98 - 5.5 [54]

Plant-esterase Wheat flour PEG1000/NaH2PO4(27.0/13.0%) and PEG1000/
NaH2PO4/(NH4)2SO4 (27.0/13.0/6.0%) - 83.16 - 5.0 [62]

Kp = partition coefficient of protein, TLL= Tie line length, (-) = the value was not given, IgG=Human immunoglobulin G
Table 3: Optimizing partitioning of some selected products in the various ATPS recovered from different sources.

Bioproduct Source System and composition (%w/w) Kp Yield (%) TLL (%) pH Reference

IgG Chinese  Hamster
Ovary  (CHO) PEG3350/phosphate-rich phase (cont, ATPE) - 85 - 6.0 [98]

Lectin Canavalia grandiflora Benth PEG400/sodium citrate (20/20%) 8.67 104 - 6.0 Porto et al.

Lutein Green microalga (Chlorella 
protothecoides) PEG 8000/phosphate (22.9/10.3%) - 81.0 49.4 7.0 Cisneros et al.

Luciferase Fireflies (Photinus pyralis) PEG1500 rich  (NH4)2SO4(4/20.5%) - 13.69  fold 
in pk - - [30]

Crocins Saffron  stigmas  (Crocus 
sativus)

Ethanol/ potassium  phosphate (19.8/16.5%) +0.1  
M  NaCl - >75 25 - [42]

Glycosaminoglycans Tannery wastewater PEG4000/(PAA) - 91.50 54.7 8.0 [41]
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PEG concentration: Several studies demonstrated the influence 
of different PEG concentrations (7–21%, w/w) on protein partition 
coefficient (KP) and enzyme partition coefficient (KE) from various 
sources [53,54,59]. Their results showed the significant effect of the 
PEG concentration on the partitioning of biomolecules in the ATPS. 
The highest concentration in PEG lowered KP and KE. The intermediate 
concentration of PEG/salt is more applicable for good separation 
and purification. When serine protease was extracted from Kesinai 
(Streblus asper) leaves, the KE of the enzyme decreased significantly at 
a low concentration of molecular weight (8% PEG4,000) [59]. On the 
other hand, the high PEG concentration and high molecular weight 
gave negative effect on the partition coefficient of the enzyme. In 
partitioning of a yeast invertase at different PEG-3,000 concentrations 
(7.5–20%, w/w) together with 20% (w/w) MgSO4 at pH 5.0, partitioning 
of invertase in the ATPS is affected significantly by the PEG 
concentration [54]. The PEG at concentration of 15% (w/w) resulted 
in the highest value (3.2-fold) of purification factors (PF) with the yield 
of 134%. At concentration of 20% (w/w), purification factors and yield 
decreased dramatically to 2.1-fold and 46%, respectively. Similarly, 
high purification factors and yield were obtained when invertase was 
partitioned in a 15% (w/w) PEG/12.5% (w/w) Na2SO4 at pH 5.0 [11]. 

Impact of salt concentration

The impact of salt concentration has been widely studied. Increases 
in salt concentration result in an increase in partition coefficients of 
bioproducts in upper phase or interface due to salting out [11,53,60]. In 
general, proteins with the negative charge tend to partition to the top 
phase in PEG/salt systems while those with the positive charge usually 
go to the bottom phase [54,61,62].

Varied salt concentrations have been used in separation of 
proteins (cytochrome c, lysozyme, trypsin, bovine serum albumin and 
myoglobin) by the ATPE system combined with high-performance 
liquid chromatography (HPLC) [34]. When (NH4)2SO4 concentration 
increased from 10% to 18%, the top phase volume decreased and the 
bottom phase volume increased. All proteins retained in the lower 
phase except lysozyme, which was partitioned in the two phases. 
Moreover, 23% (w/w) MgSO4 caused the best partition behavior of 
a yeast invertase at different concentrations (15–25%, w/w) in the 
PEG/MgSO4 aqueous [54]. Besides the salt type, the distribution of 
invertase is mainly controlled by concentration of the salt. The partition 
coefficient (KE) of luciferase increased rapidly as compared to that of 
total protein (Kp) with an increase in salt concentration from 12% to 
16% [30]. The optimum condition for cephalexin antibody separation 
was at a concentration of 20% for both PEG and Na2SO4 [60]. Similar 
finding was reported in the case of penicillin G and PAA extraction 
(phenylacetic acid) in the PEG/Na2SO4 ATPS at pH 8.0 [60]. The 
optimized salt concentration for purification of lipase enzyme was 18% 
potassium phosphate with 20% PEG at the level of 8,000 g/mol [63]. 

Impact of the type of salts 

The selection of salts for the ATPS depends on their ability to 
promote hydrophobic interactions between biomolecules [64]. The 
PEG/phosphate system is widely used for recovery of bioproducts [65]. 
Other salts having similar properties to phosphate, such as sulphate and 
citrate, have been also used. The changes of the environmental phase 
system, due to use of different salts, lead to change the behaviors of 
partitioned protein [62]. Anions are the most effective in partitioning 
(SO4

−2 > HPO4
−2 > acetate) than cations (NH4

+ > K > Na+ > Mg2+ > Ca2+) 
[66]. Recently, use of salts, like citrate (biodegradable) and ammonium 
carbonate (volatile) are favored because of their high selectivity, less 

pollution, biocompatibility and easy to scale-up [38,50]. The partition 
coefficient values of methionine in systems containing Na3PO4 are 
greater than values in systems containing NaH2PO4 or Na2HPO4 because 
of more abilities of Na3PO4 to enhance hydrophobic interactions 
between particles [7]. The PEG 6,000/potassium phosphate system of 
23.9% (w/w) TLL gave the best partitioning results with the highest 
recovery of proteins from cheese whey than the PEG/ammonium 
sulphate and PEG/potassium dihydrogen phosphate systems [67]. In 
fact, a significant aggregation tendency of proteins was observed in 
PEG/ammonium sulphate and PEG/potassium dihydrogen phosphate 
systems, whose pH was close to isoelectric pH of whey proteins. The 
PEG/ammonium sulphate could be the suitable purification phase for 
differential partitioning of β-galactosidase and β-glucosidase rather 
than other types of salts, such as sodium sulphate, sodium phosphate, 
potassium phosphate and sodium citrate. This PEG/ammonium 
sulphate was found to be the best in terms of activity recovery and 
differential partitioning of both the enzymes [53], while potassium salts 
have much better effects on partition of lipase than that sodium salts 
and ammonium salts. This is due to the partition coefficients increased 
according to the following order: K+ >Na+ >NH4

+ [68].

Impact of pH 

Partitioning of proteins and enzymes to the phases in the ATPE 
system depends on their isoelectric points (pI) [63]. The pH of 
the system, however, affects the charge of target protein and ion 
composition as well as introduces differential partitioning into the two 
phases [56]. Accordingly, the initial pH of the system must be above 
the pI of target bio-molecules [65]. A pH value above 7 is suitable for 
the PEG/phosphate system and a pH below 6.5 is compatible with the 
PEG/sulphate system. Most of the biomolecules, especially proteins and 
enzymes, are stable at neutral pH that is favorable condition to conduct 
the ATP partitioning. At pH 7, 79% α-amylase inhibitor was recovered 
with 3.2 purification factor in 11.7% (w/w) PEG-2000 and 19% (w/w) 
fructose-1,6-bisphosphate trisodium salt [69]. When the pH rose from 
5.8 to 8.0, the KE, yield and recovery of phenylalanine dehydrogenase 
(pI 5.3) increased, and the optimal values could be obtained at pH 8.0 
[56]. However, an increase in pH of the ATPS (PEG-4000/K2HPO4, 
12/13%) from 7.0 to 9.0 reduced the partition coefficient of lipase from 
7.94 to 4.45 and activity recovered from 81.1 to 70.6% [70]. Enzyme 
stability slightly reduced in the acidic area, but it was dramatically lost 
at pH above 9.0 [71]. Generally, the efficacy of the pH can be either by 
changing the charge of the solute or by altering the ratio of the charged 
species presents [37].

Tie line length (TLL)

Tie line length can affect biomolecule partitioning by hydrophobicity 
and interfacial tension between phases of the ATPS. The ATPS becomes 
more hydrophobic with increasing TLL due to reduction of water 
availability [8]. An increase in the TLL causes an increase in the protein 
partition coefficient that, in turns, increases the yield of proteins in the 
top phase due to reduction of the bottom phase [12]. Increasing TLL 
in the PEG-salt system makes salting-out more effectively, leading to 
shift of proteins to the top PEG-rich phase [72]. If protein solubility in 
the PEG phase is insufficient, protein will precipitate at the interface. 
Solubility and salting-out limits depend on the properties of individual 
proteins. Therefore, a different response will be expected when a mixture 
of protein is handled [39]. It was reported that glutenin partitions from 
wheat flour, an increase in TLL caused an increase in protein transfer 
to the upper phase in systems formed by PEG-1,500/sulphate salts 
(lithium or sodium) [24]. However, in terms of systems that composed 
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of PEG-4,000/sulphate salts (lithium or sodium), an increase in TLL 
caused an increase in protein transfer to the lower phase.

Influence of the addition of NaCl 

In general, addition of neutral salts, such as NaCl, to the ATPS 
results in an increase in the hydrophobic difference due to generation 
of an electrical potential difference between two phases [5,12,73]. An 
increase in the hydrophobicity will decrease the amount of bound 
water, which keeps the final composition of the systems constantly 
[15]. Furthermore, it increases the ionic strength and enhances the 
migration of low molecular weight compounds towards the polymer-
phase, especially in PEG<4,000 [65]. However, the addition of high 
concentration of neutral salts may cause denaturation of proteins 
existing in the system, thus low concentration range from 0.0 to 1.0 M 
is preferred. High yield (97.3%) of serine protease from mango peel was 
obtained with addition of 4.5% of NaCl to the PEG/dextran ATPS [12]. 
The addition of different concentrations of salt (0.0 - 1.0 M) increased 
the partition coefficient of myoglobin and ovalbumin from 4.20 to 
15.77 and 2.82 to 5.51, respectively, in the PEG-4,000/PAA system [37]. 
Similar results were observed with bovine serum albumin (BSA) in the 
ATPS [74]. In 6% (w/v) of NaCl, the purification factor of lipase enzyme 
increased significantly from 59.93 to 141.65 fold. However, further 
addition of NaCl decreased the KE of lipase [63].

Recent Process in Atpe, Applications Economic Costs
The ATPE is a powerful method commonly used for separation and 

purification of biomolecules, such as proteins, enzymes and antibodies. 
It is composed either polymer (PEG)–polymer (dextran) or polymer 
(PEG)–salts. However, the polymer-polymer interaction dominates 
due to the low solubility of amphiphilic proteins in the PEG-salt, which 
has a high tendency to aggregate in aqueous solution that may damage 
fragile proteins [37]. The environmental problems were raised from 
elevated salt concentration in waste disposal [4,75]. Large chemical 
consumption during the phase-forming [37] will lead to additional 
cost for the phase recycling in the system. However, the ATPE based 
on polymer (PEG)-polymer (dextran) is very expensive because of the 
high cost of some forming phase polymers, such as dextran [37] and 
ethylene oxide–propylene oxide copolymers [65]. This, in fact, limits 
the implementation of this system at the large scale. 

In recent years, some progress in the ATPE technique has been 
reported, including some modification introduced to the ATPE system 
to recover biomolecules in high value, good quality and low cost, 
providing basic materials for bio-product processes and increasing the 
application of the non-biotechnology. The alternative polymers used 
as a substitute for dextran, are generally safe, low-cost and compatible 
with the system, such as PEG/nonionic surfactant polymers (Triton 
X-100 and Tween 80) [8] and ionic liquid-based ATPE [42,44]. The 
dextran polymer also substituted by alcohol/salt ATPE system [42,76], 
microfluidic aqueous PEG/detergent ATPE system [77] and acid 
polymer PEG-poly (acrylic acid) system [37,41]. These alternatives 
reduce the cost and make the process simpler. On the other hand, many 
studies have demonstrated that the PEG-salts have some advantages 
such as simple, fast, easy recyclable and low-cost and viscosity 
[11,38,65,78]. Thus, they are also attractive for commercial applications 
as a rapid and continuous protein separation [11]. Affinity ligands are 
introduced into the ATPE system as a free ligand that appears to make 
the process easier [79-81]. The ATPS in a microfluidic platform was 
designed and tested for mAbs extraction. This system indicated the 
potential to be an effective tool to accelerate Bioprocessing design and 
optimization [82].

Currently, the ATPE based either on a PEG/salt system or a polymer/
polymer system has been rarely used in a large scale due to the high cost 
of the polymers and the difficulty in isolating the extracted biomolecules 
from the viscous polymer phase by back extraction [29]. To overcome 
this limitation, there are studies on the ATPE system composed of 
alcohols or hydrophilic organic solvents and salts. These studies are 
characterized with low cost of extraction, easy recovery of solvent by 
evaporation and simple scale-up in the recovery of many products 
from different sources [42,76,83-85]. For example, K2HPO4/ethanol is 
used for partitioning of proteins, such as lysozyme, chymotrypsinogen 
solution, BSA and partially purified DNA polymerase from Thermus 
aquaticus [86]. Ethanol/K2HPO4 ATPS was combined with hydrophilic 
interaction chromatography for the isolation and purification of 
recombinant human serum albumin (rHSA) [29]. 

In the last few years, some studies focused on the development of 
excellent polymers forming ATPE for higher recovering. A lot of novel 
copolymers forming ATPS are synthesized, such as one pH-response 
copolymer PADB [87], a light-response polymer PNNC [88], light-
response reversible polymer (PNBAC) and copolymers (PNDBC) [89]. Also 
other copolymers have been designed, including pH-response polymer 
(PADB) and one light-response polymer (PNBC) [90], pH-thermo pH-
response polymer (PADB) and one thermo-response polymer (PNB) [91], 
pH-response random copolymers (PADB and PADBA) [92], and copolymer 
membrane of poly(acrylonitrile-acrylamide-styrene) [93]. 

In addition, the reverse micelle solvent system is another ATPE 
that can be used as an alternative technique for protein separation due 
to its simplicity and feasibility of large-scale sample loading [94]. The 
reverse micelle solvent system is a very attractive system for protein 
separation [95,96]. Lastly, there is an application of a novel continuous 
ATPE prototype for the recovery of biomolecules [97]. It was used for 
recovery of protein and α-amylase from soybean, to extract the low-
abundant protein from complex mixtures. A continuous ATPE process 
incorporating three various steps (extraction, back-extraction, and 
washing) has been introduced with a pump mixer-settler battery. The 
ATPS process recovered 99% purity of IgG from a CHO cell supernatant 
and 100% of IgG from a PER.C6 [98]. This new process indicates 
the ability to successfully recover and purify different antibodies. It 
could overcome some of the limitations encountered using the typical 
chromatographic processes, besides inherent advantages of scalability, 
process integration, capability of continuous operation, and economic 
feasibility.

Generally, the continuous operation increases partition coefficients 
with higher recovery efficiencies. The processing time is reduced at 
least three folds, compared to the batch ATPS. Furthermore, it achieves 
higher enzyme partitions coefficient (Kp>4) and a top phase enzyme 
recovery (81%) with the purification factor 40-fold than a batch system. 
It is suggested that the continuous ATPE model can be used in an 
industry field for the recovery of bioproducts.

Disadvantages Attributes to the Atps 
The development and application of the ATPE have some 

drawbacks due to lack of information about the exact mechanism of 
partitioning and unpredictable [56]. There are two restrictions to limit 
the wide application of the ATPE [99]. Firstly, it is difficult to predict 
exactly the behavior of target proteins in the ATPE system. Secondly, 
monitoring the characteristics of proteins is the basic requirement 
for assessment of bioprocesses, which are affected frequently by the 
presence of high concentrations of polymers or salts. Considerable time 
is needed to build first recovery process of the experiment, while big 
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budget is needed for installation and limited output of the purification 
units [69]. Experimental design is needed to determine the optimal 
ATPS system for partitioning of desired products [65]. Compared 
with a novel alcohol/salt ATPE, polymer/polymer, polymer/salt and 
surfactant ATPE systems have some disadvantage such as the high 
cost and viscosity as well as slow segregation. There are difficulties in 
isolating the extracted molecules from the polymer phase or micellar 
phase by re-extraction and environmental pollution resulting from the 
recycling of phase-forming polymers [68,76].

Conclusion 
The ATPE is the suitable technique for separation and purification 

of bioproducts in biological and biotechnological fields, especially the 
PEG/salts system. However, the implementation of the PEG/salt in the 
large scale may cause environmental problems due to the great amount 
of chemicals (salts and polymers) needed to phase forming and the 
high cost resulting from effectively recycling. To overcome it, some 
modifications are introduced into the system to purify good quality 
of biomolecules with low-cost and safely to the environment. This 
modification includes synthesized polymers (PNBAC, PADBA), copolymers 
(PNDBC, PABC), reverse micelle solvent ATPS system and interaction of 
HPLC with the system to increase the extraction rate. Furthermore, the 
application of a continuous ATPE system is an alternative technique for 
the recovery of proteins in large scale. This, in fact, provides the ability 
to recover proteins in higher efficiencies, increases partition coefficients 
and shortens processing time. Therefore, the continuous separation 
ATPE system can be used in pharmaceuticals, foods and chemical 
industries for purification of high-value bioproducts.

Although the ATPE has been extensively used for recovering of 
biomolecules, the poor understanding of mechanism that governs phase 
formation and solute partitioning in the ATPE hinders its application in 
some cases. Therefore, using of the ATPS with some modifications, such 
as affinity ligands, a substitute of polymers or using copolymers and a 
combination of the ATPS with other methods (e.g. chromatography), 
are more effective due to the high efficiency of separation, purification 
and increasing recovery yields of bioproducts.
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