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Abstract
In this study, power series and shifted Chebyshev polynomials are used as basis function for solving first order volterra integro-differential equations 
using standard collocation method.  An assumed approximate solution in terms of the constructed polynomial was substituted into the class of 
integro-differential equation considered. The resulted equation was collocated at appropriate points within the interval of consideration [0,1] to 
obtain a system of algebraic linear equations. Solving the system of equations, by inverse multiplication, the unknown coefficients involved in the 
equations are obtained. The required approximate results are obtained when the values of the constant coefficients are substituted back into the 
assumed approximate solution. Numerical example are presented to confirm the accuracy and efficiency of the method.
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Introduction

An Integro-differential equation is any type of equation combining an 
unknown function involving both integral and derivative operators. It is 
applicable in several fields, such as engineering and science. These equations 
are either Fredholm, Volterra, or Fredholm-Volterra integro-differential 
equations. As a result, a numerical method for solving such equations is 
required. Some numerical approaches in literature for solving integro-differential 
equations include: Collocation method [1-5], Hybrid linear multistep method 
[6-8], Differential transform method [9], Perturbed Method [10], Homotopy 
Perturbation [11], Bernoulli matrix method [12], The Mellin transform approach 
[13] and Pseudospectral Method [14]. Shahooth et al. presented a numerical 
method for solving the linear Volterra-Fredholm integro-differential equations of 
the second kind [15]. This method is called the Bernestein polynomial method. 
This technique transforms the integro-differential equations into the system 
of algebraic equations. Some numerical results are presented to illustrate the 
efficiency and accuracy of this method.

In this work, we consider Volterra Integro-differential equation of the form:
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Subject to initial condition;

( )0 , 0,1j
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Where /j j jy d y dy=  y(x) is the unknown function, f(x)is a known 
function, λ is a known constant and  k(x,t) is the integral kernel function.

Basic Definitions

This section defines the basic terms that will be frequently used during the 
research work.

Definition 1: Standard Collocation Method: This is the method partitioning   
intervals into different points. For example, let say an interval [a,b], N be the 
number of collocation points to get the desired collocation points, we use; 
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Definition 2: Power Series Polynomial: A power series is basically an 
infinite degree polynomial that represents some function. It is generally written 
in the form; n

n
n 0

( ) a xy x
∞

=

=∑  Where an is the coefficient of the polynomials which 
are real numbers.

Definition 3: Shifted Chebyshev Polynomials: This is a special type of 
polynomial generated from Chebyshev polynomial. The shifted Chebyshev has 
interval [0,1], while Chebyshev has an interval of [-1,1]. The shifted Chebyshev 
is generated using;

( ) ( )* 2 1 ,   0n nT x T x n= − ≥

where Tn (x)  is the shifted chebyshev term,while Tn (x)  is the chebyshev 
term.

Few terms of the shifted Chebyshev terms are;

T0*(x)=1

T1*(x)=2x-1

T2*(x)=8x2-8x+1

T3*(x)=32x3-48x2+18x-1

T4*(x)=128x4-256x3+160x2+32x+1

Methodology

In this section, combination of collocation method and power series 
approximation is employed for the numerical solution of volterra integro-
dfferential equations.

Let the solution to (1) and (2) be approximated by (3)
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Where an is the real coefficients to be determined, differenting (3)  with 
respect to x, gives
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substituting (3) and (4) into (1), gives
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simplifying (5) gives,
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Hence,
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Equation (6) can be written in the form

( ) ( )n x f xτ =A
Where

( ) ( ) ( ) [ ]0 1 0 1, T
n n nx x x a a aτ τ τ τ= … = …   A

Collocating equation (7) using the standard collocation points

Where , 0,1 , 2 .p
b ax a p p N

N
−

= + = …… , gives
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( ) ( ) ( ) ( )0 1 
T

p Nf x f x f x f x= …  

Considering the initial condition,
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Substituting (3) into (9) we have,
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Using equation(10) and equation (8) gives

( ) ( )* *
p px A f xτ =

Solving equation (11) using inverse multiplication to get the values of the 
unknown coefficient an, n=1, 2, …N and substituting the value of the coefficients 
into the approximate solution gives the numerical results. Repeating the above 

steps using shifted Chebyshev polynomial as the basis polynomial function, we 
obtained the approximate solution.

Numerical Examples: In this section, numerical examples with initial 
conditions are solved to confirm the efficiency and accuracy of the method. Let 
y_n (x) and y(x) be the approximate and exact solution respectively. Error_N  
= |y_n (x)-y(x)|.

Example 1: Considering Volterra integro-differential equation

( ) ( ) ( ) ( )
0

x

y x y x f x ty t dt+ = −′ ∫

Where ( ) ( )2 2 1 5 8xf x x x e x−= + + + +
subject to initial condition y(0)=10

Exact solution: y(x)=10-xe-x

Solution 1: Solving at N = 5 using power series polynomial. Substituting 
approximate solution (3) into example 1 gives
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Collecting the like terms gives
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Equation (12) can be written in the form
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 and substituting the initial 
conditions gives

( ) ( )* *
p px A f xτ =

Solving equation (14), we obtained the following approximate solution

2 3 4 5
5 9.9999999937 0.9999952318 0.9987005900 0.4921341016 0.1487825625 0.0232281987y x x x x x= − + − + −

Using the above steps for solving shifted Chebyshev polynomial as the 
basis polynomial function, we obtained the approximate solution;

2 3 4 5
5 9.9999999820 0.9999901422 0.9976550264 0.4861629152 0.1707549056 0.0425249792y x x x x x= − + − + −

Example 2: Considering Volterra integro-differential equation

( ) ( ) ( ) ( )
0

x
t xy x y x f x e y t dt−+′ = + ∫

Where f(x)=0

subject to initial condition y(0)=1

Exact solution: ( ) ( )coshxy x e x−=

Solution 2: Solving at N = 5 using power series polynomial. Substituting 
approximate solution (3) into example 2 gives

( ) ( )
5 5 5

1

0 0 0 0

x
n n t x n

n n n
n n n

na x a x f x a e t dt− −

= = =

  
+ = +   

   
∑ ∑ ∑∫



J Appl Computat Math, Volume 11:8, 2022Ajileye G, et al.

Page 3 of 4

Collecting the like terms gives
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Equation (15) can be written in the form
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 and substituting the initial 

conditions gives

( ) ( )* *
p px A f xτ =

Solving equation (17), we obtained the following approximate solution 
(Tables 1-4).

2 3 4 5
5 0.9999999376 0.9999822616 0.9949659319 0.6356387354 0.2600574315 0.0517267155y x x x x= − + − + −

Conclusion

The numerical solution of the Volterra integro-differential equation is 
presented in this study and the results are compared to the exact solution. 
Power series and shifted Chebyshev polynomials are used as the basis 
functions. 

The numerical results of the examples as shown in tables shows that the 
results of power series approximation converges to the exact solution than the 
results of shifted chebyshev approximation. Observation also shows that as 
the value of  increases i.e. (from 0 to 1), the results of the shifted chebyshev 
diverges from the exact solutions. 
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