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Introduction

Lie point symmetry is a concept in advanced mathematics. 
Towards the end of the nineteenth century, Sophus Lie introduced 
the notion of Lie group in order to study the solutions of ordinary 
differential equations (ODEs). He showed the following main 
property: the order of an ordinary differential equation can be 
reduced by one if it is invariant under one-parameter Lie group of 
point transformations. This observation unified and extended the 
available integration techniques. Lie devoted the remainder of 
his mathematical career to developing these continuous groups 
that have now an impact on many areas of mathematically based 
sciences. The applications of Lie groups to differential systems were 
mainly established by Lie and Emmy Noether, and then advocated 
by Élie Cartan. Roughly speaking, a Lie point symmetry of a system 
is a local group of transformations that maps every solution of the 
system to another solution of the same system. In other words, it 
maps the solution set of the system to itself. Elementary examples 
of Lie groups are translations, rotations and scalings. For example, 
brain gliomas in particular have been extensively modelled using 
reaction-diffusion equations, as have biological invasions. These 
models have more recently been employed to represent and clarify 
a variety of nonlinear physical, chemical, and biological phenomena. 
It can be helpful to characterise the dynamics of glioma by finding 
analytical solutions that represent the passage through white and 
grey matter in the brain. At its interface, we thus discover analytical 
answers for a tumour growth model.

Description

The subject of fractional calculus is as old as the calculus of 
differentiation and integration and dates back to the time when 
Leibniz, Newton, and Gauss developed this type of calculation. 
Fractional calculus is the generalisation of ordinary differentiation 
and integration to noninteger (arbitrary) order. Due to its applications 
in modelling physical processes related to their historical states 
(nonlocal property), which can be effectively described by using 
the theory of derivatives and integrals of fractional order, it is 

also regarded as one of the most interesting topics in a variety 
of fields, particularly mathematics and physics. This is because 
models described by fractional order are more realistic than those 
described by integer order. A point transformation in the space of 
variables known as Lie point symmetry of an ordinary differential 
equation (ODE) maintains the set of solutions to the ODE. The set of 
solution curves can be preserved by a Lie point symmetry, which is 
equivalently thought of when considering these solutions as curves in 
the space of variables [1]. The Lie point symmetries of the geodesic 
equations in any Riemannian (affine) space are the automorphisms 
that preserve the set of these curves, according to our application of 
this finding to the geodesic curves in a Riemannian (affine) space. 
However, it is understood from differential geometry that the set of 
geodesics is preserved by the point transformations of a Riemannian.

The process of figuring out the Lie point symmetries of a particular 
system of ODEs entails two steps: (a) figuring out the requirements 
that the elements of the Lie symmetry vectors must meet, and (b) 
solving the system of those requirements. The second step is crucial, 
because the solution might be complicated in higher dimensions if 
there are many simultaneous equations. The Lie symmetry method is 
the most crucial method for creating analytical solutions to nonlinear 
PDEs, it might be argued. In addition, the conservation laws (CLs) 
can be created by employing the symmetries of the differential 
equations. It is based on the study of the invariance of differential 
equations (DEs) under a one-parameter group of transformations 
that converts one solution into another new solution [2]. The Lie group 
approach became valid for FDEs as a result of this work, and many 
studies are now devoted to it. Recently, the Lie symmetry analysis 
was also employed for FDEs; Gazizov et al. demonstrated how the 
prolongation formulae for fractional derivatives are formulated [3].

The use of systematic methods leading to the integration by 
quadrature (or at least lowering the order) of ordinary differential 
equations, the identification of invariant solutions to initial and 
boundary value problems [4], the development of conservation laws, 
and the construction of links between various differential equations 
that turn out to be equivalent is made possible by the Lie symmetry 
analysis of differential equations [5]. The combination of symmetry 
and simplicity has been, is, and most likely will always be a beautiful 
and practical tool in the creation and application of natural laws. 
The demand for symmetry explains the rules' regularities, which 
are unaffected by some inessential conditions [6]. For example, the 
repeatability of experiments depends on the principles of nature's 
invariance under space translation and rotation (homogeneity and 
isotropy of space), as well as time translation (homogeneity of time).

Conclusion

The development of systematic methods leading to the 
integration by quadrature (or at least lowering the order) of ordinary 

Brief Report
Volume 16:6, 2022

mailto:arvindnorway365@outlook.com


J Generalized Lie Theory App, Volume 16:6, 2022Siqveland A

Page 2 of 2

differential equations, the identification of invariant solutions to initial 
and boundary value problems, the derivation of conserved quantities, 
or the construction of relations between various differential equations 
that turn out to be equivalent all rely on Lie's theory, which is strong, 
adaptable, and fundamental. Although the application of Lie's 
theory to differential equations is entirely algorithmic, it frequently 
necessitates lengthy and laborious calculations. For instance, it is 
fairly uncommon to have to manage hundreds of equations in order 
to locate a single solution when searching for symmetries of a system 
of partial differential equations.
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