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Abstract
The aim of this work is to apply the homotopy perturbation method and homotopy analysis method to the problem 

of thermal explosion in a flammable gas mixture with the addition of volatile fuel droplets. The system of equations 
that describes the effects of heating, evaporation, and combustion of fuel in a polydisperse spray is simplified. Both 
convective and radiative heating of droplets is taken into account in the model. The model for the radiative heating 
of droplets takes into account the semitransparency of the droplets. The results of the analysis have been applied 
to the modeling of the thermal explosion in diesel engines. We applied the Homotopy Perturbation Method and 
the Homotopy Analysis Method to the new model and we found the region of the convergence of the considered 
solutions of the relevant physical parameters. The results demonstrate that these methods are very effective for 
solving nonlinear problems in science and engineering. 
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Nomenclature
• A pre-exponential rate factor ( 1s− )
• B universal gas constant ( 1 1Jkmol K− − )
• C molar concentration ( 3kmolm− )
• c  specific heat capacity ( 1 1)Jkg K− −  )
• E  activation energy ( 1Jkmol− )
• F M−  refer to the model (21)-(24) with  = 0b
• k number of droplets
• L  liquid evaporation energy (i.e., latent heat of evaporation,

Enthalpy of evaporation) ( 1Jkg − ) 
• m  droplet mass
• n number of droplets per unit volume ( 3m− )
• Q combustion energy ( 1Jkg − )
• q heat flux ( 2Wm− )
• R  radius of droplet ( m )
• r dimensionless radius
•T temperature ( K )
• t time ( s )
• reactt characteristic reaction time ( s ) defined in Equation (25)

Greek symbols   
• α  dimensionless volumetric phase content
• β   dimensionless reduced initial temperature (with respect to

the so-called activation temperature /E B  ) 
• γ  dimensionless parameter that represents the reciprocal of

the final dimensionless adiabatic temperature of the thermally insulated
system after the explosion has been completed

η  dimensionless fuel concentration 
• θ  dimensionless temperature
• λ  thermal conductivity ( 1 1Wm K− − )
• µ  molar mass ( 1kgkmol− )
• ν   dimensionless parameter defined in Equation (25)
• ρ  density ( 3kgm−  )
• σ  Stefan-Boltzmann constant ( 2 4W m K− −  )
• τ  dimensionless time
• ψ  represents the internal characteristics of the fuel (the ratio

of the specific combustion energy and the latent heat of evaporation) 
defined in Equation (25) and for diesel fuel  >> 1ψ  

Subscripts  
• con  convection
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    • 2iε = 1,...,i k  dimensionless parameters defined in Equation 
(25). This parameter relates the heat released during combustion and 
energy that is needed to evaporate all the fuel droplets 

    • 3iε = 1,...,i k  dimensionless parameters defined in Equation 
(25). This parameter describes the ratio of treact and the characteristic 
droplet heating time 

    • 4iε = 1,...,i k  dimensionless parameters defined in Equation 
(25). This parameter is proportional to the ratio of radiative and con-
vective fluxes 

• 1iε  = 1,...,i k  dimensionless parameters defined in Equation 
(25) and describes the competition between the combustion and the
evaporation processes
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    • d  liquid fuel droplets 
    • f combustible gas component of the mixture 
    • g gas mixture 
    • l liquid phase 
    • p under constant pressure 
    • rad  adiation 
    • 0 initial state 

Introduction
 In this paper we investigated the problem of thermal explosion in 

a fuel mixture and gas. This problem, in most cases, has been studied 
based on the application of computational fluid dynamics (CFD) 
packages [1]. This method could take into account the complicated 
geometry of the enclosure and the chemistry of the processes. Hence, 
this makes it particularly attractive for engineering applications 
including the modeling of combustion processes in diesel engines. 
Other approaches to this problem are based on a asymptotic analysis of 
equations describing the limiting cases of the processes. One of these 
approaches is based on the application of the zero-order approximation 
of the geometric version of the asymptotic method of integral manifolds 
(MIM), developed for combustion applications in [2,3]. For example, 
in [4] the method of integral manifold was applied to a specific problem 
of modeling of ignition process in a diesel engines by using the P-1 
model. The chemical term was presented in the Arrhenius form with 
the pre-exponential factor calculated from the enthalpy equation, 
using the well known Shell autoignition model. The results predicted 
by the analytical solution were compared with those that predicted by 
the computational fluid dynamics package VECTIS. The effects of the 
thermal radiation were shown to be very significant especially at high 
temperatures.

Other asymptotic methods were proposed by [5] in 1992, known 
as the homotopy analysis method (HAM) and by [6] in 1998, known 
as the homotopy perturbation method (HPM), which is a special case 
of HAM. The HPM and the HAM methods are mathematical tools 
that are based on homotopy, a fundamental concept in topology and 
differential geometry. They are analytical approaches to formulate the 
series solution of linear and nonlinear partial differential equations. 
We refer the reader to [7] for an enlightening comparison between 
HAM and HPM.

HPM couples the homotopy technology and perturbation 
method including the modified Lindstedt-Poincare method [8]. The 
authors of [9] modified the Multiple Scales method by incorporating 
the time transformation of Lindstedt Poincare method. In [10] the 
authors contrasted two different approaches of Lindstedt-Poincare 
methods using the duffing equation. The main deficiencies in applying 
perturbation methods is that a small parameter is needed in the 
equations. 

The HPM was further developed and improved and applied to 
nonlinear oscillators with discontinuities [11], nonlinear wave equations 
[12], boundary value problem [13], limit cycle and bifurcation of 
nonlinear problems [14] and many other subjects. In recent years, the 
application of the homotopy perturbation method (HPM) in nonlinear 
problems has been developed by scientists and engineers, because 
this method deforms the difficult problem under study into a simple 
problem which is easy to solve [15-17]. Most perturbation methods 
assume a small parameter exists, but most nonlinear problems have 
no small parameter at all. Unlike analytical perturbation methods, the 

HPM and HAM do not depend on a small parameter which is difficult 
to find.

These two methods also provide a simple way to ensure the 
convergence of the series solution. Moreover, these methods provide 
a large degree of freedom to choose an appropriate base functions 
to approximate the linear and nonlinear problems [18]. Another 
important advantage of this method is that one can construct a 
continuous mapping of an initial guess approximation to the exact 
solution of the given problem through an auxiliary linear operator. To 
ensure the convergence of the series solution an auxiliary parameter 
is used. In [19] Liao has substantiated that the HAM differs from the 
other analytical methods in that it ensures the convergence of the 
series solution by choosing a proper value for the convergence-control 
parameter.

In this paper we have rewritten the model that was proposed by 
[20] for polydisperse fuel spray and applied the HPM and HAM to the 
problem of thermal explosion in a fuel mixture and gas. Based on these 
two methods, we present an analytical solutions for various values of 
the relevant physical parameter and we discuss the convergence of 
these solutions. We also compare our results to numerical solutions. 

An Introduction to the Homotopy Perturbation Method 
(HPM)

To explain this method, let us consider the following equation: 

  ( ) ( ) = 0, ,A u f r r− ∈Ω                (1)

with the boundary conditions of: 

   , = 0,uB u
n
∂ 

 ∂ 
                  (2)

where A , B , ( )f r  are a general differential operator, a boundary 

operator, a known analytical function respectively. Ω  is the domain. 
Generally, the operator A  can be decomposed into a linear part L   
and a nonlinear part ( )N u  . Hence, Equation (1) can be written as: 

  ( ) ( ) ( ) = 0.L u N u f r+ −                       (3)

 By the homotopy technique, we construct a homotopy 
( , ) : [0,1]r p Rα Ω× →   which satisfies: 

( ) ( )0( ( , ), ) = (1 ) ( ( , )) ( ( , )) ( ) = 0, [0,1], ,blueH r p p p L r p u p A r p f r p rα α α− − + − ∈ ∈Ω  (4) 
  

 where [0,1]p∈  is an embedding parameter and ( , )r pα  is a 
function of r and p , and 0 ( )u r  denote the initial approximation of 

( )rα .
When = 0p  we have 

  ( )| =0 0( ( , ), ) = ( ) ,pblueH r p p L uα α −                                    (5)

 and when = 1p  we have 

  ( ( , ), ) = ( ( , )) ( ).blueH r p p A t p f rα α −                                 (6)

 As we mention before, L  denote an auxiliary linear operator. In 
addition L  have the property: 

  ( ) = 0 = 0.blueL g for g                                    (7)
 Using (7), it is clear that for = 0p   
  

0( ,0) = ( )blue r u rα                                                     (8)
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 is the solution of the equation: 

  =0( ( , ), ) = 0.pblueH r p pα                 (9)

 And for  = 1p  
  ( ,1) = ( )blue r u rα                 (10)

 is the solution of the equation: 

 =1( ( , ), ) = 0.pblueH r p pα                   (11)

 When the embedding parameter p  increase from 0 to1, the 

solution ( , )r pα  of the equation: 

  ( ( , ), ) = 0H r p pα                           (12)

 depends upon the embedding parameter  p  and the varies from 
the initial approximation 0 ( )u r   to the solution ( )u r   of equation (1). 
In topology, such a kind of continuous variation is called deformation.

According to the HPM, we can first use the embedding parameter
p as a “small parameter”, and assume that the solutions of Equation 

(4) can be written as a power series in p : 

  2
0 1 2

=0
= ... = .m

m
m

p p pα α α α α
∞

+ + + ∑                                (13)

 Setting  = 1p  yields in the approximate solution of (1) to 

  1 0 1 2
=0

= = ... = .p m
m

u lim α α α α α
∞

→ + + + ∑                (14)

 The combination of the perturbation method and the homotopy 
method is called the HPM, which eliminates the drawbacks of the 
traditional perturbation methods while keeping all their advantages. 
The rate of convergent of series (13) depends on the nonlinear operator

( )A u . 

Polydisperse Model-Problem Statement
 The physical assumptions are as follows: The combustible gas 

mixture contains evaporating ideal spherical droplets of fuel. The 
liquid droplets form a polydisperse spray. The medium is assumed to 
be spatially homogeneous. The variations in pressure in the enclosure, 
and their influence on the combustion processes are ignored. The heat 
flux from the burning gas to the droplets is assumed to consist of two 
components: convection and radiation, and the form of these two 
components is as follows: 

          

0

= ( ), = ,g g
con g d gi

d gi

T
q T T

R T
λ

λ−                                (15)
 

 where for mµ  units the value of 01k  and 11k  are: 5
01 = 7 10k −⋅    

and 2
11 = 2 10k −⋅  1K − . The energy that is needed for heating fuel 

vapor from the droplet temperature to gas temperature is ignored. 
The thermal conductivity of the liquid phase is much greater than that 
of the gas phase. The volume fraction of the liquid phase is much less 
than that of the gas phase. The heat transfer coefficient in the liquid-
gas mixture is assumed to be controlled by the thermal properties of 
the gas phase. External heat losses are ignored. Fuel droplets are semi-
transparent. Combustion takes place in the gas phase only. Combustion 
is modeled as a one-step first-order exothermic reaction with gaseous 
fuel as a deficient reactant. The droplets are assumed to be stationary. 

Under these assumptions, we rewrite the model as in [21], which is in 
the form of monodisperse fuel spray, to a polydisperse fuel spray as 
follows: 

2

=1
= 4 ( ),

E
kBTg g

pg g g f f f g d d con radi i
i

dT
c C Q Ae R n q q

dt
ρ α µ α π

 
 −
 
  − +∑              (17)

 

2

=1
= 4 ( ),

E
kBT d df g i i

g f g con rad
i f

R ndC
C Ae q q

dt L
α α π

µ

 
 −
 
 − + +∑

             
(18) 

 
 
   
         

24
= ( ), = 1,..., .d di i

con rad

dm R
q q i k

dt L

π
− +                    (20)

In non-dimensional parameters and by applying the Frank-
Kamenetskii approximation [22], the model has the form of: 

 ( )1 1 1
1 4

=1
= ( ) 1 ( 1) ,

k
g bg

i d g d i di i i
i

d
e r r

d
θθ

γ η γ ε θ θ ε ν
τ

− − +− − + −∑            (21)
 

 ( )1
1 4

=1
= ( ) 1 ( 1) ,

k
bg

i d g d i di i i
i

d e r r
d

θη η ψ ε θ θ ε ν
τ

+− + − + −∑       (22)
   

( )1
3 4= ( ) 1 ( 1) ,d bi

i d g d i di i i

d
r r

d

θ
ε θ θ ε ν

τ
+− + −               (23)

 
   

( )
3

1
1 2 4= ( ) 1 ( 1) ,d bi
i i d g d i di i i

dr
r r

d
ε ε θ θ ε ν

τ
+− − + −                (24)

 where the following dimensionless parameters have been 
introduced: 

  
  

3 1/
0 01

11 0

10= , = , = , = ,g
react

react g

BT kt et
E t k T A

β

β τ ν
               

(25)
  
 0 0

0 00

1= , = , = , = ,d pg g g f g gi
i g

d f f f gi

R c T Q T T
r

R Q C L T
ρ

γ β ψ θ
µ β

−

1
0 0 0 0

1 2 3
0 0

4 3
= , = , = ,

4
f g di g di f f f g

i i
f f f g f d d di i i

C R T n C
e

C AQ C R n L
βπλ β µ α

η ε ε
α µ π ρ

 
 
 

4 11/
11 00 0

3 42
0 0

43
= , = , = .

b
g d d gg i i

i i di
d d d g gi i io

k T R T Te
AC R T

β σλ
ε ε θ

ρ λ β

+ −  

 The non-dimensional initial conditions are: 

00
= 0 : = 0, = , = , = 1.g d d ii i

at rτ θ θ θ η η               (26)

 For simplicity, in our numerical simulations and when applying 
the HPM and the HAM we assume = 0b  . 

Application of HPM to the Problem of the Thermal 
Explosion in Polydisperse Fuel Spray

 By applying the HPM method to the system of Equations (21)-(24) 
we obtain the following HPM-system: 

 ( )( )3 4 4
01 11= 10 ,b

rad d g g di i
q R k k T T Tσ − −                         (16)

 2= 4 ( ), = 1,..., ,di
d d d con radi i i

dT
C m R q q i k

dt
π +              (19)
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     11 1 1

2

(0)
(1 ) gdd dp p e

d d d
αθα α γ α

τ τ τ
−   − − + −   

  

( )1
1 4 1 3 4 4

=1
( ) 1 ( 1) = 0,

k
i i i

i i
i

p γ ε α α α ε ν α− + − + − 
 

∑
              

(27)
 
  
   

2 2 1
2

(0)(1 ) d ddp p e
d d d

αα αη α
τ τ τ

   − − + +   
   

              

(28)

  
 

( )1 4 1 3 4 4
=1

( ) 1 ( 1) = 0,
k

i i i
i i

i
p ψ ε α α α ε ν α + − − + − 
 

∑  
  
   
    3

(0)
(1 )

i
di

ddp
d d

θα
τ τ

 
− −  

 

( )3
3 4 1 3 4 4( ) 1 ( 1) = 0,

i
i i i

i i
dp
d
α ε α α α ε ν α
τ

 
+ − − + − 

 
               
 

 1 i k≤ ≤                      (29)

  

     
3

4
(0)( )(1 )

i
di

drdp
d d
α
τ τ

 
− −  

 
  

( )
3

4
üüü

( ) )( ) 1 ( 1) = 0,
i

i i i
i i i

dp
d
α ε ε α α α ε ν α
τ

 
+ + − + − 

 

     1 i k≤ ≤                  (30)

with the initial conditions: 
 

1,0 2,0 3,0 4,0 0
= (0) = 0, = (0), = (0), = .i i

g d di i
rα θ α η α θ α   (31)

 According to HPM method the terms 1α , 2α   3
iα  and 4

iα   for   

= 1,...,i k has the form of: 

  1 1, 2 2,
=0 =0

= ( ) , = ( )m m
m m

m m
p pα α τ α α τ

∞ ∞

∑ ∑  

3 3, 4 4,
=0 =0

= ( ) , = ( ) = 1,..., .i i m i i m
m m

m m
p p i kα α τ α α τ

∞ ∞

∑ ∑   (32)

  
1 1, 1,0 1,1 1,2 1,3

=0
= = ...,m

g p m
m

lim pθ α α α α α
∞

→
  + + + + 
 
∑               (33)

 
          

1 2, 2,0 2,1 2,2 2,3
=0

= = ...,m
p m

m
lim pη α α α α α

∞

→
  + + + + 
 
∑               (34)

 
   

1 3, 3,0 3,1 3,2 3,3
=0

= = ...( = 1,..., ),i m i i i i
d p mi

m
lim p i kθ α α α α α

∞

→
  + + + + 
 
∑        (35)

 
1 4, 4,0 4,1 4,2 4,3

=0
= = ...( = 1,..., ).i m i i i i

i p m
m

r lim p i kα α α α α
∞

→
  + + + + 
 
∑

       
(36)

 
gequations for gas temperature θ  

  1,1 1
2,0 = 0,

d
d
α

γ α
τ

−−                (37)
 
  
   

3
1,2 1 1 1

2,0 1,1 2,1 1 1,1 1 4 1,1
=1

( 1)i i i
i

d
d
α

γ α α γ α γ ε α ε ε ν α
τ

− − −− − + + −∑

 1 3,1 1 4 3,1( 1) = 0,i i
i i iε α ε ε ν α− − −                (38)

 

 3
1,3 1 1 1 1

2,0 1,2 2,1 1,1 2,2 1 1,1 4,1
=1

i
i

i

d
d
α

γ α α γ α α γ α γ ε α α
τ

− − − −− − − + ∑
  

{ }1 1,2 1 4 1,1 4,1 1,2 3,1 4,1 3,2( 1) ( 2i i i i
i i iε α ε ε ν α α α α α α+ + − + − −            

  
 1 3,1 4,1 1 3,2 = 0,i i

i iε α α ε α− −                 (39)

  
        equations for concentration η

   2,1
2,0 = 0,

d
d
α

α
τ

+
                                              (40)

 
  
 

3
2,2

2,0 1,1 2,1 1 1,1 1 4 1,1
=1

( 1)i i i
i

d
d
α

α α α ψ ε α ε ε ν α
τ

+ + − + −∑  

  
         1 3,1 1 4 3,1( 1) = 0,i i

i i iε α ε ε ν α− − −
               (41)

  
3

2,3
2,0 1,2 2,1 1,1 2,2 1 1,1 4,1

=1

i
i

i

d
d
α

α α α α α ψ ε α α
τ

+ + + − ∑  

 { }1 1,2 1 4 1,1 4,1 1,2 3,1 4,1 3,2( 1) ( 2i i i i
i i iε α ε ε ν α α α α α α+ + − + − −   

            1 3,1 4,1 1 3,2 = 0,i i
i iε α α ε α− −                                             (42)

  

          di
equations for the droplet temperature θ

  

  

3,1 = 0, (1 3)
id

i
d
α
τ

≤ ≤
 (43)

 
  ( ){ }3,2 3,1

3 1,1 4 1,1 3,1 3,12 ( 1) = 0,
i i

i i
i i

d d
d d
α α

ε α ε ν α α α
τ τ

+ − + − −  

  (1 3)i≤ ≤                   (44)

       
( )3,3 3,2

3 1,1 4,1 1,2 3,1 4,1 3 3,22
i i

i i i i
i i

d d
d d
α α

ε α α α α α ε α
τ τ

+ − + + −  

       { }3 4 1,1 4,1 1,2 3,1 4,1 3,2( 1) 2 = 0,i i i i
i iε ε ν α α α α α α+ − + − −

 

         (1 3)i≤ ≤                         (45)

 Substituting Equations (32) with the initial conditions (31) into 
Equations (27)-(30) for three different size of droplets i.e., = 3k , using 
the Taylor expansion for the exponent [23,24] and finally collecting the 
terms in power of p  up to order 3  we obtain: 

 Suppose that the solution of (27)-(30) takes the form of 
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  di

equations for the radius r

   
4,1 = 0, (1 3)
id

i
d
α
τ

≤ ≤               (46)
 
 ( ){ }4,2 4,1

1 2 1,1 4 1,1 3,1 3,12 ( 1) = 0,
i i

i i
i i i

d d
d d
α α

ε ε α ε ν α α α
τ τ

+ − + − − −        
  
 (1 3)i≤ ≤                    (47)

    

( )4,3 4,2
1 2 1,1 4,1 1,2 3,1 4,1 3,22

i i
i i i i

i i

d d
d d
α α

ε ε α α α α α α
τ τ

+ − + + −

{ }1 2 4 1,1 4,1 1,2 3,1 4,1 3,2( 1) 2 = 0,i i i i
i i iε ε ε ν α α α α α α+ − + − −

  
  (1 3)i≤ ≤                   (48)

 We derived a system of (24) ordinary differential equation with 24 

with unknown functions: 1,1α , 1,2α , 1,3α , 2,1α , 2,2α , 2,3α , 1
3,1α  , 1

3,2α ,  1
3,3α

, 2
3,1α , 2

3,2α , 2
3,3α , 3

3,1α  , 3
3,2α , 3

3,3α , 1
4,1α , 1

4,2α , 1
4,3α , 2

4,1α , 2
4,2α , 2

4,3α , 3
4,1α , 3

4,2α  

, 3
4,3α . The initial conditions are: 

  1, 2,= = 0 (1 3),i i iα α ≤ ≤

  
3, 4,(0) = 0, (0) = 1 (1 , 3).j j

i i i jα α ≤ ≤                               (49)
  

Application of HAM: The  -Curve and the Valid Region 
of Convergence of the Solutions

 In this section, we discuss the convergence of the HAM solutions. 
The convergence depends on the so-called convergence - control -
parameter

 , and so, we plot the  


-curve for  (0)gθ , (0)η , (0)dθ , and  
(0)dr . The interval of convergence is determined by the flat portion of 

the  -curve. In order to plot the 


-curve we applied the HAM as given 
in [24] to our new model (21)-(24).

An introduction to Homotopy Analysis Method (HAM)

Consider the following differential equation: 

   ( ( , )) = 0.N u r t                (50)

 where N   is a nonlinear operator,  r  is a vector of spatial variables,
t denotes time and u is an unknown function. 

Zero order deformation of HAM: By means of generalizing the 
traditional concept of homotopy, Liao [24] constructs the so-called 
zero-order deformation equation: 

[ ]0(1 ) ( , ; ) ( , ) = ( , ) ( ( , ; )),p r t p u r t H r t N r t p− Φ − Φ
   

 

             (51)

 where 


  is a non-zero auxiliary parameter, H   is an auxiliary 
function, 



 is an auxiliary linear operator, 0 ( )u ⋅  is an initial guess of  
( )u ⋅ ;  Φ  is a unknown function. The degree of freedom is to choose the 

initial guess, the auxiliary linear operator, the auxiliary parameter, and 
the auxiliary function H . Expanding Φ  in Taylor series with respect to 
the embedding parameter  p , one has 

 
0

=1
( , ; ) = ( , ) ( , ) ,n

n
n

r t p u r t u r t p
∞

Φ +∑                                       (52)

 where 

  =0
1 ( , ; )( , ) = | .
!

n

n pn

r t pu r t
n p
∂ Φ

∂





                                 (53)

If the auxiliary linear operator, the initial guess, the auxiliary 
parameter, and the auxiliary function are so properly chosen that the 
above series converges at  = 1p , one has 

  0
=1

( , ; ) = ( , ) ( , ),n
n

r t p u r t u r t
∞

Φ +∑  

                                 (54)

 which must be one of the solutions of the original nonlinear 
equation, as proved in [24]. If the same initial guess and the same 
auxiliary linear operator are chosen, the approximations given by the 
homotopy perturbation method are exactly a special case of those given 
by the homotopy analysis method when = 1h −  and = 1H  . The 
series (54) itself is in principle a kind of Taylor series (at p = 1). Hence, 
mathematically, homotopy perturbation method itself is also a kind of 
generalized Taylor technique.

mth-order deformation: Define the vector: 

  0 1( , ) = { ( , ), ( , ),..., ( , )}.n nu r t u r t u r t u r t    

              (55)

 Differentiating Equation (51) m  -times with respect to the 
embedding parameter p   and then setting = 0p   and finally dividing 
the terms by !m  , we obtain the m  th-order deformation equation in 
the form of: 

 1 1[ ( , ) ( , )] = ( , ) ( ( , )),m m m m mu r t u r t H r t R u r tχ − −−
   

               (56)

 where, 

  
1

1 =01

1 ( ( , ; ))( ( , )) = | ,
( 1)!

m

m m pm

N r t pR u r t
m p

−

− −

∂ Φ
− ∂





               (57)

and mχ   is the unit step function. Applying the inverse operator   
1( )− ⋅

on both side of Equation (56), we get 

 1
1 1( , ) = ( , ) [ ( , ) ( ( , ))].m m m m mu r t u r t H r t R u r tχ −
− −+

   



              (58)

  
=0

( , ) = ( , ).
m

n
n

u r t u r t∑ 

                                                     (59)

 In our model we choose the initial guess to be (0) = 0gθ  , (0) = 1η  
, (0) = 0dθ  , and (0) = 1dr   which satisfied the initial conditions. The 
linear operator will be: 

  = ( ),d
dτ

⋅                    (60)

 with the property 1 2( ) = 0c cτ +
 , where 1c   and 2c   are constants 

of integration. According to the system (21)-(24) and the terms as in 
Equation (32) the nonlinear operators will be defined as follows: 

  
  

11 1
1 2( ( , )) =

g

dN p e
d

α
θ

αα τ γ α
τ

−−
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  In this way, it is easy to obtain mu   for 1m ≥  , at  m th-order and 
finally get the solution as: 
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          1
1 4 1 3 4 4

=1
( )(1 ( 1) ),

k
i i i

i i
i

γ ε α α α ε ν α−+ − + −∑                                       (61)

 2 1
2 2( ( , )) = dN p e

d
α

η
αα τ α
τ

+                  

  ( )1 4 1 3 4 4
=1

( ) 1 ( 1) ,
k

i i i
i i

i
ψ ε α α α ε ν α− − + −∑                (62)

              
3

3( ( , )) =
i

i

di

dN p
dθ
αα τ
τ

      ( )3 4 1 3 4 4( ) 1 ( 1) ,i i i
i iε α α α ε ν α− − + −

             1 i k≤ ≤                                                                             (63) 
                                                                     

  

            

3
4

4
( )( ( , )) =

i
i

rdi

dN p
d
αα τ
τ                                                                                                                                                    

                  ( )1 2 4 1 3 4 4( ) 1 ( 1) .i i i
i i iε ε α α α ε ν α+ − + −

  
  1 i k≤ ≤                                                                     (64)

By substituting the series (32) into Equations (61)-(65) correspondingly 
we get the terms for mR   accordingly to Equation (57) as follows: 

  
  

1
1, 1

2, 2, 1, 1
=0

=
m

m
m m n m n

g n

d
R

dθ

α
γ γ α α α

τ

−
−

− −− −∑
  1

2, 1 1, 1,
=0 =0

0.5
m n

i
m n j n j

n j
α α α

−

− − −− ∑ ∑
 

  
  
 
  

1

1 4, 1, 1 4, 3, 1
=1 =0

( )
k m

i i i
i n m n n m n

i n
ε α α α α

−

− − − −
 + − 
 

∑ ∑                              (65) 

           
1

1 4 4, 1 1, 4,
=1 =0 =0

( )
k m n

i i
i i m n j n j

i n j
ε ε α α α

−

− − −

 
+  

 
∑ ∑ ∑                                                                                                                                                                                                                                                                                                            

                                                                                                                               

             
1

1 4 4, 1 3, 4,
=1 =0 =0

( ) ,
k m n

i i i
i i m n j n j

i n j
ε ε α α α

−

− − −

 
−  

 
∑ ∑ ∑                   

              1
2, 1

2, 1 2, 1, 1
=0

=
m

m
m m n m n

n

d
R

dη

α
α α α

τ

−
−

− − −+ +∑
                                                         

           

            

1

2, 1 1, 1,
=0 =0

0.5
m n

i
m n j n j

n j
α α α

−

− − −+ ∑ ∑
 

            

1

1 4, 1, 1 4, 3, 1
=1 =0

( )
k m

i i i
i n m n n m n

i n
ψ ε α α α α

−

− − − −
 − − 
 

∑ ∑
            

(66)

           
1

1 4 4, 1 1, 4,
=1 =0 =0

( )
k m n

i i
i i m n j n j

i n j
ψ ε ε α α α

−

− − −

 
−  

 
∑ ∑ ∑    

         

1

1 4 4, 1 3, 4,
=1 =0 =0

( ) ,
k m n

i i i
i i m n j n j

i n j
ψ ε ε α α α

−

− − −

 
+  

 
∑ ∑ ∑

                       3, 1=
i

m
m

di

d
R

dθ

α
τ

−

                 

1

3 4, 1, 1 4, 3, 1
=0

( )
m

i i i
i n m n n m n

n
ε α α α α

−

− − − −− −∑                (67)

                 
1

3 4 4, 1 1, 4,
=0 =0

( )
m n

i i
i i m n j n j

n j
ε ε α α α

−

− − −+ ∑ ∑

                 
1

3 4 4, 1 3, 4,
=0 =0

( ),
m n

i i i
i i m n j n j

n j
ε ε α α α

−

− − −+ ∑ ∑

                  1 i k≤ ≤

               

1

4, 1 4, 4,
=0 =0

=
m n

i i i
m m n j n jrd n ji

dR
d

α α α
τ

−

− − −

 
 
 
∑ ∑

                    

1

1 2 4, 1, 1 4, 3, 1
=0

( )
m

i i i
i i n m n n m n

n
ε ε α α α α

−

− − − −− −∑
                  

(68)

               

1

1 2 4 4, 1 1, 4,
=0 =0

( )
m n

i i
i i i m n j n j

n j
ε ε ε α α α

−

− − −+ ∑ ∑

                 

1

1 2 4 4, 1 3, 4,
=0 =0

( )
m n

i i i
i i i m n j n j

n j
ε ε ε α α α

−

− − −+ ∑ ∑

                   1 .i k≤ ≤
  

1 | =0, =0 2 | =0, =0 3 | =0, =0= ( , ) , = ( , ) , = ( , ) .r t r t r tu r t or u r t or u r t′ ′′Γ Γ Γ  

  

         (69)

The curves iΓ  ( = 1,2,3)i  are a function of 


 and thus can be 
plotted by a curve Γ ≈  . According to [20] there exists a horizontal 
line segment (flat portion of the 


-curve) in the figure of Γ ≈    and 

called  the  valid region of  


  which corresponds to a region of 
convergent of the solutions. Thus, if we choose any value in the valid 
region of 


 we are sure that the corresponding solutions series are 

convergent. For given initial approximation 0 ( , )u r t , the auxiliary 
linear operator 



, and the auxiliary function ( , )H r t , the valid region 
of 


 for different special quantities are often nearly the same for a given 
problem. Hence, the so-called 


-curve provides us a convenient way 

to show the influence of 


 on the convergence region of the solutions 
series. 

Discussion and Conclusions
 We compared the system dynamics of the models (21)-(24) and 

(37)-(48) with and without the impact of the thermal radiation. The 
results are based on the following diesel engines parameter values: 

 Diesel engines−  

1 1 3= 1120 ( ); = 23.8 ( );pg goc J kg K kg mρ− − −

48 2
11 01= 0.08; = 0.28; = 5.67 10 ( );kk k Wmσ

−− −×
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 Now, the solution of the m  th-order deformation can be expressed 

according to Equation (58) which can be solved by symbolic software 
such as Mathematica  8.0, Maple, Matlab and so on. We obtain a family 
of solutions that depends on the auxiliary parameter 



. So, regarding 


as independent variable, it is easy to plot the 


-curves. For example, 
we can plot the curves:
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1= 170 ( );f kg kmolµ −

7 1 8 1= 4.3 10 ( ); = 1.26 10 ( );fQ J kg E Jkg− −⋅ ⋅

1 1
0 = 0.061 ( ); = 1 ( );g gWm K dimensionlessλ α− −

         (70)

4 4 4
0 = 5 10 ( );10 10 ( );15 10 ( );diR m m m− − −× × ×

11 12 14= 8 10 ( );12 10 ( );16 10 ( );din m m m× × ×

6 1
0= 3 10 ( ); = 300 ( );dA s T K−×

5 1
0= 3.6 10 ( ); = 900 ( );gL J kg T K−⋅

4 2 2= 2.184 10 , = 9.84 10 , = 1.19 10 ;γ β ψ− −× × ×

3 3 3
11 12 13= 3.7 10 , = 4.73 10 , = 5.73 10 ;ε ε ε− − −× × ×

1 1 1
21 22 23= 6.9 10 , = 7.1 10 , = 7.5 10 ;ε ε ε× × ×

1 1 1
31 32 33= 3.71 10 , = 4.1 10 , = 4.8 10 ;ε ε ε− − −× × ×

2 2 2
41 42 43= 2.5 10 , = 3 10 , = 3.5 10 .ε ε ε− − −× × ×

The gas temperature trajectory, figure 1, for all models with and 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Τ

0.1

0.2

0.3

0.4

0.5

0.6
Θg

1 (2)
2 3

(4)

4

Figure  1: Solution profiles of the gas temperature gθ τ− ; 1: Full model solved 
numerically with the impact of the thermal radiation, 2: HPM model with the im-
pact of the thermal radiation for the = 1− , (2): HAM model with the impact of 
the thermal radiation for the = 0.04

, 3: Full model solved numerically without 
the impact of the thermal radiation, 4: HPM model without the impact of the 
thermal radiation, (4): HAM model without the impact of the thermal radiation 
for = 0.04 . 
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Figure  2: Solution profiles of the droplet temperature  dθ τ− ; 1: Full model 
solved numerically with the impact of the thermal radiation, 2: HPM model 
with the impact of the thermal radiation for the  = 1−

, (2): HAM model with 
the impact of the thermal radiation for the = 0.04 , 3: Full model solved 
numerically without the impact of the thermal radiation, 4: HPM model without 
the impact of the thermal radiation, (4): HAM model without the impact of the 
thermal radiation for = 0.04 .
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Figure  3: Solution profiles of the radius r τ−  ; 1: Full model solved nu-
merically with the impact of the thermal radiation, 2: HPM model with the im-
pact of the thermal radiation for the = 1−

 , (2): HAM model with the impact 
of the thermal radiation for the  = 0.04

, 3: Full model solved numerically 
without the impact of the thermal radiation, 4: HPM model without the impact 
of the thermal radiation, (4): HAM model without the impact of the thermal 
radiation for = 0.04 . 

 We studied the problem of the the effect of fuel spray polydispersity 
on the ignition process in a fuel cloud by applying numerical simulation, 
the homotopy perturbation method and the homotopy analysis method 
for 30th order deformation. We compared between the homotopy 
perturbation method and by solving the full system of the model i.e., 
the system of Equations: (21)-(24) for the solution profiles of the of 
the gas temperature, droplet temperature, radius and concentration 
numerically. Although we take into account only three different size 
of droplets, our results show that the homotopy perturbation method 
provides an excellent approximation of the solutions of the system with 
high accuracy (Figures 1-4).

The presence of the small parameter γ  in the gas temperature 
equations, such that Equations (37)-(39) form a singularly perturbed 
system, enables one to exploit the geometrical version of the method 
of the integral manifold and hence to separate the model into fast and 
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without the impact of the thermal radiation, starts with a fast increase in 
the temperature until 0.15gθ ≈  then the temperature decreases from 

0.15gθ ≈ , which means cooling before ignition, until 0.1gθ ≈ . This 
continuous process of cooling before ignition is summarized in table 1 
and corresponding in figures 1-4. This dimensionless time, τ , refers to 
the ignition time and it is compatible for all the solution profiles for the 
gas and droplets temperature, radius and concentration. According to 
these results, the F M−  has the smallest ignition time with and without 
the impact of the thermal radiation when comparing to HPM and 
HAM. The HPM results are closer to the F M−  than the HAM results 
with and without the impact of the thermal radiation.
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slow subsystems. According to this method, the above results are also 
sustained with MIM [25].

In order to clarify the influence of the thermal radiation on 
the dimensionless time before the final explosion of the system we 
introduce the term impact of the thermal radiation as given in [26] 

which is measured in percent and defined as: 

 1
| |(%) = 100,

rad no rad
F M F M

rad
F M

τ τ
τ

−
− −

−

−
∆ ⋅   (71)

 
2

| |(%) = 100,
rad no rad
HPM HPM

rad
HPM

τ τ
τ

−−
∆ ⋅   (72)

 
3

| |(%) = 100,
rad no rad
HAM HAM

rad
HAM

τ τ
τ

−−
∆ ⋅   (73)

where the subscript F M−  refers to the full model solved 
numerically, τ is the ignition time, and the superscript rad and
no rad−  refer to the model with and without the impact of the thermal 
radiation respectively. We also defined the parameters 1 2| |∆ −∆
, 1 3| |∆ −∆ , and  2 3| |∆ −∆  which show the difference between the 
different models in percent. The results are as follows:  1 = 25.969%∆ , 

2 = 21.389%∆  , 3 = 16.199%∆   and 1 2| |= 4.58%∆ −∆  , 1 3| |= 9.77%∆ −∆

, and  2 3| |= 5.19%∆ −∆ . As we can see from these results, the HPM 
model is closer to the model solved with numerical simulations than 
the HAM model (the comparison between the F M−  and the HPM 
model based on the value of 


 as equal to 1− , and the comparison 

between the F M−  and the HAM model based on the value of 


 as 
equal to 0.04 ).

As we mentioned in the previous section, the convergence depends 
on the convergence-control-parameter 


, and so we plot the  


-curve 

for (0), (0), (0)g dθ θ η  and  (0)dr  as shown in figure 5   for = 30m  in 
Equation (59) i.e. 30 th order approximation. According to figure 5
, the interval of convergence that agrees for all of the corresponding 
solutions is [ 1.87,0.05]∈ −

. In order to emphasize the impact of the 
convergence-control parameter 


 on the solutions profiles we defined 

the terms:

=0.04 =0.04= ,rad HAM F Mτ τ −Σ − 

  (74)

= 1 = 1= ,rad HPM F Mτ τ− −
−Σ − 

  (75)

=0.04 =0.04= ,no rad HAM F Mτ τ− −Σ −    (76)

= 1 = 1= ,no rad HPM F Mτ τ− −
− −Σ −    (77)

which point out the difference (in dimensionless-time) between 
the profiles solutions of the HPM and HAM methods for different    
with the impact of the thermal radiation and without the impact of the 
thermal radiation respectively from the numerical results, and τ refer 
to the ignition time. The results are summarized in table 2. According 
to these results, the HPM and the HAM methods are closed to the 
numerical results for both with and without the impact of the thermal 
radiation.

We have shown the the solutions obtained by HPM and HAM are 
convergent and that they extremely well with numerical simulations. It 
has also been shown that the homotopy perturbation method, which is 
a special case of the homotopy analysis method when = 1−

 , yields 
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Figure  4: Solution profiles of the concentration η τ− ; 1: Full model solved 
numerically with the impact of the thermal radiation, 2: HPM model with the 
impact of the thermal radiation for the = 1−

, (2): HAM model with the im-
pact of the thermal radiation for the = 0.04

, 3: Full model solved numerically 
without the impact of the thermal radiation, 4: HPM model without the impact 
of the thermal radiation, (4): HAM model without the impact of the thermal 
radiation for = 0.04

.

Figure  5: Plot curve for the 30th order approximation.

  Model radiation  no-radiation 
 1: Full-model =0.446306 =0.562209 
 2: HPM =0.482483 =0.585683 
 3: HAM =0.625222 =0.726507

Table 1: The process of cooling before the ignition time for the different models.   
F M− refer to the full-model, HPM with  = 1−

 and HAM with = 0.04 .

  Parameter 
 1: _rad^=0.04=|_HAM^=0.04-_F-M| 0.17891 
 2: _rad^=-1=|_HPM^=-1-_F-M| 0.03617 
 3: _no-rad^=0.04=|_HAM^=0.04-_F-M| 0.16429 
 4: _no-rad^=-1=|_HPM^=-1-_F-M| 0.02347 

Table  2:  The impact of the convergence-control parameter 


 on the solutions 
profiles with and without the impact of the thermal radiation comparing to the nu-
merical simulations.
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convergent solutions for all of the cases considered. These results 
demonstrate that HPM and HAM are very effective analytical methods 
for solving nonlinear problems in science and engineering.

Our next step in this direction is to apply the HPM to the continuous 
model as in our previous work [27,28].
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