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Introduction
The term boundary element method (BEM) denotes any method 

for the approximate numerical solution of boundary integral equations, 
a classical tool for the analysis of boundary value problems for partial 
differential equations [1-3]. More broadly, BEM has been used as a 
generic term for a variety of numerical methods that use a boundary 
or boundary-like discretization [4]. These can include the general 
numerical implementation of boundary integral equations, known as 
the boundary integral equation method, whether elements are used in 
the discretization or not; or the method known as the indirect method 
that distributes singular solutions on the solution boundary; or the 
method of fundamental solutions in which the fundamental solutions 
are distributed outside the domain in discrete or continuous fashion 
with or without integral equation formulation; or even the Trefftz 
method which distribute non-singular solutions [5]. BEMs are gaining 
popularity due to their applications in the vast fields of science and 
technology and it is also being applied for calculating the solution of 
compressible fluid flow problems [6].

The collocation BEM, galerkin BEM, dual reciprocity BEM, 
complex variables BEM, and analog equation method, are some of 
the variants [7]. Their theoretical and mathematical backgrounds are 
carefully described and a generalised Laplace’s equation (and Poisson’s 
equation) is utilised in demonstrating the different approaches involved. 
The different algorithms of boundary element method for parabolic 
equation are presented in, that is, the 1st and 2nd scheme of the BEM 
[8], the BEM using discretization in time, and the BEM using Laplace 
transform. The one-dimensional hyperbolic equation supplemented 
by adequate boundary and initial conditions is considered [9]. This 
equation is solved using the combined variant of the boundary element 
method and in an analytical way. It is here concluded that the BEM 
using discretization in time constitutes the effective numerical method 
of hyperbolic equation solution but it requires a proper choice of time 
step and number of internal cells [10].

With the increasing importance of numerical techniques for 
solving boundary value problems, integral equation methods are 
becoming more and more popular as a starting point for numerically 

solving boundary value problems for the reasons listed [11], one of 
which is, the arising large systems of linear equations are typically 
better conditioned than the direct finite element discretizations of 
the underlying boundary value problem. Although integral methods 
were available many decades ago for the application to flow problems 
of practical interest, a comprehensive study of the formulation and 
application to flow problems are still being considered more recently, 
as they are expected to alleviate sensibly the storage and hopefully CPU 
time [2]. Despite this apparent advantage, requiring less computational 
effort when volume integrals are transformed into surface integrals, 
some disadvantages arise, such as higher mathematical complexity 
in order to get an usable computational formulation; the need for the 
calculation of singular integrals; dense matrices whose inversion is 
more time consuming when comparable with the banded matrices in 
the finite difference and finite element schemes. Iterative solvers have 
been proved to be beneficial in finding efficient solvers for BEM systems 
of equations. Iterative solvers perform matrix-vector multiplication in 
each iteration, which needs O(N2) operations in the conventional way 
and consequently, the total number of operation counts for the BEM 
with iterative solver is reduced from O(N3) to O(N2) [10].

In this paper, solution to the advection-diffusion problem using the 
time discretization approach of the boundary element method has been 
discussed. At some stage of the method, one is required to construct the 
fundamental solution to the elliptic operator, and this has been done. 
Computations that involve the use of the fundamental solution have 
been presented and two test examples provided.
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Abstract
The boundary element method is a numerical computational method of solving partial differential equations which 

have been formulated as integral equations. It can be applied in many areas of engineering and science including 
fluid mechanics, acoustics, electromagnetics, and fracture mechanics. The method can be seen as a weighted 
residual method for solving partial differential equations, characterized by choosing an appropriate fundamental 
solution as a weighting function and by using the generalized Green’s formula for complete transfer of one or more 
partial differential operators on the weighting function. Time discretization approach requires replacing the partial 
derivative of the equation that involves time with a finite difference approximation, and the resulting equation now has 
one variable x with t becoming a constant. In this paper the advection-diffusion equation has been formulated using 
time discretization approach of the boundary element method. The fundamental solution of the elliptic operator has 
been constructed, and test examples provided.
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Problem Formulation
We want to solve the following one-dimensional advection-

diffusion equation:

( ) ( ) ( ) ( ) ( )
2

2 , , ,u u ud x x t x t c x x t
x t x
∂ ∂ ∂

= +
∂ ∂ ∂

                (1)

such that x ∈ [a,b] and t ∈ [0,T], with initial condition

u(x,0)=u0(x),                     (2)

and boundary conditions

u(a,t)=g0(t), u(b,t)=g1(t),                       (3)

where c(x) and d(x) are arbitrary functions, d(x)≠0, and we assume 
that g0 and g1 are smooth functions over the given interval. In this case 
though, we will take c and d as constants.

Advection-diffusion models are intended to make predictions 
through solution of the so called advection-diffusion equation, which 
makes use of probability, time, velocity and the diffusion coefficient 
with spatial variability, and reflects two transport mechanisms: 
advective (or convective) transport with the mean flow, and diffusive 
transport due to concentrations gradients. The models are typically ran 
over a medium term period, say, days to months and they are generally 
limited to small spatial scales.

Developing Boundary Integral Equations
To solve the eqn. (1), the BEM using discretization in time is 

applied. We divide the time interval [0,T] into m pieces, each of length 
∆t=T/m. The corresponding points are denoted tn, for n=0,1,...,m. The 
ends of the interval are t0=0 and tm=T; the interior points are tn=n∆t for 
n=1,2,...,m−1. For the time interval [tn,tn+1] the following approximation 
of time derivative can be used

( ) ( ) ( )1, ,
, n n

n

u x t u x tu x t
t t

+ −∂
=

∂ ∆
                 (4)

so that we have

( ) ( ) ( ) ( )2
1

1 12

, ,
, , 0n n

n n

u x t u x tu ud x t c x t
x x t

+
+ +

−∂ ∂
− − =

∂ ∂ ∆
                    (5)

Let β=0.5c/d, γ=1/d∆t and write un(x)=u(x,tn). eqn. (1) can be At 
the n-th time step the approximately rewritten as

( ) ( )
( ) ( ) ( )

2 1 1
1

2 2 0
n n

n nu x u x
u x u x

x x
β γ γ

+ +
+∂ ∂

− − + =
∂ ∂

                (6)

For eqn. (5), the weighted residual criterion is applied to obtain

( ) ( )
( ) ( ) ( ) ( )

2 1 1
1

2 2 0 , 0
n n

b n n

a

u x u x
u x u x x dx

x x
β γ γ ω ξ

+ +
+ ∂ ∂

− − + = =  ∂ ∂ 
∫     (7)

where ξ ∈ (a,b) is the observation point, ω(x,ξ) is the fundamental 
solution.

Integrating by parts the first two components in eqn. (7) one 
obtains

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 1 1 2

1 1
2 2 2

,
, , ,

bn nb b
n n

a aa

u x u x w x ww x dx w x u x u x x dx
x x x x

ξ
ξ ξ ξ

+ +
+ + ∂ ∂ ∂ ∂

= − + 
∂ ∂ ∂ ∂ 

∫ ∫      (8)

and

( ) ( ) ( ) ( ) ( ) ( )
1

1 1, , ,
nb b

bn n

a
a a

u x ww x dx w x u x u x x dx
x x

ξ ξ ξ
+

+ +∂ ∂ = − ∂ ∂∫ ∫     (9)

so that

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 1 1
1

2

1 2
1 1

2

1 1

1

2 ,

,
, ,

2 , 2 ,

, ,

n nb
n n

a

bn
bn n

a
a

bbn n

a a

b bn n

a a

u x u x
u x u x w x dx

x x

u x w x ww x u x u x x dx
x dx x

ww x u x u x x dx
x

w x u x dx w x u x dx

β γ γ ξ

ξ
ξ ξ

β ξ β ξ

γ ξ γ ξ

+ +
+

+
+ +

+ +

+

 ∂ ∂
− − +  ∂ ∂ 

 ∂ ∂ ∂
= − + 

∂ ∂ 
∂ − +  ∂

− +

∫

∫

∫

∫ ∫

  (10)

This may be simplified as

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1
1 1

2
1

2

,
, 2 ,

2 , 0

bn
n n

a

b bn n

a a

u x w x
w x u x w x u x

dx x

w w w u x dx u x w x dx
x x

ξ
ξ β ξ

β γ γ ξ

+
+ +

+

 ∂ ∂
− − 

∂ 

 ∂ ∂
+ + − + = ∂ ∂ 
∫ ∫

  (11)

Or  
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 1 1

1 1 1

1

, , 2 ,
 ,  ,   2 ,  

 0

n n n

n n n

n n

b q b b u b b u b
a q a a u a a u a

u P

ω ξ ω ξ βω ξ
ω ξ ω ξ βω ξ

ξ ξ

+ + +

+ + +

+

′−
′−

− +

−
+ +
=

        (12)

Where ( ) ( )1
1

n
n u x

q x
x

+
+ ∂

=
∂

                 (13)

And ( ) ( ) ( ),
bn n

a
P u x x dxξ γ ω ξ= ∫                  (14)

For ξ → a+, one obtains after rearranging the terms

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 1

1 1

1 1

 , ,
,   2 ,

,   2 ,  

n n n

n n

n n n

u a a a q a b a q b
a a u a a a u a
b a u b b a u b P a

ω ω
ω βω
ω βω

+ + +

+ +

+ +

+
′=
′

−
+

− − +
               (15)

and in a similar way as ξ → b− one has
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 1

1 1

1 1

 ,  ,

,   2 ,

,   2 ,  

n n n

n n

n n n

u b a b q a b b q b

a b u a a b u a

b b u b b b u b P b

ω ω

ω βω

ω βω

+ + +

+ +

+ +

+ −

′= +

′− − +

                (16)

In eqn. (12) can now be written as
( )
( )

( ) ( )
( ) ( )

( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( )

( )
( )

1 1

1 1

1

1

, ,

, ,

, 2 , , 2 ,

,b 2 , ,b 2 ,b

n n

n n

n n

n n

u a a a b a q a

a b b bu b q b

a a a a b a b a u a P a

a a b b b u b P b

ω ω

ω ω

ω βω ω βω

ω βω ω βω

+ +

+ +

+

+

    −
+    

−        
′ ′     + − −

= +    
′ ′+ − −          

 (17)

or, with ( ) ( ) ( ) ( )1 1 1 1  
T Tn n n nu a u b and q a q b+ + + +    = = u q  in matrix 

form as

= +Gq Hu P                   (18)

where the matrices G and H are 2 × 2 and are defined as

( ) ( )
( ) ( )

, ,

, ,

a a b a

a b b b

ω ω

ω ω

 −
 

−  
G =                    (19)

and
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, 2 , 1 , 2 ,

, 2 , , 2 , 1

a a a a b a b a

a b a b b b b b

ω βω ω βω

ω βω ω βω

′ ′ + − − −
 
′ ′+ − − −  

H =                (20)

This system of equations allows one to find any two of the boundary 
values un+1(a), un+1(b), qn+1(a), or qn+1(b). The right hand side of this 
system can be evaluated using numerical integration, otherwise the 
analytical solution to Pn(ξ) is known and shall be used in the section on 
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numerical results. Next, the values of u at the internal nodes ξ ∈ (a,b) 
are calculated using the formula in eqn. (12), that is

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1

1 1

1 1

 ,  ,

 2 ,  ,

,   2 ,  

n n n

n n

n n n

u b q b b u b

b u b a q a

a u a a u a P

ξ ω ξ ω ξ

βω ξ ω ξ

ω ξ βω ξ ξ

+ + +

+ +

+ +

′= −

− −

′+ + +

                (21)

Construction of the Fundamental Solution
Gnewuch and Saunter [5] noted that in mathematical textbooks 

and also in engineering software packages usually only integral 
equations for the prototype operators such as the Laplace operator, 
the biharmonic operator, the Lame operator, the Stokes operator are 
discussed and realised numerically. They then develop the relevant 
integral equations for the general second order elliptic boundary value 
problems with constant coefficients

Lu := −div(A grad u)+2 〈b,∇u〉+cu,              (22)

since in the farfield, i.e., as |x| becomes large, equations with non 
constant coefficients or nonlinear equations could be linearized. The 
definition of fundamental solutions for L involves Macdonald functions 
Kν which, for example, are stated [7]. These functions are modified 
Bessel functions of the second kind and satisfy the differential equation

( )2 2 2  0x u xu x uν′′ ′+ − + =

for which they are the solution that remains bounded as x tends to 
infinity on the real line. They can be given by the following integral 
representations

( )
1 1

12 2
2

0

2
1

0

1
12 2
2

1 exp
2 2 4

vx vt
v

v
v

e tK x e t dt
x xv

x xt t dt
t

π −− −∞ −

∞ − −

   = +       Γ 
 

  = − −  
   

∫

∫

              (23)

Theorem 1

Let ν=c+〈b,b〉A=0. Then κ0 : ℜ
d → ℜ defined by

( )

( )

,

0 ,

2

1 1 2
2

1 2
2

b x A

b x

d
d A

e In for d
x Adet A

k x
e A for d

d det A x

π

ω −

 =
= 
 ≠ −

               (24)

where ωd is the volume of the unit sphere in ℜd, is a fundamental solution 
of L. For ν≠0, there exists λ ∈ C\(−∞,0) with λ2=ν. A fundamental 
solution κλ is given by

( )
( )

( )
1, 2

/ 2 1
2

, 0
2

d
b x A

A
dd A

xek x K x x
det Aλ λ

λπ

−

−

 
= ≠  

 

               (25)

For d=1, we obtain

( )
( )

( )
1/ 2,

1/ 21/ 2 , 0
2

b x A
A

A

xek x K x x
det Aλ λ

λπ
−

 
= ≠  

 
              (26)

Taking this to our problem means that we seek for a fundamental 
solution ω(x,ξ) which should fulfill the equation

( ) ( ) ( ) ( )
2

2 , 2 , , ,x x x x
x x
ω ωξ β ξ γω ξ δ ξ∂ ∂

+ − = −
∂ ∂

                             (27)

where δ(x,ξ) is the Dirac delta function with the property

( ) ( ) ( ),x u x dx uδ ξ ξ
∞

−∞
=∫                  (28)

We can now write the fundamental solution ω as

( ) ( ) ( )
1/ 2

1/ 2, , 0
2

xx
x e K x xβ ξξ

ω ξ λ ξ ξ
πλ

−
−

 −
= − − ≠ 
 

                 (29)

where λ2=γ+β2 and

( ) ( )
2

1/ 2 1/ 2
1/ 2 0

2 exp
4z
zK z t t dt
t

∞− −
−

 
= − − 

 
∫                 (30)

The solutions to the modified Bessel functions [1] of the first and 
second kind, may be defined in another way by

( ) ( )

( ) ( ) ( )
( )

2

0

1
! 1 2

,
2 sin

k v

v
k

v v
v

zI z
k k v

I z I z
K z

v
π

π

+∞

=

−

 =  Γ + +  

−
=

∑
                 (31)

respectively, when ν is not an integer, and Iν and Kν are the two linearly 
independent solutions to the modified Bessel’s equation.

Some selected identities are

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1
2 2

1

2 2cosh sinh

v v v

I z z and I z z
z z

vI z I x I z
z

π π−

+

= =

′ = +

and from these we can write

( )
( ) ( )

( ) ( )( )

1 1
2 2

1
2

1
2

12 sin
2

2 sinh cosh
2

, 0
2

z

I z I z
K z

z z
z

z e z

π

π

π
π

π

−

−

− −

−
=

 − 
 

= − −

= >

                 (32)

Now, the expression for the fundamental solution may be 
simplified, by substituting for K−1/2(z) and taking z=x−ξ, as

( ) ( )

( )

( )

1/ 2 1
2

1/ 2

2 2

1 exp
2 2

1 exp
2

zzz
z e z e

z
z z

z

z z

λβ πω λ
πλ

π β λ
λπ λ

β λ
λ

− − 
=  
 

 
= ⋅ ⋅ −  
 

= −

               (33)

It can be verified that

( ) ( )( ) ( )1 sgn exp
2

z z z z
z
ωω β λ β λ

λ
∂′ = = − −
∂

,                (34)

and

( ) ( ) ( )( ) ( )1 exp
2 sgn

x b

n n

x a

P u x z z
z

ξ γ β λ
λ β λ

=

=

 
= − 

−  
          (35)

Computations Involving ω(x,ξ) at Boundary Points
Consider a region bounded by 0 ≤ x ≤ 1 and 0 ≤ t ≤ 1, with c=1.0 
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and d=0.01. On the basis in eqn. (33), we have the following values of 
ω(x,ξ)

( ) ( )( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( )

1 10,0 exp 0 0 ,
2 2
1 11,0 exp 1 1 exp ,

2 2
1 10,1 exp 1 1 exp ,

2 2
1 11,1 exp 0 0 ,

2 2

ω β λ
λ λ

ω β λ β λ
λ λ

ω β λ β λ
λ λ

ω β λ
λ λ

= − − =

= − − = − −

= − − − − = −

= − − =

               (36)

and values of ( ( ),xω ξ′ ) are computed using in eqn. (34) as follows

( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( ) ( )

( ) ( )( ) ( )( ) ( ) ( )

( ) ( )( ) ( )( ) ( )

0,0

1 11,0 sgn 1 exp 1 1 exp ,
2 2
1 10,1 sgn 1 exp 1 1 exp ,

2 2
1 11,1 sgn 0 exp

1

0 0 ,
2 2

1sgn 0 exp 0 0 ,
2 2

b

aω

ω β λ β λ β λ β λ
λ λ

ω β λ β λ β λ β λ
λ λ

ω

β λ β λ β

β λ β λ β λ
λ

λ
λ λ

λ

+

−

′

′ = − − − −

= − − −

= − − − −

′ = − − − − − − − = − + −

′ = − − − −

−

= −

+

−

− =

  (37)

where sgn(0a) and sgn(0b) stand for the sign of x−ξ as ξ → 0+ and ξ → 1−, 
respectively.

Also,

( ) ( ) ( )

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

1

0
1

0

,

1 exp
2 sgn

11 exp 1 1
2 sgn 1

10 exp 0 0
2 sgn 0

n n

n

n

n

P u x x dx

u x x x
x

u

u

ξ γ ω ξ

γ β ξ λ ξ
λ β λ ξ

γ β ξ λ ξ
λ β λ ξ

γ β ξ λ ξ
λ β λ ξ

=

 
= − − − − 

− − −  

 
= − − − −  − − − 

 
− − − − −  − − − 

∫

  (38)

and thus,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 10 1 exp 0
2

1 11 1 0 exp
2

n n n

n n n

P u u

P u u

γ β λ
λ β λ β λ

γ β λ
λ β λ β λ

 
= − − − − − − + 

 
= − − − − − + 

            (39)

Test Examples
Example 1

Consider the one-dimensional advection-diffusion in eqn. (1) in a 
region bounded by 0 ≤ x ≤ 1 and 0 ≤ t ≤ 1, with c =1.0 and d=0.1, with 
exact solution

( ) ( )20.50.025, exp
0.00125 0.040.000625 0.02

x t
u x t

tt

 + −
 = −
 ++  

               (40)

Here we started with ∆t=0.25 to obtain β=0.5c/d=5,γ=1/(d∆t)=40, 

and 2 8.063λ γ β= + = . The fundamental solution and its derivative 
will be computed using the expressions

( ) ( )( )

( ) ( )( ) ( )( )

1, exp
2

1, sgn exp
2

x x x

x x x x

ω ξ β ξ λ ξ
λ

ω ξ β λ ξ β ξ λ ξ
λ

= − − − −

′ = − − − − − − −

   (41)

Now, taking ξ ∈ (0,1) and ∆x=0.25, we have these values for ω(x,ξ) 

and ( ),xω ξ′ at the end points a=0 and b=1 (Table 1).

From these, we obtain two-column matrices Gx and Hx for all values 
of ξ using the formulae

( ) ( ), ,x a b aω ξ ω=  −  G

( ) ( ) ( ) ( ), 2 , , 2 ,x a a b bω ξ βω ξ ω ξ βω ξ′ ′=  + − −  H                (42)

The values of u at the boundary are computed using the expression 
for the exact solution (Table 2).

Now, assuming that u is known at the boundary, q can be obtained 
using

n= +Gq Hu P                    (43)

where the symbols are already explained. The values of G and H are

0.0620 0.0000
0.0029 0.0620

0.1899 0.0000
0.0379 0.8101

− 
=  − 

− 
=  − 

G

H

                  (44)

Table 1 shows exact values for u and computed values q, at the 
boundary. Now we can have the approximations of u for selected 
values of x and t shown in Table 1. Here, we have used the formula in 
eqn. (12).

Example 2

This is a similar problem to one presented in a previous example. 
However, we apply different initial and boundary conditions, that is 
Table 3,

u(x,0)=sin(x)

for the initial condition, and the boundary conditions will be obtained 
from the exact solution in Table 4.

ξ ω(a,ξ) ω(b,ξ) ω0(a,ξ) ω0(b,ξ)
0.00 0.0620 0.0000 0.1899 -0.0000
0.25 0.0228 0.0000 0.0883 -0.0000
0.50 0.0134 0.0001 0.0411 -0.0012
0.75 0.0062 0.0024 0.0191 -0.0309
1.00 0.0029 0.0620 0.0089 -0.8101

Table 1: Values of ω(x,ξ) at a and b.

t 0.00 0.25 0.50 0.75 1.00
u(0,t) 0.0000 0.0013 0.2425 0.0271 0.0004
u(1,t) 0.0000 0.0000 0.0000 0.0000 0.0004
q(0,t) - -0.0039 -0.7595 -3.2509 -0.3548
q(1,t) - -0.0010 -0.1830 -0.0204 0.0050

Table 2: Values of u(x,t) at x=a and x=b.

(ξ,t) ∆t=0.25 ∆t=0.125 ∆t=0.0625 Exact u
(0.25,0.25) 0.0006 0.0003 0.0002 0.0000
(0.50,0.25) 0.0003 0.0001 0.0000 0.0000
(0.75,0.25) 0.0001 0.0000 0.0000 0.0000
(0.25,0.50) 0.1128 0.0653 0.0282 0.0128
(0.50,0.50) 0.0524 0.0176 0.0033 0.0000
(0.75,0.50) 0.0240 0.0047 0.0004 0.0000
(0.25,0.75) 0.0126 0.0075 0.0032 0.2000
(0.50,0.75) 0.0059 0.0020 0.0004 0.0271
(0.75,0.75) 0.0027 0.0005 0.0000 0.0001

Table 3: Approximation values of u(x,t).
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u(x,t)=exp(−0.1t)sin(x − t)

Taking ∆t=0.25 gives the following values of u at the boundary and 
the corresponding q values starting at the next level Table 5.

Conclusion
We have used the time discretization approach of the boundary 

element method to solve the advection-convection equation. The 
fundamental solution of the resulting elliptic operator has been derived 
from Macdonald’s functions, and later used in the method. Two 
test examples were used to show that the method gives good results 
for small values of ∆t. Solutions for various increments of time have 

t 0.00 0.25 0.50 0.75 1.00
u(0,t) 0.0000 -0.2413 -0.4560 -0.6324 -0.7614
u(1,t) 0.8415 0.6648 0.4560 0.2295 0.0000
q(0,t) - 0.3789 4.5484 7.8935 10.5920
q(1,t) - 11.4427 8.3368 4.8717 1.2772

Table 4: Values of u(x,t) at x=a and x=b.

(ξ,t) ∆t=0.25 ∆t=0.125 ∆t=0.0625 Exact u
(0.25,0.25) -0.1122 -0.0650 -0.0281 0.0000
(0.50,0.25) -0.0512 -0.0172 -0.0032 0.2413
(0.75,0.25) 0.0015 0.0100 0.0060 0.4676
(0.25,0.50) 0.2121 -0.1228 -0.0531 -0.2353
(0.50,0.50) -0.0979 -0.0329 -0.0061 0.0000
(0.75,0.50) -0.0276 0.0012 0.0036 0.2353
(0.25,0.75) -0.2941 -0.1703 -0.0736 -0.4448
(0.50,0.75) -0.1364 -0.0458 -0.0086 -0.2295
(0.75,0.75) -0.0537 -0.0072 0.0012 0.0000

Table 5: Approximation values of u(x,t).

been compared, that is, ∆t=0.25,0.125,0.0625 and results showed that 
smaller values of ∆t give better approximations of the solution.
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