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Introduction 
The Nile constitutes the essential source of life in Egypt; it 

provides people with their fresh water needs. It is an essential factor of 
production and vital for agriculture, transport, tourism and henceforth 
the socio-economic development of the country. However, the Nile 
has become, to a great extent, adversely affected by human activities. 
On the other hand, industrial waste discharge, leakage of sewage by 
urban agglomeration and agricultural runoff contributes to the Nile 
contamination [1].

Surface water quality deterioration at the intakes of Cairo water 
treatment plants along River Nile due to increasing level of some 
pollutants concentration above the guidelines paid the attention 
of public concern and may cause health hazards. Thus, the need for 
better management of Cairo treatment plants water sources quality is 
becoming essential.

Multivariate statistical techniques can be used to characterize and 
evaluate surface water quality; they are useful in verifying temporal and 
spatial variations caused by natural and anthropogenic factors linked 
to seasonality. Multivariate analysis of variance determines if there are 
any significant differences between several groups of multivariate data.

Principal component analysis includes correlated variables with 
the purpose of reducing the numbers of variables and explaining the 
same amount of variance with fewer variables (principal components).

Fuzzy C-means (FCM) can be achieved through more careful and 
informed initialization based on data content. By carefully selecting 
the cluster centers in a way which disperses the initial cluster centers 
through the data space, the resulting FCM approach samples starting 
cluster centers during the initialization phase. The cluster centers are 

well spread in the input space, resulting in both faster convergence 
times and higher quality solutions.

K-means can be used for cauterizing monitoring stations with 
similar water quality characteristics. K-means cluster analysis is a 
divisive clustering method with k number of groups set a priori to 
analysis [2]. Once the number of clusters is set as an input and cluster 
centroids are initialized, observations are added iteratively to the most 
similar cluster, whose centroid is then recalculated until all of the 
observations are grouped [3].

Study area
Cairo, located on the Nile River south of the Mediterranean Sea, just 

upstream of the point where the river widens into the Delta. Cairo has 
an area of 353 km2 with an average reach length along the river about 
50 km (from 900 to 950 km referenced to Aswan High Dam). Figure 1 
illustrates the study area layout which covers Cairo Governorate along 
the River Nile, bounded by El Saff town (Giza Governorate) at 877 km 
from the South and El Kanater town (Qalubia Governorate) at 953 km 
from the North. The study scope will focus on the upstream of drinking 
water plants located in Cairo Governorate along Nile River (Tibeen, 
Kafr Elw, North Helwan, Maadi, Fostat, El Roda and Rod Farg).
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Cairo drinking water plants (CDWPs)

Cairo water company (CWC), a subsidiary of the holding company 
of water and wastewater; produces potable water with an amount 
reaches to 6 million m3/day used by inhabitants of Greater Cairo. This is 
done through 13 Cairo drinking water plants (Tibeen, Kafr Elw, North 
Helwan, Maadi, Fostat, El Roda, Rod El Farg, Amerea, Mostrod, El 
Marg, El Obour, El Asher and Shubra el Khiema) distributed in Greater 
Cairo. Table 1 shows the annual average raw water, treated water and 
sludge and washing water for Greater Cairo drinking water plants [4]. 
From Table 1 and according to the study scope which focus on seven 
CDWPs located on Cairo Governorate along Nile River only (Tibeen, 
Kafr Elw, North Helwan, Maadi, Fostat, El Roda and Rod Farg).

Materials and Methods
Data requirements

Surface water samples were collected from various sampling 
locations of rivers, canal, drains and industrial pollution sources of 
the study area. The analyses of water samples were carried on twenty 
water quality parameters according to the standard methods for the 
examination of water and wastewater for twelve consequence months 
during two years (2017 and 2018) to show the effect of the spatial and 
temporal variation.

These water quality parameters included: pH, turbidity, electric 
conductivity (EC), total hardness, total dissolved solids (TDS), total 
alkalinity, sulfates, chlorides, ammonia (NH3), nitrates (NO3), nitrites 

(NO2), phosphate, iron, manganese, calcium, magnesium, aluminum, 
biological oxygen demand (BOD), chemical oxygen demand (COD), 
dissolved oxygen(DO) and total coliform (TC).

Methods

The methods consisted of four main components as follows:

1.	 Perform the principal component analysis

2.	 Develop the dominant water quality parameters

3.	 Develop the optimum number of clusters by using Fuzzy 
C-Means (FCM)

4.	 Apply K-means algorithm technique to produce the generalized 
characteristics of clusters using the dominant parameters 
normalized data.

Principal component analysis: Principal component analysis 
(PCA) is mainly applied for the removal of data noise by the reduction 
of their dimensionality [5]. PCA searches new abstract orthogonal 
principal components (eigenvectors) which explain most of the data 
variation in a new coordinate system. Each principal component 
(PC) is a linear combination of the original variables and describes a 
different source of variation.

PCi=w1x1+w2x2+…+ wnxn                      (1)

where xi and wi are the original variable and the component weight, 
respectively.

Before the computation, the testing data were standardized in order 
to avoid misclassifications arising from different orders of magnitude 
of tested variables. Therefore, the original data were meaning (average) 
centered and scaled by the standard deviations.

Procedural steps of the PCA [6] are:

•	 Number of components equal to number of variables is 
generated

•	 The number of components to retain is determined

•	 Components are rotated (rotations is a linear transformation of 
the solution to make interpretation easier)

•	 Rotated solution is interpreted

Figure 1: Study area layout

Treated water 
production (m3/

day)

Raw water 
(m3/day)

Surface 
water 

source

Plant intake 
geographic 

location

Drinking 
water plant

155649 178608 River Nile Cairo Tibeen
70728 78238 Kafr Elw

283539 321003 North 
Helwan

161772 209179 Maadi
1046974 1114381 Fostat
164625 323216 El Roda
720908 819695 Rod El Farg
389853 404226 Ismailia 

Canal
Cairo Amerea

1155899 1281328 Mostrod
526232 650000 El Marg
790000 860000 New Cities El Obour
500000 600000 El Asher
358091 379146 Sharkawia 

Canal
Qalubia Shubra el 

Khiema

Table 1: CDWPs surface water source, annual average raw water and treated 
water.
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Dominant water quality parameters: In this study, to determine 
the main dominant water quality parameter, varimax rotation used as 
an effective orthogonal rotation method that minimized the number 
of variables that have high loading on each factor. The varimax 
coefficient having correlation greater than 0.75 are considered as 
strong and indicate high proportion of its variance explained by the 
factor, between 0.50 and 0.75 is considered as moderate loading while 
0.30-0.50 as weak significant factor loading, indicating much of that 
attribute’s variance remains unexplained and it is less important [7].

Fuzzy C-means clustering (FCM) analysis: FCM applied for 
clustering the raw data into several categories using the selected 
operators without respect to any predetermined criteria in relation to 
each category. Most of the rules designed for FCM are based on the 
proper search for centroids or representative objects around which all 
observations will be clustered on a minimum basis [8,9].

FCM seeks to minimize the following objective function, C, made 
up of cluster memberships and distances [10].

In fuzzy clustering, the following coefficients must be determined:

i. Dunn’s partition coefficient may be normalized so that it 
varies from 0 (completely fuzzy) to 1 (hard cluster). The normalized 
version is:

( ) ( ) ( )
( )

1 /
1 1 /

F U K
Fc U

K
−

=
−

ii. Another partition coefficient, given in Kaufman (1990) is:
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iii. The normalized version of this equation is:
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Fc (U) and Dc (U) together give a good indication of an optimum 
number of clusters. We should choose K so that maximize the value of 
Fc (U) and minimizes Dc (U) [10].

K-means algorithm: K-means is a simple and efficient algorithm. 
It divides n observations into given K clusters and each observation 
belongs to cluster with nearest mean.

It uses the sum of square error criteria. The cluster pattern is 
assigned when sum of square error is minimum. The sum of square 
error equation (SSE) for K-means is given by Kaufman and Rousseeuw 
[10]:

2

i i
ic x c

SSE x m
∈

= −∑ ∑
where mi is the mean of the ith cluster and x∊Ci is a pattern assigned to 
that cluster. The K-means clustering has advantage over other methods 
as it can be used to assign new cases to the existing clusters.

Results and Discussion
Descriptive statistics

Table 2 shows the details of descriptive statistics for the water 
quality variables measured in two years.

Principal component analysis

The calculated principal components loadings, eigenvalues, total 
variance and cumulative variance are shown in Table 3, while the scree 
plot of the eigenvalues of observed components is depicted in Figure 2.

The results of principal components analysis illustrated in Table 
3 and Figure 2 of Cattel scree plot  show that of the 20 components, 
only 6 had extracted eigenvalues over 1 [11]. This is based on Chatfield 
and Collin [12] assumption which stated that components with 
an eigenvalue of less than 1 should be eliminated. The extracted 6 
components were subsequently rotated according to varimax rotation 
in order to make interpretation easier and fundamental significance of 
extracted components to the water quality status of the selected study 
period. The result of rotation revealed further, the percentages of the 
total variances of the 6 extracted components when added account 
for 75.82% (that is their cumulative variance) of the total variance of 

Variables Mean Standard Deviation Minimum Maximum
pH 8.291 0.041 8.2 8.45

Turbidity 7.751 2.294 2.81 13.96
EC 420.622 59.143 338 584

Total hardness 128.623 12.188 116 164
TDS 278.514 40.173 176.5 385.44

Total alkalinity 151.42 7.131 138 170
Sulphates 24.679 8.608 11.77 48.28
Chlorides 25.226 7.461 11.52 51

Ammonia (NH3) 0.15 0.09 0.01 0.47
Nitrates (NO3) 0.336 0.311 0.01 1.22
Nitrites (NO2) 0.035 0.051 0.01 0.49

Iron 0.208 0.185 0.003 0.69
Manganese 0.016 0.017 0.002 0.064

Calcium 31.47 2.696 22.8 38.4
Magnesium 11.934 1.778 0.03 17.28
Aluminium 0.052 0.037 0.001 0.14

BOD 3.851 0.202 3.37 4.12
COD 17.013 0.177 16.58 17.47
DO 7.473 0.153 2 7.99
TC 20106.33 3327.82 14000 24000

Table 2: Mean and standard deviation of surface water quality parameters.

Variables PC1 PC2 PC3 PC4 PC5 PC6
PH 0.241 0.038 -0.085 -0.385 -0.054 0.701
Turbidity -0.124 0.455 -0.065 0.135 0.6 0.046
EC 0.902 0.134 -0.091 0.165 0.105 0.05
Total hardness 0.887 0.149 0.046 -0.124 0.121 0.059
TDS 0.889 0.196 -0.082 0.154 0.131 0.059
Total alkalinity 0.65 -0.529 -0.132 0.29 0.078 0.169
Sulfates 0.833 -0.115 -0.278 0.071 0.036 -0.016
Chlorides 0.818 -0.454 -0.106 0.147 0.038 -0.001
Ammonia (NH3) -0.137 -0.001 0.043 -0.13 0.853 -0.043
Nitrates (NO3) -0.674 -0.122 -0.083 0.17 -0.43 -0.205
Nitrites (NO2) -0.336 -0.183 -0.134 0.362 0.028 0.256
Iron -0.038 0.879 -0.075 -0.134 0.158 0.116
Manganese 0.088 0.819 0.007 0.09 0.038 -0.018
Calcium 0.726 0.536 0.003 -0.151 0.088 0.075
Magnesium 0.811 -0.24 0.087 -0.079 0.075 0.005
Aluminum -0.332 0.133 0.042 0.353 0.286 0.589
BOD 0.099 0.045 0.938 0.065 0.009 0.065
COD 0.096 -0.099 0.926 0.086 0.017 -0.144
DO 0.353 -0.002 0.025 -0.127 0.062 0.666
TC 0.066 0.003 -0.167 0.76 0.1 0.021
% Variability 31.48 13.29 9.73 6.55 7.36 7.4
Cumulative 
percentage

31.48 44.78 54.51 61.06 68.42 75.82

Table 3: Principal component analysis after varimax rotation.
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the observed variables. This indicates that the variance of the observed 
variables had been accounted for by these 6 extracted components.

As it is obvious, the first principal component (PC1), accounts 
for 31.48% from total variation, can be called as an indication of salt 
component because it is mainly saturated with conductivity, hardness 
(including calcium). PC1 accounts show a strong loading on EC (0.902), 
TDS (0.889), total hardness (0.887), sulfates (0.883), chlorides (0.881), 
magnesium (0.811), while moderate loading on calcium (0.726), 
nitrates (0.674) and total alkalinity (0.65). Electric conductivity(EC) 
measurements indicate the presence of dissolved salts and electrolytic 
contaminants, but it gives no information about specific ion 
compositions [13].There was a strong positive correlation between 
TDS and EC values which revealed positively strong correlation to each 
other (r=+0.99), so the study results were in accordance with Toufeek 
and Korium [14].

The second principal component (PC2), accounts for 13.29%, is 
associated with strong loading on iron (0.879) and manganese (0.819), 
while moderate loading on calcium (0.536). The concentration of iron 
and manganese recorded higher attribute due to the intense of human 
activities and industrial effluents from for iron and steel companies.

The third principal component (PC3) described 9.73% of the total 
variance had a strong positive loading on BOD (0.938) and COD 
(0.926). These factors loading explained the effects of organic pollution 
and reflect strong influence of anthropogenic activities in the area, 
probably from domestic waste and industrial waste. High BOD and 
COD levels in the study area are related to the existence of high bacterial 
load and organic matters as well as relative high temperatures which 
enhance the enumeration of bacteria. However all results of study area 
water samples were higher than the permissible limit guidelines (COD 
should not exceed 10 mg/L) according to Egyptian National water 
quality standards, Law 48/1982 regarding the protection of the River 
Nile and waterways from pollution.

Out of the total variance, 6.55% is explained by the fourth principal 
component (PC4), is mainly carried by TC with a positive strong 
correlation (0.76) that is indicators for water contamination. The high 
counts of total coliform might be due to pollution by industrial activities 
discharging their wastes to the Nile water in Cairo [15]. All results of 
Nile water samples were higher than the permissible limit guidelines 
(TC should not exceed 5000 cfu/100 mL) according to Tebbutt [16]. 
The study results also agree with Rabeh [17].

Additionally, 7.36% of the total variance of water quality is 
exhibited by NH3 with a strong positive loading under the fifth principal 

component (PC5). NH3 is closely related to the organic matter contents 
of the sediment and this high amount of nutrients might also result 
from the application of manure in agricultural activities [18].

The six principal component (PC6), with 7.4% of the total variance, 
consists mainly of pH (0.701) and DO (0.701) with a moderate loading. 
This factor resulted due to the anaerobic conditions in the river from 
the strong loading of dissolved organic matter which leads in the 
formation of organic acids. pH value has an effect on the biological, 
chemical reactions, as well as it controls the metal ion solubility 
and thus it affects the natural aquatic life. The study results were in 
accordant with Toufeek and Korium [14].

Based on the component loadings, the variables are grouped 
accordingly with their designated components as follows:

a. Component 1: EC, TDS, total hardness, sulfates, chlorides, 
magnesium, calcium, nitrates and total alkalinity.

b. Component 2: Iron and manganese.

c. Component 3: BOD and COD.

d. Component 4: TC.

e. Component 5: NH3.

f. Component 6: pH and DO.

Dominant water quality parameters

The dominant parameters identified by the PCA are: EC, iron, 
BOD, TC, NH3 and pH (Table 3). The previous discussion indicated 
that most of measured water quality parameters such as EC, TDS, total 
hardness, different major ions and total alkalinity, loaded with positive 
values, and they have strong effects on PC1. EC has the maximum 
strong loading value in PC1. Thus, EC is considered as a dominant 
parameter.

The iron is considered as the next dominant water quality 
parameter as it is loaded strong in PC2 with the highest positive values. 
Also, the concentrations iron in the Nile water causes the exceedance 
of the drinking water guidelines, particularly at the anthropogenic 
impact points, where, iron is regulated by secondary drinking water 
contaminant that may cause offensive taste, odor, color corrosion or 
staining problems.

The BOD is considered as the third dominant water quality 
parameter as it is loaded strong in PC3 with highest value (0.938). 
These two parameters (BOD and COD) may have a strong relationship 
with each other, particularly the discharge of industrial and agricultural 
effluents containing a large amount of organic matter [19].

The TC is considered as the fourth dominant water quality 
parameter as it is loaded strong in PC4 with highest value (0.760).

The ammonia is considered as the fifth dominant water quality 
parameter as it is loaded strong in PC4 with highest value (0.853). 
Ammonia may result from fertilizers that are present in soil and it 
is relatively easily oxidized to nitrite and finally to nitrate [20] and it 
possesses a serious threat to public health.

The pH is considered as the third dominant water quality parameter 
as it is loaded strong in PC3 with highest value (0.701). pH value has 
an effect on the biological, chemical reactions, as well as it controls the 
metal ion solubility and thus it affects the natural aquatic life. Moreover 
pH could control the pathogenic microorganism growth [21].
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Cluster analysis

Optimum number of clusters: FCM applied to determine the 
optimum number of clusters (k) that maximize the value of Fc (U) and 
minimizes Dc (U) [10]. Table 4 illustrates the values of Fc (U) and Dc 
(U) with the corresponding number of clusters. FCM results illustrated 
in the Table 4, it noticed that the optimum number of clusters for the 
study area is three clusters which satisfies the above conditions.

Clusters characteristics: According to the optimum number of 
clusters which determined by using FCM in the previous step, K-means 
algorithm applied to produce the generalized clusters characteristics 
using the dominant parameters. After finding medians of clusters, 
the clusters are developed by assigning each object of dataset to the 
nearest medians of the clusters. The dissimilarities from each of the 
objects in the dataset from these centers of the clusters are determined 
using Euclidean distance. Cluster Centers are selected on the basis 
of the minimum distance. Silhouette is used for interpretation and 
validation of clusters [10]. Table 5 and Figure 3 illustrate generalized 
characteristics mean values and the six dominant parameters mean 
values of the three clusters respectively. It is obvious from Table 5 
and Figure 3 for the K-means algorithm results, as the cluster number 
changed from 1 to 3, the value of the six dominant parameters and the 
water quality deterioration increased [22-27].

DWPs and monitoring stations clusters allocation: According 
to the K-means algorithm generalized clusters characteristics results, 
the allocation for CDWPs and monitoring stations clusters were 
developed. The output of the cluster characteristics analysis is dispensed 

in dendogram (Figure 4). Dendogram gives the picture of the clusters 
describing the spatial variation in the water quality and the grouped 
monitoring stations, CDWPs of each cluster.

Based on the results of cluster analysis, stations and CDWPs 
grouped under each cluster in Figure 4, it was concluded that: The 
first cluster, mainly located in the upstream of the study area with less 
polluted (LP) stations, included the stations from 878 to 868 and three 
DWPs (Tibeen, Kafr Elw and North Helwan). The changes in water 
quality in this cluster were mainly due to the agricultural drainage 
water mixed with partially treated or untreated domestic wastewater, 
industrial wastewater and wastewater from these three drinking water 
plants sludge disposal.

The second cluster, comprised only the three DWPs (Maadi, 
Fostat and El Roda) with moderate pollution (MP), is mainly affected 
by the cumulative pollution from the previous cluster in additional 
to the wastewater from the three mentioned drinking water plants 
sludge disposal. The common feature of these sites was relatively high 
dominant parameters concentrations compared to the first cluster.

The third cluster located in the downstream of the study area, 

Number of clusters (K) Fc (U) Dc (U)
2 0.3333 0.9998
3 0.25 1.0122
4 0.2 1.0131
5 0.1667 1.0134
6 0.1429 1.0136
7 0.125 1.0137
8 0.3333 0.9998

Table 4: Results of optimum number determination

Dominant Parameter Cluster 1 Cluster 2 Cluster 3
pH 8.303 8.34 8.401
Turbidity 8.052 8.5382 10.537
EC 414.611 502.888 539.111
Total hardness 148.444 153.2 164.666
TDS 334.976 363.307 398.026
Total alkalinity 143.222 150.622 163.777
Sulphates 23.484 25.683 27.358
Chlorides 19.777 20.3 24.777
Ammonia 0.225 0.12 0.228
Nitrates 0.497 0.531 0.684
Nitrites 0.118 0.126 0.217
Iron 0.12 0.155 0.617
Manganese 0.006 0.014 0.039
Calcium 34.022 34.302 34.666
Magnesium 10.854 11.141 11.3
Aluminium 0.069 0.043 0.068
BOD 3.792 3.852 3.944
COD 16.975 17.006 17.95
DO 7.219 7.402 7.563
TC 18266.67 19922.22 21666.67

Table 5: Clusters centers mean values.
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included Rod El Farag DWP and the different stations from 932 to 950 
along the river, had the highest pollution level (HP). These stations are 
distinguished from other stations concerning the level of pollution and 
have the most distance from other stations.

Conclusions
This study presents the application of multivariate statistical 

techniques to evaluate the water quality upstream Cairo drinking water 
plants along Nile River. The paper outcomes can be beneficial for:

•	 Understand quality of source waters (i.e., lakes, rivers, and 
other water bodies) that supply drinking water to big and small 
communities in any region of the world,

•	 Apply the study methodology on the monthly, seasonal or 
yearly water quality sampling data to identify major principal 
component analysis (PCA) and extract dominant parameters, and

•	 Allocation of clusters to source waters might be helpful to 
understand the effect of natural processes, pollution types, and 
seasonal changes on the water quality of source waters. 
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