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Abstract

In the present paper, a numerical method is proposed for the numerical solution of a coupled-BBM system with
appropriate initial and boundary conditions by using collocation method with septic B-spline on the uniform mesh
points. The method is shown to be unconditionally stable using von-Neumann technique. To test accuracy the error
norms L,, L _are computed. Furthermore, interaction of two and three solitary waves are used to discuss the effect
of the behavior of the solitary waves after the interaction. These results show that the technique introduced here is
easy to apply. We make linearization for the nonlinear term.

Keywords: Collocation method; Septic B-Splines method; Coupled-
BBM system

Introduction

In this paper, we consider the Coupled-BBM system, which belongs
to the class of Boussinesq systems, modeling two-way propagation of
long waves of small amplitude on the surface of water in a channel.
The system is a good candidate for modeling long waves of small to
moderate amplitude. The Coupled-BBM system is given by Bona and
Chen [1],

=0, (1)

1
Ve +uy, +(vu)x _gv xxt

1
u, +v, +uu, —gu =0, @)
Where subscripts x and ¢ denote differentiation x distance and ¢
time, is considered, v(x,t) is a dimensionless deviation of the water
surface from its undisturbed position and u(x,t) is the dimensionless
horizontal velocity above the bottom of the channel.

Boundary conditions
u(a,t)y=ca,, u,t)=a,,
via,t)=p, v(b,t)=p,, 0<t<T. o)
u (a,t)=0, u(b,t)=0,
v.(a,t)=0, v (b,t)=0, 0<¢<T.

And initial conditions.

u(x0) = /() W
v(x,0)=g(x) a<x<bh

One of the advantages that equation (1) has over alternative
Boussinesq-type systems is the easiness with which it may be integrated
numerically [2]. Furthermore, it was proved in [2,3] that the initial
value problem either for x € R or with boundary conditions (x € [a,b])
for (1) is well posed in certain natural function classes. The initial-
boundary value problem of the form (1) posed on a bounded smooth
plane domain with homogenous Dirichlet or Neumann or reflective
(mixed) boundary conditions which is locally well-posed [4]. The
existence and uniqueness of the system have been proved in Bona et al.
[3]. They investigated the solution of the system as integral equation,

while Chen [5] in his article established the existence of solitary waves
for several Boussinesq types, including the Coupled-BBM system.
Various numerical techniques including the finite element method have
been used for the solution of Bona-Smith system of Boussinesq type
in Antonopoulos et al. [6]. SS Behzadi and A Yildirim, using Quintic
B-Spline Collocation Method for Solving the Coupled-BBM System
[7]. ES Al-Rawi and MAM Sallal, using finite element method to fiend
the Numerical solution of Coupled-BBM system [8]. Chen fined the
exact traveling-wave solutions to bidirectional wave equations [9]. The
numerical solutions of coupled nonlinear systems are very important
in applied science, for example, the hirota-satsuma coupled KDV
equation which admits soliton solution and it has many applications
in communication and optical fibers; this system has been discussed
numerically by Raslan et al. finite element methods [10]. Also, the
Hirota equation has been solving by Raslan et al. using finite element
methods [11]. A finite element algorithm based on the collocation
method with trial functions taken as septic B-spline functions over the
elements will be constructed. The septic B-spline basis together with
finite element methods are shown to provide very accurate solutions in
solving some partial differential equations and have been used before
by several authors. In this article we are going to derive a numerical
solution of the coupled BBM-system. The brief outline of this paper is
as follows. In Section 2, septic B-spline collocation scheme is explained.
In Sections 3 and 4, the method is described and applied to the coupled
BBM-system. In Section 5, stability of the method is discussed. In
Section 6, numerical examples are included to establish the applicability
and accuracy of the proposed method computationally. Conclusion is
given in Section 7 that briefly summarizes the numerical outcomes.
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Septic B-spline Functions

To construct numerical solution, consider nodal points (xj,tn)
defined in the region [a,b]x[0,T] where
h=x,,-x;,= b-a
az J N’

0=ty <t <..<t,<..<T, tig —t;=At 1, =nAt,

a=x9<x <..<xy=b, j=0,1..N.
n=0,1,.....

The septic B-spline basis functions at knots are given by:

a, :(x—xj74)7 X, SXSX,
a2=a1—8(x—x/.73)7 X, 3 SXSX,,
a}=a2-%—28(x—xj72)7 X, SXSX;,

a, =a, —56()6—)6/71)7 ,X, Sx<x,

B].(x)zhi7 b, =b; —56(x,,, -x) 2X, SXSX, ()

by =b, +28(x,,, -x) X SXSX,,

b, =b, —8(x,+3—x)7 X XX,

b =(x,,; -x) X3 SXSX,

0 ,otherwise

Using septic B-spline basis function (5) the values of Bj(x) and its
derivatives at the knots points can be calculated, which is tabulated in
Table 1.

Solution of Coupled-BBM System
To apply the proposed method, we rewrite (1) and (2) as

v, 6uéx,l) +[u(x’t)6véx,t) . v(x,t)au (x,t)j _l[ o (x,t)} _o,
X X

ot ox 6| ox’or
3
Ou (x,t) . ov(x,t) +(u x.0) ou (x,l)} 1| ou gx,t) -0,
ot ox ox 6| ox'ot

we take the approximationsu(x,:)=Ujandv(x,t)=V], then
from famous Cranck-Nicolson scheme and forward finite difference
approximation for the derivative ¢, [12]. We get

vt USTU) +{(UVY)"/‘ AT ST +<VUY>';}_
k 2 2 2
-+l n (6)
L)+ o
6 k ’
upt-uy vty fw ot op ] afeortrwor]
L -0, 7)
k 2 2 6 [ (

Where k=At is the time step (Table 1).

In the Crank-Nicolson scheme, the time stepping process is half
explicit and half implicit. So the method is better than simple finite
difference method.

The nonlinear terms in Eqs. (6) and (7) is linearized using the
form given by Rubin and Graves [13] as: we take linearization of the
nonlinear term as follows

nel _prnysontl nilysn nysn
(UVX)j —UJVX; +UI.+ V”. —UJVU,
(VUX)ZH _ V/.”U)_;H n VJMUX; _ V/.”U)_;, (8)

(UUX)";+l = U/”Ux';+1 + U/’.’“ij - UJ"UX'/X
Expressing U(x,t) and V(x,t) by using septic B-spline functions
B](x) and the time dependent parameters cj(t) and 8],(t), for U(x,t) and

V(x,t) respectively, the approximate solution can be written as:

N+3 N+3
Uy = Y c;()B;(x), Vy(x.0= 3.5;()B;(x), 9)
j=-3 J==3

Using approximate function (9) and septic B-spline functions (5),
the approximate values U(x), V(x) and their derivatives up to second
order are determined in terms of the time parameters cj(t) and (SJ.(t),
respectively, as

U, =U(x))=c,, +120c,, +1191c,, +2416¢, +1191c,,, +120c,, +

7

U; :U'(x/):;(fc/ 3 —56¢,,—245¢,  +245¢

L‘/\J’

ju T56¢,, +¢505),

U,":U”(x,):%(c/ s+24c¢,, +15¢;, —=80c, +15¢,,, +24c¢;,, +¢,5),

V,=V(x,)=6,,+1205,, +11916,, +24165, +11915 ,, +1205 ., + 5, (10)

i+ 30

' 7 N
V/=V'(x)) =1 (-8, =565, , = 2455, +2458,,, +563,,, + 5,5),

jH j+2

"y 2 . 5 S . .
VI=V'(x) =58, + 240, +150,, 805, +155,,+ 245, +5,.).

j+2

On substituting the approximate solution for U,V and its
derivatives from Eq. (10) at the knots in Egs. (6) and (7) yields the
following difference equation with the variables cj(t) and (Sj(t).

n+l n+l n+1 n+1 n+1 n+l n+l n+l
AT+ A0, + A0 + 4,077 + AST + AT + 4,075 + Al +
n+l n+l n+l n+l n+l ntl n

AOC/‘—Z + AIOC/—I + AIIC/‘ + Alzc,+1 + Al3cj+2 + A14c,+3 - Alsé‘/‘—} +

. . . . . . . (1)
A1s§,—2 + And,—l + A1s§, + A17§,+1 + A165/‘+2 + A15§,+3 + Al‘)cf} +

” R
Azo‘pz*“izl‘,,fl Ay 430

N — 3
41 7‘420",42 Aye

n+l n+l ntl ntl ntl n+l ntl ntl
Blc/*3 + BZC./fZ + Bscj—l + B4C_/ + BSCjH + Bacﬁz + B7C/+3 - Bxé‘jfs -

n+l n+l n+l n+l n+l o n
Bo7, = B0 + By + Byo7, + Byoly =B ¢l + By, +

j+l 42 3=

" " " " " 0 . . (12)
BISC]—I + BMC] + Blzc,+| + Blzcj+2 + BIICJ+3 + Bxé‘/fz + Boé‘,fz + 3105/—1 -
3105/+1 - 895,+2 - BE§f+3
where
A=t TAL L TA T g =120- 56780 2 112074 0 T

20 T 2T 24 2n 2T
4, =1191-24578 . 11101780 157 4 —2416+2416720 2, 1801,
20 o 2T 2n 2,
A, =11014245780 . 1101780 157 4 =120+ 567802 1120780 24 T
: 24 2 h 24 2n 2T
TAt T At 7 TAt  TAt TAt
A, =1+ —z,+——z, — 5, h=—F-+—2z,—— 2,
R 2n " 2n T 2m
4, = 56700 199 TAL 56 TAL
2 2 26
Ay =245 1191 7AL L 5gsTAL 4 =416 72
20 20 2 20
A, =245780 1101780 4 0asTAL 4 256 TAL 190 TAL L | s6TAL
2 2 2 SRRV 2 25
TAC TAL | TA 7 7
=Dt D e D =1k 4, =120- 242,
A, =1191 —15}%, Ay :2416+80%, A, :%, Ay :56%,
4, = 245781
2
A0 TA T At 74t 7
B=l-—z+——z-—, B,=120-56——z +120——z, - 24—,
o TR 2h 2h "
A A A
B =1191-24572 2 4119178 157 B —2416+ 24167 2 480,
2h m 2 2h "
At 74t 7 TAr 7t 7
B=1191+245220 - 1191280 152 g =120+ 5622 2 4120252, 24 L
2h 2h n 2h 2h 7
B =14 A (TA T p A g _567A g —24sTAL
T 2h 2h 2h

B, :l—hl,, B, :120—24}%,3,3 :1191—15%, B, :2416+80%,
) ) 0
z=c¢, 3 +120c,, +1191c;, +2416¢, +1191c,,,
z,=—¢,, —56¢, , —245c, , +245¢c,, +56¢,,, +¢
z;,=0,,+1205,, +11916,, + 24166, +11915

1
2,=-5,, 565, ~ 2456, + 2455, +565,,+6 ...

+120¢,,, +c¢

j+32
30

+1205/vz+§

j430

The system thus obtained on simplifying Eqs. (11) and (12) consists
of (2N + 2) linear equations in the (2N + 14) unknowns (c_,,¢ ,,¢_,C;»---
ceensCrpCy iz Cia) > (0350 530 0 30,50y, 150,200.5) "

To obtain a unique solution to the resulting system six additional
constraints are required. These are obtained by imposing boundary
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conditions. Eliminating ¢ ;¢ ,,¢ ,Cjs.ee.ene NONNRTCNINIIE 1. U R ) 48T+ 87+ a8 + a8 + a4 a S + bl — gy -
1,60, ........ ,8N,6N 0. .0, the system get reduced to a matrix system of . - - . - .
. . 17 N+27T N3 . . . gy = a4 C + A0Cn + ayCjin + ACis :a75/—3 +
dimension (2N + 2) x (2N + 2) which is the septa-diagonal system that 5 5 5t as 5 , (14)
can be solved by any algorithm. 0c0j2 % 850]4 +,0) + 0] + 0,0 +@0] +aCIL
Initi l V: l ”9“772 + “106;4 - alo"?ﬂ - a()c;‘q - ascjua
nitial Values
where
To find the initial Yand s?, the initial conditi d ., 1 At 7
parametersc;ands?, the initial conditions an a=1-20 — L 4, =120-56-2L 4 — 24,
- . J . 2h " 2h "
the derivatives at the boundaries are used in the following way " ; ;
S a=1191-245"5 2 155, a, = 2461+ 80—,
(U')(JCO,O):Z(fc,3 —56c, —243c , +243¢, +56¢, +¢,) = f'(x,), TAL 7 TAs 7
1191+ 2451 —15-—, a, =120+ 56—, — 24—,
, o , “ a0 T n T
(U") (x5, 0)=—5(c_y +24c, +15c., —80c, +15¢, + 24c, +¢;) = f"(x,),
h g =1+ 2805 T g =T )
7 2 8 9
" 210 " 2h h’ 2h
(U (x,,0)= 7 (—c5 =8¢, +19¢ , —=19¢, + 8¢, +¢;) = f"(x,), TAL TAL
ay=56-(1+4,), a,=245"—(1+1,),
(U)(x,,0)=c, , +120¢, , +1191c, , +2416¢, +1191c,, +120c,,, +c,., = f(x,), 2h 2h
(U')(xw, 0) = %(_C'\' 37 56cw 27 2450y T 2450\'<| + 565%2 + Cwu) = f’(xr\' )> blcl;: + bzc;’i + b3c/;rll + b4cl/j+‘ + bSC;’:ll + b()c/;:'; + b7cl:; - b857f31 -
B8 = b8 + b + B8N + ST =bc + b +
(U")(xN,O):%(c‘,H +24cy , +15¢,, —80cy +15¢y, +24cy,, +cyy) = (X0, T wm W e s e e (15)

" 210 m
(U )(xr\’ ,0)= hig(*c‘v—z —8cy, +19¢y, —19¢y,, +8cy,, +Cyp) = S"(xy)s

(V')(xn, 0)= %(—573 —565, —2455_, + 24565, + 566, + 6,) = g'(x,),

(V") (x, 0)= 22 (6, +248,+155,—805, +1565, + 245, + 5,) = g"(x,),
" 210 . . "
4 )(x"’O)Z}T(_(S* —85, +196, —196, +85, + 8,) = g"(x,),

(V)(x,,00=5,, +1205,, +11915,_, + 24165, +11915,,, +1205,,, +5,,, = g(x)),

j+2

. 7 ,
(V )(x.w s 0) :;(_é‘/v—z - 565N—2 - 2455.'\‘71 + 2455;\41 + 56‘5‘.“2 + é‘ms) =g (XN),

(V")(X,\' ,0)= %(5,«/,3 +24 ‘Slvfz + 155.\'—1 - 805;&' + 155\'” +24 J,wz + 5/\&3) = g”(x;V' ),

210

7 (=6y5 =86y, +196, , =196, +805,., +5.v\3):gm(xr\«)-

(V") (xy, 0) =

Which forms a linear block septa-diagonal system for unknown

initial conditions c?. andd), of order (2N + 2) after eliminating the
functions values of ¢ and é. This system can be solved by any algorithm.
Once the initial vectors of parameters have been calculated, the
numerical solution of coupled BBM system U and V can be determined
from the time evaluation of the vectors c}ands}, by using the

recurrence relations
U(xj,t,)=c;3+120c;_5 +1191c;_; +2416¢; +1191c; +120c;,, +¢ )3,
V(xj,t,)=6;3+1208,, +11915;; +24165; +11916;,; 12055 +J 3.

Stability Analysis of the Method

The stability analysis of nonlinear partial differential equations is
not easy task to undertake. Most researchers copy with the problem by
linearizing the partial differential equation. Our stability analysis will
be based on the Von-Neumann concept in which the growth factor of
a typical Fourier mode defined as

¢; = A" exp(ijp),

5 = BC" expliie), (13)
n+l
g=5— —,
g

Where A and B are the harmonics amplitude, g=kh, k is the mode
number, ; =+/—1and g is the amplification factor of the schemes.
We will be applied the stability of the septic schemes by assuming the
nonlinear term as a constants A, A,. This is equivalent to assuming that
all the ¢j and 5} as a local constants A, A, respectively. At x=x, systems
(11) and (12) can be written as

” ” ” ” ” n on -
b +b,c) +bicl,, +byel, the, + b0 + b0, +b0) —

blﬂé‘;tﬂ 7}795;;2 ’hs‘s/"’u
where
TAt 7 TAt 7
b=1-——A -, b,=120-56""-), — 24—,
' 2h'11 »o? 2“‘ 7
17,:1191—245Ez1 —151,, b4:2461+8012,
’ 2h s h
TAt 7 o 7
b, =1191+245"— 1 15—, b, =120+ 56—, — 24—,
> 2h A e 2h A s
TAt 7 TAt
by=l+—A4 ——, by=—,
’ 2h’L » o 2h
by =56280 p, 245780
2h 2h

Substituting (13) into the difference (14), we get

2(1—%)0053(/)4—2(120—24%)()052;{;4—2(11191—15hlzjcos;o+
B +
(2416+8olz]
é—nH h -
B{[%%]sin3¢+[56%ﬂ,)sin2¢+(245%}ﬂjsin¢}
i
A{[%(Hmjsinw{ss%(l+Az)jsinz¢+(z45%(1+4))sin¢}
h
7 7 7
2(1—chos3(p+2(120—24fjc052¢+2(1119]—15h—zjcosgp+
B -
(24164—80;—2]
¢ TAt TAt At ’
B{KTL]sin3¢+[567]ﬂ)sin2¢+(24574)sin¢}
i
AH%(H@)}mw{sé%o+42)jsin2¢+(245%(1+37)jsm¢}
we get
X-iY (16)
8= v
X+iY
where
7 7 7 )
2 l—h—z cos3p+2 120_24}7 cos2¢p +2 11191—1511—2 cosQ +
X=B
(2416+8017)
h’ J
and

B[ (%i‘]sin&/ﬁ + [56%21 Jsin 2¢+ {245%11 Jsin(/ﬁ}

A[ (%(1 v, ))sin3¢ + (56%(1 ‘4, )]sin2¢ + (245%(1 + ﬂ?)jsinqﬁ} .
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Similar substituting (13) into the difference (15), we get

2(1—%)cos}rp+2(120—24%jcos2¢+2(11191—15%)cosq)+
A
(2416+8011]
B
grwl =
A{(%A)sin3¢+(56%ﬂ1jsin2¢+[245%ﬂ1jsin¢}
i
B I sin3¢ + 56E sin2¢ + 245E sing
L h h h
7 7 7 )
2(1—?jcos3rp+2(120—24?)c0s2(p+2(11191—15h—2jccsrp+
A —
7
2416 +80—
h
¢ TAt TAt TAt ’
A{ (TAljsinM +(567/11jsin2¢+[245711jsin¢}
i
B E)sin3¢+(56£ sin2¢ + 245E sing
L h h h
we get
Ko (17)
X, +iyy’
where
7 7 7
2(1—h—z)cos3¢+2[120—24FJCOSZ¢+2(11191—15h—2jcos¢7+
X =B ;
(2416+80—“)
7
and

3{ [%4 Jsin3¢ + (567%’Ajsinz¢ + (245%4, )sin;ﬁ}

A{ [%)sin%ﬁ + (SG%Jsin 2¢+ [245%]sin 4

From (16) and (17) we get |g|<l, hence the schemes are
unconditionally stable. It means that there is no restriction on the grid
size, i.e. on h and At, but we should choose them in such a way that the
accuracy of the scheme is not degraded.

Numerical Tests and Results of Coupled-BBM system

In this section, we present some numerical examples to test validity
of our scheme for solving coupled-BBM system.

The norms L-norm and L_-norm are used to compare the
numerical solution with the analytical solution [14].

L, :HuE —uNH: hZV:(u;E —u‘;’)z,
i=0 (18)

E N -
L, =mj'<_1x‘u/. ~u’|, j=0,1,---,N.

Where uf is the exact solution u and u" is the approximation
solution U,.

Now we can study our scheme from this problem.
Single soliton

Consider the coupled-BBM system (1) and (2) with the following
initial and boundary conditions:

u(x,0)= f(x),
v(x,0) = g(x),

And

a<x<bh.

Page 4 of 7
u(a,t)=0, u(b,t)=0,
v(a,t)=0, v(b,t)=0,
u (a,t)=0, u,(b,t)=0,
vi(a,t)=0, v, (b,t)=0, 0<¢<T.

The exact solution is
u(x,t)= [1 - %)c + % sech’ [\/E(x +x,— ct)} v(x,t)=-1,

Now, for comparison, we consider a test problem where,
g=6, :%axo =0,k=0.001 and -20 < x 40. The Errors, at time 5 are
satisfactorily small L -error=7.11457x10"and L_-error=9.35827x10"
for approximation solution of wu(x;) and L,-error and L_-error
approach to zero for approximation solution of v(x,t) at h=0.2. The
Errors, at time 5 are satisfactorily small L,-error=1.4783910" and L_-
error=1.47839x107 for approximation solution of u(x,t) and L,-error
and L_-error approach to zero for approximation solution of v(x,t) at
h=0.1. Our results are recorded in Table 2. The motion of solitary wave
using our scheme is plotted at times t=0,10,20 in Figure 1. These results
illustrate that the scheme has a highest accuracy (Table 2 and Figure 1).

-20 < x <40 at t=5.

In Table 3 we show that our results are better than the results in [7]
(Table 3).

Interaction of two solitary waves

The interaction of two solitary waves having different amplitudes
and traveling in the same direction is illustrated. We consider Coupled-
BBM system with initial conditions given by the linear sum of two well
separated solitary waves of various amplitudes.

X [ X X | X Xja X Xju1 Xju2 Xz | Xpa

Bj 0 1 120 1191 2416 1191 120 1 0

' -7 392 1715 392392 7
B —/ 2392 s 22 392
RN ] 0 ; 7 Rk
B 4 1008 630 | -3360 630 1008 42
i e 2 2 P ) P 2 °

Table 1: The values of septic B-spline and its first and second derivatives at the
knots points.

h T u(x,t) v(x,t)
L,- norm L_-norm L,- norm L_-norm

0.0 = 0.00000000 = 0.00000000 & 0.00000000 @ 0.00000000

1.0 | 4.97858E-6 7.92026E-6 | 0.00000000 = 0.00000000

_ 20  6.53347E-6 9.35827E-6 | 0.00000000 = 0.00000000
h=0.2 3.0 | 6.59617E-6 6.24577E-6 | 0.00000000 = 0.00000000
4.0 | 6.84312E-6 7.04553E-6 | 0.00000000 = 0.00000000

5.0 7.11457E-6 7.56269E-6 | 0.00000000 & 0.00000000

0.0  0.00000000 = 0.00000000 & 0.00000000 @ 0.00000000

1.0 | 4.69497E-8 5.92814E-8 | 0.00000000 = 0.00000000

=01 20 7.70501E-7 1.11922E-8 | 0.00000000 & 0.00000000
3.0 9.93037E-7 1.12545E-8 | 0.00000000 & 0.00000000

4.0 1.23042E-7 1.24181E-7 | 0.00000000 & 0.00000000

5.0 1.47839E-7 1.45966E-7 | 0.00000000 & 0.00000000

1
Table 2: L - norm and L - norm for t=5.0, g = 6,c =—,x =0, k=0.001 and -20
< x < 40. 3
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u(x,O):ZZ:[lfg—é]cj +% (19)

sech’ [\/E’

> (x +x; )], v(x,0)=-1,

Where j=1,2,¢,x, and ¢ are arbitrary constants. In our
computational work. Now, we choose g =6,2,="6,¢c; =1, =3
x =0,x,=-10,2=0.1, k=0.01 with interval [-20, 40]. In Figure 2, the
interactions of these solitary waves are plotted at different time levels
(Figure 2).

Interaction of three solitary waves

The interaction of three solitary waves having different amplitudes
and traveling in the same direction is illustrated. We consider Coupled-
BBM system with initial conditions given by the linear sum of three
well separated solitary waves of various amplitudes

(20)

3 . .
u(x,0) = 2[1 —%jc‘/ +% sech’ (\'Zg/(w x, )} v(x,0) =1,
Jj=1

Where =1, 2,3, g, x, and c. are arbitrary constants. In our
] 7 ]

. 1

computational work. Now, we choose g, =6, g, =6,2,=6,¢,=1, ¢, = 363
% =0,x, =-5,x; =10,k =0.1,k =0.01 with interval [-20, 40]. In Figure 3, tﬁe
interactions of these solitary waves are plotted at different time levels

(Figure 3).
Conclusions

In this paper a numerical treatment for the nonlinear Coupled-BBM
system is proposed using a collection method with the septic B-splines.
The stability analysis of the method is shown to be unconditionally
stable. We make linearization for the nonlinear term. We tested our
schemes through a single solitary wave in which the analytic solution
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Figure 1: Single solitary wave with g =6,c = 3% = 0, k=0.001 and —20 < x

u(x,t) at h=0.2
Schemes at =5

40 at times =0, 10, 20 respectively.

u(x,t) at h=0.1

L,- norm L_-norm L,- norm L_-norm
our scheme 7.11457E-6 7.56269E-6 1.47839E-7 1.45966E-7
(Shadan [7]) 8.85111E-4 8.97762E-4 7.99452E-4 8.77474E-4

1
Table 3: Comparison of numerical results of the problem with the results obtained from [7] for the variable u with, g =6,c = 3% = 0, k=0.001,
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Figure 3: Interaction three solitary waves with
values u at times t=0, 10, 20, 30 respectively.
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is known, then extend it to study the interaction of solitons where no
analytic solution is known during the interaction. The accuracy of our
scheme was shown by calculating error norms L, and L .
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