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What is microfluidics?
Microfluidics is an interdisciplinary area that involves the study 

of behaviors of fluids, controlled fluid manipulations, and the design 
of the devices that can effectively perform such manipulations at 
microscale (tens to hundreds of micrometers). It has been broadly used 
to miniaturize analytical methods and chemical/biological processes 
because of its many advantages, such as significant reduction in 
analysis time, much lower sample and reagent consumption (in the 
nanoliter range or less), and enhanced system performance and 
functionality by integrating different components onto individual 
devices [1,2]. These applications are usually called micro Total 
Analysis Systems (µTAS) [3] or lab on a chip (LOC) [4]. 

One major feature of microfluidic devices is their high surface-
area-to-volume ratio, which leads to enhanced heat and mass transfer, 
and also interfacial phenomena that are not usually observed at 
macroscale, such as the domination of surface forces instead of 
inertial and body forces [5]. The fluid flow within a smooth-walled 
microchannel is typically in the laminar region with a Reynolds 
number (Re) less than 100 [6]. The Reynolds number is a dimensionless 
number representing the ratio of inertial to viscous forces, which 
indicates the relative importance of these two forces under a given 
flow condition. It is defined as follows: 

Re ρ
µ

=
DV (1)

where D is the hydraulic diameter, V is the characteristic velocity, 
and ρ is the fluid density. For Re<2100, the flow is in the laminar region. 
Another important feature of microfluidic devices is their capability 
of integrating multiple steps onto one single device, ranging from 
sample processing to separation and detection. By mass production, 
it is possible to develop high-throughput processes using microfluidic 
devices by parallelization [7,8].

Microfluidic Device Fabrication
Based on the success of Micro Electro Mechnical Systems (MEMS) 

and microelectronics industry in the 80s, microfluidic devices were 
initially fabricated with glass and silicon using the well-established 
photolithographic techniques (Figure 1a). Later on, depending on 
the process parameters, microfluidic devices have been fabricated 
with different materials, including ceramic, steel, silicone, and 
Teflon [9,10]. Polymers are now often used as construction materials 
to replace glass and silicon because of their lower cost and simpler 
fabrication process without the need for nasty chemicals. Particularly 
for biological applications, Poly Dimethyl Siloxane (PDMS) is the 
most popular material in microfluidic device fabrication because of 
its many advantages, such as optical transparency, biocompatibility, 
elasticity, and simple fabrication process (“soft lithography”) [11-
13] (Figure 1b). More information on PDMS microfluidic devices is
available in several reviews and the references cited therein [14-16].

Application in Bioprocesses
Bioprocesses have severed as an important means to support 

survival and fulfill different needs for thousands of years in the 

human history. Early bioprocesses (ca. 4000 BC) employed natural 
microorganisms, such as yeasts and fungi, to produce different 
products, including bread, beer, and cheese. The first purification step 
was ethanol distillation carried out around 2000 BC [17,18]. With 
advances in science and engineering, bioprocesses increases in both 
production scale and complexity with integrated processing steps. 
In addition to nature microorganisms, modern bioprocesses also use 
other agents, e.g. enzymes and cells from plants, insects, and animals, 
to produce various products, including organic acids, antibiotics, 
and therapeutic compounds [19]. Bioprocesses are developed by 
combining different basic steps (or “unit operations”, introduced by 
Arthur D. Little in 1915), such as fermentation, filtration and drying. 
For decades, scaling up from benchtop via a pilot plant to a full blown 
one has been the standard practice of the development of industrial-
scale bioprocesses. However, it is faced with challenges from the more 
stringent requirements, such as size and cost reductions in equipment, 
lower energy consumption and waste emission, and a safer operation 
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a) 

b) 

Figure 1: Microfluidic devices for biological applications. a) A device fabricated 
with glass and silicon using photolithography for microchip DNA gel electro-
phoresis [29]. b) A device fabricated with glass and PDMS using soft lithog-
raphy for on-chip enzymatic reactions with derivatized magnetic microbeads 
[30].
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environment, due to the new trend of using sustainable production 
schemes in bioprocesses. To address these challenges, an approach 
called “process intensification” has been used to improve bioprocesses. 
It focuses on developing new equipment and methods that leads to 
more cost-effective and sustainable bioprocesses [20,21].

Since its debut in the 90s [22-24], microfluidics has made 
significant progress through the piling up research results. It 
has found many biological applications, such as gene/protein 
manipulation and analysis, cell-based systems, biosensors, and drug 
discovery and delivery [25,26]. Microfluidic devices have recently 
come into attention as a powerful tool for bioprocess intensification 
because of their low fabrication costs and reagent consumption, small 
form factors for safe operation in a controlled environment, and 
capability of integrate multiple basic steps onto one chip. A lot of work 
has been directed to the development of microreactors for enzymatic 
reactions (e.g. hydrolysis, esterification, oxidation/reduction, and 
polymerization). For downstream processing, microfluidic devices 
have been used to develop systems for separation of cells and 
purification of therapeutic compounds. The results so far are very 
promising for miniaturized bioprocesses. More information on the 
miniaturization of bioprocesses can be found in the literature [27,28].

The Outlook
For the past two decades, microfluidics has made great strides and 

has gradually moved from pure research projects to commercialized 
products, such as Agilent Technologies’ 2100 Bioanalyzer for 
biomolecule analysis, Caliper Life Sciences’ LabChip systems for 
biomolecule analysis and drug discovery, and FutureChemistry’s 
microreactor systems for process optimization. Although microfluidic 
systems are still not the dominating ones in bioprocesses, their future 
is very promising as indicated in reported research results. Along with 
advances in materials and fabrication processes, new discoveries of 
fluid behaviors at microscale might lead to new reaction mechanisms 
that are not possible on conventional macroscale systems. 

Microfluidic systems are also potential for industry-scale 
bioprocesses because of their capability of parallelization. The 
throughput of such systems can be significantly enhanced by 
increasing the number of optimized microreactors (“scale out”) 
instead of the conventional scale-up process that is more expensive 
and carries more uncertainties. Based on reports in the literature 
and commercial products currently available, it is foreseeable that 
there will be cost effective, “plug and play” microfluidic systems 
with customizable reaction modules for bioprocesses. The user will 
be able to customize his or her reactions in the desired bioprocess by 
switching different microreactors, just like what we do today to change 
our computer configuration by swapping plug and play components.
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