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Abstract
The standard primary analysis in a clinical trial is the change from baseline analysis, failing to use all information 

and multiple measurements collected for each individual at various timepoints. Change from baseline analysis fails to 
observe the trend of the outcome, however, most decision-making in regulatory science is based on the single p-value 
from the change from baseline analysis. There are many possible longitudinal analysis models, utilizing repeated 
measurements, with the random effects model, otherwise known as the Laird-Ware model, being the most powerful 
and efficient model under certain assumptions. A semi-parametric approach is the Generalized Estimating Equation2. 
Although the longitudinal models may result in more appropriate p-values for decision-making, the complexity of the 
models can result in false results thus it is key to appropriately understand and apply the models.
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Introduction
In regulatory science, a single p-value is crucial for decision-making. 

It is essential to correctly define and analyze data to determine the 
most reliable p-value [1-8]. In a typical clinical trial setting, repeatedly 
measured endpoints are defined in a protocol, however statistical 
analyses are applied to the simple change from baseline to the last 
measured value or observation of the study [9]. Analysis using change 
from baseline ignores all repeated measured data from the clinical trial 
and may lower the power of the efficacy of the investigational new 
therapy. Change from the baseline analyses assumes that the efficacy 
of the investigational therapy is constant throughout the trial, however 
this assumption does not hold true in most clinical trials.

To overcome the issues through simple analysis, longitudinal 
analysis is very appealing and quite useful. The strength of longitudinal 
analysis is the possibility to examine the trend of the treatment effect 
over the course of the clinical trial [10]. However, to apply longitudinal 
analyses, statistical issues such as correlation among the repeated 
measurements and missing data must be considered [1,11,12]. This 
paper will briefly review the characteristics and robustness of the 
results of longitudinal analyses with no missing data.

We will review the derived results, focusing on the robustness of 
the p-values derived from the well-known random effects longitudinal 
analysis [11] and Generalized Estimating Equations (GEE) [12]. 
Robustness of the p-values will be evaluated through the standard error 
of the estimated efficacy.

Approach of longitudinal analyses

When applying longitudinal analysis, as the number of observations 
increases, the parameters in the covariance matrix will in affect increase 
causing for difficultly in estimation [8,9]. To overcome the issues 
surrounding large number of parameters, the Laird Ware and GEE 
models are useful.

The random effects model, also known as the Laird-Ware model, 
introduced the concept of random effects to cope with the estimation of 
covariance matrix. The random effects model assumes two independent 
normal distributions with the standard error of the estimated efficacy 
depending on the random effects variable. In this model, the standard 
error is derived from restricted maximum likelihood estimation [1]. It 
is essential to correctly specify two normal distributions to produce the 
most efficient estimators providing the smallest p-values.

The other approach is GEE approach to deal with a covariance 

matrix. The generalized estimating equation (GEE), is a semi-
parametric model assuming only the correct mean value and is an 
alternative to the random effects model to cope with associated 
covariance structure. GEE models estimate the response over the entire 
population rather the effect of single variable with introduction of a 
“working correlation” among variables. The dependence of variables 
is dealt through the use of sandwich estimation of standard errors to 
derive a p-value.

Definition of model

Let Yi be an observed outcome variable with a multivariate normal 
distribution (MVN) with mean ∝i (ni x1) and an arbitrary dispersion 
matrix Σi where ni is the number of observations for the ith individual 
(i=1,2,3…n).

βis a (p x 1) matrix of unknown population parameters. Xi is a ( ni 
x p)design matrix linking β to Yi

For each individual i, the random effects model is defined as follows 
[11]:

i i i i iY X Z bβ ε= + +

where

Zi is a subset of Xi and is a known ( ni x r) random effects design 
matrix linking bi to Yi

bi is a (r x 1) vector of unknown individual effects with MVN(0, Di )

( )~  MVN 0,Wi iε

where Wi = σ 2 I , I is an (ni x ni ) identity matrix

~ N( , )i i iY X β Σ

where T
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Using the Laird Ware model where the covariance matrix of

εi	 and	 bi	 ( ∑i and Di) are known, it can be shown 
that
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This result shows an unbiased estimate of the efficacy.

In a clinical trial setting, the covariance structures of ∑i and Di 
are not known or hard to calculate, especially with large number of 
parameters [2,8]. Liang and Zeger proposed an alternate method (GEE) 
incorporating covariance matrix estimates through introduction of 
a “working correlation matrix ( Ri ).” This method derives robust 
estimate of estimated model parameter known as sandwich estimators.

According to the GEE approach, the estimating equation can be 
defined as

1

1
( ) ( ) 0 1
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where
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φ=scale parameter

Please note that 𝑅𝑖1/2 is a working correlation matrix. An example is 
a compound symmetry matrix.

By using the working correlation matrix,

[ ] [ ]GEE LWE Eβ β β
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showing an unbiased estimate.

Sandwich estimators12 can be defined as follows,
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When the working correlation matrix approaches the true 
correlation, the equation above is similar to the variance derived by 
the Laird-Ware model. It must be noted that if the covariance matrix 
is known, through restricted maximum likelihood estimation, the 
Laird Ware model is the most powerful and efficient model11. In the 
GEE setting, random effects are part of the working correlation matrix 
indicating that a marginal model is considered.

Indication of these results will be shown in the next example. The 
example was presented at FDA/industry session on 09/24/98 The below is 
a simple summary of a clinical trial

•	 Study design- randomized, double blind, placebo controlled, 
multicenter trial with total of randomized 103 patients to 
treatment (51) and control (53) with dropouts of three patients 

•	 Design- Primary endpoint (PE) were taken at baseline, weeks 8, 
16,2 4, 32, 40 and 48. 

•	 Statistical analysis- linear mixed effects model 

¬  Model- log(PE) = Treatment+ Site+ Week+ Treat*Week 

From the results of the analyses above, it is apparent that the point 
estimates of PE do not differ using either the Laird-Ware random effects 
model or Generalized Estimating Equation (GEE) model (Table 1).

However, after changing the random variable, the standard 
errors fluctuate resulting in varying p-values under the Laird Ware 
model. Using the GEE model, p-values do not fluctuate and remain 
constant since the working correlation matrix assumes possible simple 
correlation and produces robust sandwich estimators to accounts for 
the wrong assumption. From a regulatory science perspective, the 
consistent and robust p-value across varying working correlations 
under the GEE model may be more attractive compared to the Laird- 
Ware model.

Conclusion
We reviewed the nature of the two most well received longitudinal 

analyses on robustness of the derived p-values, focusing on the 
estimation of the standard errors. These estimations were derived by 
the mathematical assumptions of each model. Application of both 
models is useful with high power results compared to the classical 
analysis of change from baseline. These analyses may be applicable for 
disease areas with small effect size and for examination of linear and 
quadratic trend of efficacy over time.

We reviewed the analyses focusing on derived p-values, however to 
properly apply the analyses, the issue of missing data must be dealt with 
to give sensitive results.
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Random Estimate Laird-Ware GEE p-value p-value
variable (Robust) (LW) (GEE/Robust)

Trt*Week Intercept 0.001034 0.00055 0.000699 0.0611 0.140
Week 0.001161 0.00155 0.000691 0.454 0.0933

Intercept 0.001081 0.000703 0.000694 0.125 0.120
* week

Table 1: Results using Laird Ware/Random effects model and GEE model.
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