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Introduction
Obesity has emerged as a major risk factor for the development 

of myriad chronic disorders that include Insulin Resistance (IR), 
Type 2 Diabetes (T2D), and metabolic syndrome [1,2]. Moreover, 
poorly managed diabetes can lead to several micro- and macro-
vascular complications such as heart failure, blindness, nephropathy, 
neuropathy and foot ulceration or amputation that may culminate in 
death [3,4]. Of extreme concerns is the escalating rate by which obesity 
and diabetes are progressing across the world. According to the most 
recent estimations of the International Association for the Study of 
Obesity (www.iaso.org), the World Health Organization (www.who.
org) and approximately 1.5 billion individuals worldwide were obese 
in 2015. The 2012 report of the International Diabetes Federation 
(www.idf.org) estimated the global number of diabetics to be about 371 
million and it is projected to increase to about 552 million by 2030 if 
no proactive measures are promptly taken to control and prevent this 
epidemic disaster. Countries of the Gulf Cooperation Council (GCC) 
such as Saudi Arabia, Kuwait and Qatar have the highest prevalence of 
obesity and T2D in the world.

The pathophysiological mechanisms underlying these metabolic 
disorders involve complex interplay between genetic, aging, 
behavioural, and environmental factors [5-7]. While genetic factors 
are key components in determining the susceptibility of individuals 
to weight gain and diabetes, they can be attenuated or exacerbated by 

a wide variety of modifiable factors involved in energy homeostasis, 
namely a sedentary lifestyle and behaviour, food intake, physical activity, 
smoking, and stress. Therefore, focus on population-based public health 
interventions that target these modifiable factors associated with the 
development of these chronic diseases becomes an urgent task world-
wide.

At the cellular level, obesity and diabetes are characterized by chronic 
low-grade inflammation and aberrant regulation of stress response in 
key metabolic organs such as adipose tissue, muscle and liver [8,9]. 
The stress response; referred to as metabolic stress, is highly complex 
and includes persistent Endoplasmic Reticulum (ER)-mediated stress 
[10], enhanced oxidative stress [11], dysfunction of the mitochondria 
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Abstract
Background: Obesity and its co-morbidities are characterized by a chronic low-grade in amatory state, uncontrolled 

expression of metabolic measurements and dis-regulation of various forms of stress response. However, the contribution 
and correlation of in ammation, metabolism and stress responses to the disease are not fully elucidated. In this paper 
a cross-sectional case study was conducted on clinical data comprising 117 human male and female subjects with and 
without Type 2 Diabetes (T2D). Characteristics such as anthropometric, clinical and biochemical measurements were 
collected.

Methods: Association of these variables with T2D and BMI were assessed using penalized hierarchical linear 
and logistic regression. In particular, elastic net, hdi and glinternet were used as regularization models to distinguish 
between cases and controls. Differential network analysis using closed-form approach was performed to identify 
pairwise-interaction of variables that influence prediction of the phenotype.

Results: For the 117 participants, physical variables such as PBF, HDL and TBW had absolute coefficients 0.75, 
0.65 and 0.34 using the glinternet approach, biochemical variables such as MIP, ROS and RANTES were identified as 
determinants of obesity with some interaction between inflammatory markers such as IL-4, IL-6, MIP, CSF, Eotaxin and 
ROS. Diabetes was associated with a significant increase in Thiobarbituric Acid Reactive Substances (TBARS) which 
are considered as an index of endogenous lipid peroxidation and an increase in two inflammatory markers, MIP-1 and 
RANTES. Furthermore, we obtained 13 pairwise effects. The pairwise effects include pairs from and within physical, 
clinical and biochemical features, in particular metabolic, inflammatory, and oxidative stress markers.

Conclusion: We showcase those markers of oxidative stress (derived from lipid peroxidation) such as MIP-1 and 
RANTES participate in the pathogenesis of diseases such as diabetes and obesity in the Arab population.

Application of High-Dimensional Statistics and Network Based Visualization 
Techniques on Arab Diabetes and Obesity Data
Raghvendra Mall1#, Reda Rawi1,2#, Ehsan Ullah1, Khalid Kunji1, Abdelkrim Khadir3, Ali Tiss3, Jehad Abubaker3, Michal A Kulinski5, Mohammad M 
Ramzi5, Mohammed Dehbi4* and Halima Bensmail1*
1Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar 
2Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
3Dasman Diabetes Institute, Kuwait City, Kuwait
4Diabetes Research Centre, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
5Hamad Medical Corporation, Doha, Qatar
#Authors contributed equally

http://www.iaso.org
http://www.who.org
http://www.who.org


Citation: Mall R, Rawi R, Ullah E, Kunji K, Khadir A, et al. (2017) Application of High-Dimensional Statistics and Network Based Visualization 
Techniques on Arab Diabetes and Obesity Data. J Health Med Informat 8: 257. doi: 10.4172/2157-7420.1000257

Page 2 of 11

J Health Med Inform, an open access journal
ISSN: 2157-7420 Volume 8 • Issue 2 • 1000257

radiographic absorptiometry device (Lunar DPX, Lunar radiation, 
Madison, WI). Venous peripheral blood was collected from participants 
and used to prepare plasma and serum using standard methods. 
Glucose (GLU) and lipid pro les, including High-Density Lipoprotein 
(HDL) and Low-Density Lipoprotein (LDL), were measured on the 
Siemens Dimension RXL chemistry analyser (Diamond Diagnostics, 
Holliston, MA). Glycated Haemoglobin (HbA1c) was determined 
using the Variant TM device (BioRad, Hercules, CA). Plasma levels 
of inflammatory and metabolic markers were measured using bead-
based multiplexing technology using commercially available kits 
(BioRad, Hercules, CA). The panel of the inflammatory markers 
(##M500KCAF0Y) contains cytokines (IL-1, IL-1ra, IL-4, IL-5, IL-
6, IL-7, IL-8, IL-9, IL-10, IL-12 (p70), IL-13, IL-17, TNF and IFN- ), 
chemokine’s (RANTES, IP-10, MCP1, MIP-1, MIP-1, Exotoxin) 
and growth factors (G-CSF and PDGF-BB,). The panel of metabolic 
markers (#171A7001M) contains 10 analytes consisting of (C-peptide, 
GIP, Ghrelin, Glucagon, GLP-1, Insulin, Leptin, PAI-1, Resistin 
and Visfatin). Median Fluorescence intensities were collected on a 
Bioplex-200 system using Bioplex Manager Software version 6 (BioRad, 
Hercules, CA). Lipid peroxidation was assessed by measuring plasma 
levels of malonaldehyde, using TBARs Assay Kit (Cayman Chemical 
Company, Ann Arbor, MI). Serum levels of ROS were determined 
using the OxiSelect TM ROS Assay Kit (Cell Biolabs Inc., San Diego, 
CA). Plasma/Serum levels of Paraoxonase 1 (PON1) were determined 
by using ELISA Kit (#ABIN414651 Life Technologies, Grand Island, 
New York, USA). All the above assays were carried out according to the 
instructions of the manufacturers.

Missing value imputation
We identified that around 8% of the raw data are missing. Instead 

of removing the missing values we decided to approximate missing 
values using the well-known technique Multivariate Imputation by 
Chained Equations (MICE) implemented in R [29] package mice 
(https://cran.r-project.org/web/packages/mice/) [30].

Data analysis
Baseline statistical analysis of two groups in each dataset were 

calculated using R. Statistics for all the variables in the study are 
reported as means Standard Deviation (SD) unless otherwise stated. 
The R implementation of the Anderson-Darling test in the nortest 
package (https://cran.r-project.org/web/packages/nortest/) [31] 
was used to test for normality of all the variables. If a variable is not 
normally distributed in both groups, the Mann-Whitney test was used 
to determine significance of the difference in means between the groups. 
For a normally distributed variable in both groups, the Student’s t-test 
was used to determine significance of difference in means between 
groups. In this case, the F-test was used to compare variance of the 

or defect in its biogenesis [12], hypoxia [13] and impairment of the 
host anti-stress defence system [14-17]. Recent evidence indicated 
that the uncontrolled inflammatory response and metabolic stress 
are highly integrated and they likely work in vicious cycles [9,18,19]. 
This represents one of the greatest challenges to identify therapeutic 
targets for the treatment and management of these metabolic disorders 
[20,21]. At the molecular level, the existence of such an environment 
leads to the activation of c-Jun NH2 terminal kinase (JNK) [22], and the 
Inflammatory B Kinase (IKK) [23]. Experimental evidence indicated 
clearly that JNK and IKK play a key role in the inhibition of the insulin 
receptor signalling cascade by virtue of their ability to phosphorylate 
and inactivate the Insulin Receptor Substrate-1 (IRS-1), and thus, 
converting it to a poor substrate for the insulin receptor [18,24].

In this case study, we carried out a multiplexing-based high 
throughput expression pro ling of the in-ammatory, metabolic and 
oxidative stress markers in human lean, overweight and obese subjects 
with and without T2D. A comprehensive statistical approach based 
on elastic net [25], hdi [26] and glinternet [27], was then undertaken 
to analyse the physical, clinical and biochemical data sets with the 
perspective to identifying the molecular signature specific for each 
group as well as the biological network of these signatures within and 
between the groups.

Our network based analysis using the Closed-Form approach [28] 
confirmed the close connection between obesity and T2D. In addition, 
it pointed to disease-responsive active modules and sub-clusters. 
Taken together, this approach should be helpful in the identification 
of novel biomarkers for the onset and progression of obesity, T2D, and 
associated diseases.

Materials and Methods
Study population

The study was conducted on 117 adult male and female human 
subjects with and without diabetes consisting of lean (Body Mass Index 
(BMI)=18:5; 24:9 kg=m2; n=20), overweight (BMI=25; 29:9 kg=m2; 
n=35) and obese (BMI=30; 40 kg=m2; n=62). Informed written consent 
was obtained from all subjects before their participation in the study, 
which was approved by the Review Board of Dasman Diabetes Institute 
and carried out in line with the guideline ethical declaration of Helsinki. 
Morbid obese (i.e., BMI>40 kg=m2) and participants with prior major 
illness were excluded from the study. The physical characteristics of the 
participating subjects are shown in Tables 1 and 2.

Anthropometric measurements, blood biochemistry and 
laboratory investigations

Anthropometric measurements were performed on all the 
participants. Whole-body composition was determined by dual-energy 

Lean (n=20) Obese (n=62) p-value
Age (year) 40.15 ± 11.43 46.68 ± 12.11 3.24e-02

Gender (M/F) m=9 f=11 m=36 f=26 3.13e-01
Diabetic 4 24 1.28e-01
PBF (%) 28.14 ± 4.1 37.94 ± 4.69 1.52e-12

SLM 44.23 ± 9.52 53.11 ± 8.61 6.95e-04
TBW 34.05 ± 7.32 42.17 ± 6.71 1.56e-05

Waist (cm) 84.22 ± 22.01 104.4 ± 15.14 5.56e-05
Hip (cm) 93.78 ± 22.08 113.27 ± 14.55 1.09e-03

Table 1: Physical characteristics of lean and obese subjects at baseline. Data are 
presented as mean SD. Here Percent body fat (PBF), Soft lean mass (SLM), Total 
body water (TBW).

Diabetic (n=36) Non-Diabetic (n=81) p-value
Age (year) 52.08 ± 9.48 41.3 ± 11.68 3.56e-06

Gender (M/F) m=18, f=18 m=48, f=33 3.56e-01
BMI 32.01 ± 4.08 29.74 ± 5.03 1.86e-02

Weight (kg) 87.33 ± 14.32 83.97 ± 15.92 2.19e-01
Height (m) 1.66 ± 0.08 1.68 ± 0.1 3.64e-01
PBF (%) 36.88 ± 5.56 33.37 ± 5.97 3.31e-03

SLM 50.07 ± 8.74 50.74 ± 9.49 5.87e-01
TBW 39.73 ± 6.71 39.92 ± 7.58 8.22e-01

Waist (cm) 100.89 ± 14.52 96.95 ± 18.6 2.63e-01
Hip (cm) 110.43 ± 12.29 104.5 ± 17.98 4.09e-02

Table 2: Physical characteristics of diabetic and non-diabetic subjects at baseline. 
Data are presented as mean SD. Here Body mass index (BMI), Percent body fat 
(PBF), Soft lean mass (SLM), Total body water (TBW).

https://cran.r-project.org/web/packages/mice/
https://cran.r-project.org/web/packages/nortest/
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variable in the groups. A p-value lowers than 0:05 indicate a statistically 
significant difference between the groups.

Regularization models

We utilize a linear regression model with n observations and p 
explanatory variables (features).

0 1 1 2 2Y = ..... ,+ + + + +ρ ρβ β χ β χ β χ ε                                   (1)

Where 1( ,..., )t
ny yγ = is  the  response,  2

1( ,...., ) ~ (0, )t
n nN Iε ε ε σ=  

is the noise vector; Xj represents the jth predictor and 1( ,..., )t
pβ β β=  is 

the vector of parameters of interest to be estimated; each β , j=1,…, p 
represents the association between the variable Xj (feature) and the 
response Y . The greater the absolute value ofβ the stronger is the effect 
of the corresponding feature.

Elastic net

The LASSO coefficients, β ^ minimize the quantity.

1

p

jj
RSS

=
+ ∑λ β

With RSS as the residual sum of squares and λ as the tuning 
parameter. The LASSO technique penalizes hereby the regression 
coefficients using an L1 norm. The L1 penalty has the effect of forcing 
some of the coefficient to be exactly equal to zero when the tuning 
parameter λ is sufficiently large. Hence, the LASSO estimates the 
coefficients and performs variable selection at the same time [32].

The elastic net regularization regression method introduced in 
combines the L1 and L2 penalties and overcomes among others the 
following limitations of the classical LASSO [33]:

In p>n cases, the LASSO selects maximum n variables when [34] 
converging, which is limiting characteristic of a variable selection 
method.

LASSO selects only one variable from a group of variables that 
have high pairwise correlations. The coefficients from the elastic net 
are formulated as follows: 

2 2
2 1 1

arg min( )y X= − + +β β λ β λ β

We used R package glmnet (https://cranr-project.org/web/
packages/glmnet/) [34] to calculate the β coefficients. We performed 
10-fold cross validation while training the elastic net model. 

High-dimensional inference

In the case of p>n it is not possible to use the covariance test without 
specifying an estimate of the error standard deviation i.e., Meinshausen 
et al. introduced in Meinshausen et al. [35] an approach where the data is 
split into two groups LASSO regularization, in particular elastic net 10-
fold cross validation, is applied on one group where-after the variables 
selected by LASSO are used as predictors to obtain p-values from an 
ordinary least squared regression on the other group.

We used R package hdi (https://cran.r-project.org/web/packages/
hdi/) to calculate the p-values.

Glinternet

In order to study the interaction effects of features, we applied Lim 
and Hastie’s approach glinternet [36]. This method learns pairwise 
interactions in a regression model that satisfies hierarchy constraints. 
Further and to the best of our knowledge, this is the only approach that 
allows a mixture of categorical and continuous values which is the case 
with our data.

We used R package glinternet to generate the main and interaction 
coefficients. We performed 10-fold cross validation when training a 
glinternet interaction model.

Network based analysis

We have applied several statistical methods to identify variables or 
variable interactions which help to distinguish control from patient for 
diabetes and lean from obese w.r.t. BMI as already introduced. Here, 
we perform network based analysis to identify differential variables and 
their interaction for the same set of problems.

Network construction

We first construct networks for interactions between the variables 
for the two groups in datasets Dobesity and Ddiabetes. Here Dobesity comprises 
all the people who are either obese or lean and Ddiabetes consists of all 
the people who are either diabetic or non-diabetic. Each variable is 
considered as a node in the network and let P represent the set of all 
the variables/nodes. An edge between two nodes i and j is induced by 
calculating the mutual information (MI) between two variables. It is 
well known from information theory that MI is a measure of mutual 
dependence between two random variables. Higher values of MI 
indicate that the variables are dependent while values 0 represent that 
the variables are mutually independent i.e., change in one variable does 
not affect the other. By performing this operation, we obtain mutual 
information 8 (i; j) 2 P thereby resulting in a full interaction graph 
between the variables for a particular case.

To ensure the robustness of the generated networks we apply 
a nonparametric bootstrap procedure [37]. This provides for each 
node a minimum value of MI which is necessary for its edge to be 
included in the-nal network. As a result of this procedure we remove 
all nonsignifican’t edges from the network making it sparse. We then 
convert these networks into topological overlap graphs [28,38] i.e., the 
edge weights quantify the Topological Overlap (TO) between a pair 
of nodes by taking into account the local neighbour-hood structure 
around those nodes [39]. This results in symmetric, undirected and 
weighted networks that are used for differential sub network analysis 
as indicated in Mall et al. [28]. Finally, we remove all self-loops from 
the topological network along with removal of any isolated node i.e., 
nodes with no connections. By performing this operation we reduce 
the size of the interaction networks as showcased in the results section.

Differential network analysis

We utilize the Closed-Form differential sub network We utilize the 
Closed-Form differential subnetwork analysis technique proposed in 
Mall et al. identify statistically significant sub graphs when performing 
paired network comparison i.e., when comparing variable interaction 
network (topological graphs) for lean with obese case and control 
with patient case for diabetes [28]. We briey explain the Generalized 
Hamming Distance used to estimate the distance between two graphs. 
Given two topological networks A=(V; EA) and B=(V;EB) where V 
represents the set of nodes i.e., 1; N and Ei represents the edges in the ith 
network. The hamming distance between A and B is given by kA Bk22 
which represents the Frobenius norm of the difference between A and B 
graphs. The Generalized Hamming Distance (GHD) is defined as:

( ) 2' '

, ,

1, ( )
( 1) ij ij

i j i j
GHD A B a b

N N ≠

= −
− ∑

Where '
ija and '

ijb  are mean cantered edge-weights defined as:

'

, ,

1
( 1)ij ij ij

i j i j
a a a

N N ≠

= −
− ∑
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N N ≠
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Ruan et al. proposed the method differential Generalized 
Hamming Distance (dGHD) to obtain closed form p-values for the 
null hypothesis that A and B are independent [38]. They efficiently 
calculate the p-value and circumvent expensive permutation processes 
by assuming asymptotic normality. This can be represented as:

( ) 2' '

, ,

1, ( )
( 1) ij ij

i j i j
GHD A B a b

N N ≠

= −
− ∑

Here μπ is the σπGHD and is the asymptotic value of the standard 
deviation of the GHD for permutations of A w.r.t. B. In order to 
estimate the and values we define:

2

  1  1   1.
, 1, 2 & ( )

N N N N
t t
a ij a ij

i l j j i i j j i
S a t T a

= = ≠ = = ≠

= = =∑ ∑ ∑ ∑

2

  1  1   1.
, 1, 2 & ( )

N N N N
t t
b ij b ij

i l j j i i j j i
S b t T b

= = ≠ = = ≠

= = =∑ ∑ ∑ ∑

Here '
ija  and '

ijb  are the edge weights with the power t. Furthermore, 
we require the following terms:

( ) ( ) ( )21 2 2
a,  B & 2 4a a a a a a a aA S T S C A S T= = − = + −

( ) ( ) ( )21 2 2
b,  B & 2 4b b b b b b b bA S T S C A S T= = − = + −

Results
We removed physical characteristics namely height and weight 

while performing the analysis for obesity. Similarly, we removed 
clinical characteristics namely blood glucose (GLU) and HbA1c when 
analysing diabetes. This is because these traits are often used to measure 
obesity and diabetes respectively (hence they act as confounding 
variables when performing the analysis for obesity and diabetes). 

Baseline characteristics of study population

Physical characteristics of datasets Dobesity and Ddiabetes are 
summarized in Tables 1 and 2 respectively. Age, Percent Body Fat 
(PBF), Soft Lean Mass (SLM), Total Body Weight (TBW), waist and 
hip size were found significantly higher (p-value: 3.24e-02, 5.51e-10, 
1.52e-12, 6.95e-04, 1.56e-05, 5.56e-05 and 1.09e-03 respectively) in the 
obese compared to lean subjects as expected. Age, BMI, PBF, and hip 
size were found significantly higher (p-value: 3.56e-06, 1.86e-02, 3.31e-
03 and 4.09e-02 respectively) in the diabetic subjects compared to non-
diabetic subjects. 

Clinical characteristics of datasets Dobesity and Ddiabetes are summarized 
in in Tables 3 and 4 respectively. Obese subjects have significantly 
higher levels of triglycerides (TGL) compared to lean subjects (p-value: 
1.25e-02).

Metabolic proles of datasets Dobesity and Ddiabetes are summarized 
in Tables 5 and 6 respectively. Levels of insulin, leptin, Plasminogen 
activation inhibitor (PAI-1), Interleukin 13 (IL-13), Interferon-
gammainducible protein-10 (IP-10), Reactive Oxygen Species (ROS) 
and Thiobarbituric Acid Reactive Substances (TBARS) are found 
significantly higher in obese compared to lean subjects (p-value: 
4.02e-04, 4.08e-03, 4.52e-02, 1.68e-02, 7.64e-03, 5.69e-03 and 1.04e-
02 respectively). Levels of MIP-1 and TBARS are found significantly 
higher in diabetic subjects compared to non-diabetic subjects (p-value: 
3.86e-02 and 5.96e-04 respectively).

Regularisation models

BMI: We studied the effects of physical, clinical and biochemical 
features w.r.t. to lean and obese cases by applying elastic net, hdi 
and glinternet. We distinguish hereby between lean and obese cases. 
Throughout this section we will only list coefficients that are non-zero 
and p-values below a significance threshold of 0.05. In Table 7, we 
list the coefficients and p-values obtained for different features when 
by applying elastic net and hdi. The features are sorted according to 
their effect strength (β absolute values). The features with the highest 
elastic net coefficients include height, HDL, PBF, and TBW with j ^ j 
equal to 0.75, 0.44, and 0.16 respectively. The multi sample splitting 
method implemented in hdi yielded two features as highly significant 
to distinguish between lean and obese cases. In particular, these 
characteristics are PBF and TBW with corrected p-values of 1.49e-09 
and 6.29e-06.

In Table 8 we summarized the single and pairwise coefficients 
obtained by applying the glinternet approach. Interestingly, we observed 
several main and pairwise non-zero coefficients. The main effects 
comprised the expected physical characteristics PBF, HDL and TBW 
with coefficients 0.75, -0.65, and 0.34. We also obtained a coefficient 
for the inflammatory marker RANTES, in particular with a coefficient j 
β j=9e-04. Next to the main effects, we obtained 13 interesting pairwise 
effects that describe the best model that distinguishes between lean 
and obese cases. The non-zero pairwise coefficients represent pairs 
of markers of different types, such as physical, clinical, as well as 
metabolic, inflammatory, and oxidative stress markers.

Diabetes: In this subsection, we report the effects of physical, 
clinical and biochemical features on diabetes applying the same set 
of regularization methods. In Table 9, we listed the results obtained 
using elastic net and hdi. Unlike the BMI case, elastic net provided 
fewer features with non-zero coefficients. In particular, we observed 
the highest coefficient for the oxidative stress marker TBARS with j ^ j 
equal to 0.3. Further, we obtained coefficients for the physical marker 
age and PBF and the clinical marker TGL. The multi-sample splitting 
method hdi did not provide significant p-values to distinguish between 
diabetic and control cases.

In Table 10 we listed the single and pairwise coefficients for the 
diabetes study obtained using glinternet. Interestingly, we observed 
many main and pairwise non-zero coefficients. The main effects 
include the oxidative stress marker TBARS, the clinical marker 

Lean (n=20) Obese (n=62) p-value
Chol (mmol/l) 4.96 ± 0.8 5.18 ± 1.05 4.76e-01
HDL (mmol/l) 1.26 ± 0.33 1.18 ± 0.36 3.89e-01
LDL (mmol/l) 3.21 ± 0.76 3.23 ± 1.33 9.12e-01
TGL (mmol/l) 1.08 ± 0.53 2.11± 3.03 1.25e-02

Table 3: Clinical characteristics of lean and obese subjects at baseline. In our study 
we have not considered the overweight case to have a clear distinction between 
lean and obese cases. Data are presented as mean SD. Here Cholesterol (Chol), 
High density lipoprotein (HDL), Low density lipoprotein (LDP), and Triglycerides 
(TGL).

Diabetic (n=36) Non-Diabetic (n=81) p-value
Chol (mmol/l) 5.05 ± 1.18 5.19 ± 0.91 3.77e-01
HDL (mmol/l) 1.27 ± 0.44 1.21 ± 0.38 4.9e-01
LDL (mmol/l) 3.05 ± 1.58 3.32 ± 0.9 3.54e-01
TGL (mmol/l) 2.48 ± 3.87 1.36 ± 0.82 9.22e-02

Table 4: Clinical characteristics of diabetic and non-diabetic subjects at baseline. 
Data are presented as mean SD. Here Cholesterol (Chol), High density lipoprotein 
(HDL), Low density lipoprotein (LDP), and Triglycerides (TGL).
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TGL, the physical characteristic age, and two inflammatory markers 
MIP-1 and RANTES. Furthermore, we obtained 13 pairwise effects 
with coefficients ranging from 5.03e-05 to 1.61e-02. The pairwise 
effects include pairs from and within physical, clinical and all three 
biochemical feature classes, in particular metabolic, inflammatory, and 
oxidative stress markers.

Differential network analysis

BMI: In Figure 1 we summarise significant Mutual Information 
(MI) values of all variable pairs for the dataset Dobesity as heat maps 
(Methods). The heat maps were generated using heatmap [2] function 

Lean (n=20) Obese (n=62) p-value
Metabolic markers

C-peptide (ng/ml) 2437.75 ± 733.17 2864.74 ± 1251.84 6.67e-02
GIP (pg/ml) 151.59 ± 69.09 162.76 ± 86.5 6.01e-01

Ghrelin (pg/ml) 151± 82.69 145.39 ± 108.66 8.33e-01
Glucagon (ng/ml) 673.85 ±93.28 684.43 ± 137.14 4.34e-01

GLP-1 (ng/ml) 2541.66 ± 909.12 2551.85 ± 1341.7 9.75e-01
Insulin (ng/ml) 2421.87 ± 1035.68 4015.97 ± 2864.78 4.02e-04
Leptin (ng/ml) 4955.66 ± 3048.97 8167.55 ± 4527.31 4.08e-03
PAI-1 (ng/ml) 3063.25 ± 1590.61 3704.57 ± 1388.07 4.52e-02

Resistin (ng/ml) 1208.4 ± 515.89 968.31 ± 462.72 5.33e-02
Visfatin (ng/ml) 9139.89 ± 5148.53 9225.14 ± 7737.6 9.63e-01

In ammatory markers
IL-1 (pg/ml) 1.13 ± 0.52 1.32 ± 0.88 2.49e-01

IL-1ra (pg/ml) 95.59 ± 41.84 91.21 ± 46.44 7.08e-01
IL-4 (pg/ml) 2.17 ± 1.03 1.95 ± 0.98 3.93e-01
IL-5 (pg/ml) 2.18 ± 0.78 2.41 ± 1.14 4.05e-01
IL-6 (pg/ml) 5.13 ± 2.1 4.9 ± 2.07 6.63e-01
IL-7 (pg/ml) 5.15 ± 1.69 5.36 ± 2.12 6.93e-01
IL-8 (pg/ml) 5.68 ± 1.37 6.15 ± 3.65 4e-01
IL-9 (pg/ml) 13.9 ± 10.74 12.7 ± 9.6 6.39e-01
IL-10 (pg/ml) 1.61 ± 0.96 2.07 ± 2.29 2.02e-01

IL-12 (p70) (pg/ml) 7.42 ± 5.08 9.52 ± 5.79 1.52e-01
IL-13 (pg/ml) 2.48 ± 1.12 3.71 ± 3.46 1.68e-02
IL-17 (pg/ml) 12.61 ± 12.08 11.3 ± 10.73 6.48e-01

Eotaxin (pg/ml) 29.6 ± 20.2 39.11 ± 38.79 1.6e-01
G-CSF (pg/ml) 40.12 ± 15.23 42.46 ± 14.09 5.27e-01

IFN- (pg/ml) 45.16 ± 22.23 44.24 ± 26.24 8.88e-01
IP-10 (pg/ml) 393.99 ± 236.34 592.28 ± 378.7 7.64e-03

MCP-1 (pg/ml) 9.4 ± 2.52 10.32 ± 4.91 2.74e-01
MIP-1 (pg/ml) 8.66 ± 16.66 6.05 ± 9.25 5.11e-01

PDGF-BB (pg/ml) 531 ± 672.13 492.41 ± 589.44 8.06e-01
MIP-1 (pg/ml) 22.36 ± 6.6 27.07 ± 27.16 2.13e-01

RANTES (pg/ml) 1298.49 ± 635.18 1596.9 ± 751.28 1.14e-01
TNF- (pg/ml) 25.19 ± 9.89 26.91 ± 11.79 5.57e-01

Oxidative stress markers
PON (U) 0.38 ± 0.11 0.37 ± 0.1 9.44e-01
ROS (M) 1426.07 ± 251.89 1608.57 ± 168.97 5.69e-03

TBARS ( M) 1.29 ± 0.6 1.77 ± 0.74 1.04e-02

Table 5: Biochemical characteristics of lean and obese subjects at baseline. Data 
are presented as mean SD. Here Gastric inhibitory peptide (GIP), Glucagon like 
peptide-1 (GLP-1), Granulocyte colony stimulating factor (G-CSF), Interleukin 
(IL), Interleukin-1 receptor agonist (IL-1ra), Interferon-gamma (IFN-), Interferon-
gamma-inducible protein-10 (IP-10), Monocyte chemo attractant protein-1 (MCP-
1), Macrophage in ammatory protein-1 (MIP-1), Macrophage in ammatory protein-1 
(MIP-1), Platelet-derived growth factor-bb (PDGF-bb), Tumor necrosis factor- 
(TNF-), Paraoxonase-1 (PON-1), Reactive oxygen species (ROS), Thiobarbituric 
Acid Reactive Substances (TBARS).

Diabetic (n=36) p-value
Metabolic markers

C-peptide (ng/ml) 2482.96 ± 975.2 2761.7 ± 1182.23 2.18e-01
GIP (pg/ml) 160.72 ± 79.25 150.51 ± 87.52 5.5e-01

Ghrelin (pg/ml) 145.44 ± 94.87 146.3 ± 99.62 9.65e-01
Glucagon (ng/ml) 668.72 ± 108.61 669.8 ± 135.61 7.79e-01

GLP-1 (ng/ml) 2412.05 ± 1018.62 2596.7 ± 1297.95 4.51e-01
Insulin (ng/ml) 4136.91 ± 3338.54 2990.7 ± 1830.14 5.94e-02
Leptin (ng/ml) 7158.54 ± 4457.82 6702.58 ± 3893.55 5.77e-01
PAI-1 (ng/ml) 3576.96 ± 1254.45 3290.12 ± 1514.19 3.22e-01

Resistin (ng/ml) 1043.63 ± 463.53 1028.91 ± 456.37 8.73e-01
Visfatin (ng/ml) 8316.41 ± 4961.89 9470.67 ± 7847.87 3.39e-01

Inflammatory markers
IL-1 (pg/ml) 1.2 ± 0.83 1.22 ± 0.68 8.95e-01

IL-1ra (pg/ml) 93.73 ± 42.88 91.92 ± 43.16 8.34e-01
IL-4 (pg/ml) 1.84 ± 0.83 2.07 ± 1.07 2.54e-01
IL-5 (pg/ml) 2.16 ± 0.72 2.41 ± 1.12 1.57e-01
IL-6 (pg/ml) 4.7 ± 1.58 4.91 ± 2.09 5.95e-01
IL-7 (pg/ml) 4.91 ± 1.85 5.31 ± 1.88 2.84e-01
IL-8 (pg/ml) 6.4 ± 4.52 5.63 ± 1.67 3.26e-01
IL-9 (pg/ml) 12.21 ± 8.2 12.97 ± 10.21 6.94e-01

IL-10 (pg/ml) 1.54 ± 1.09 1.92 ± 2.05 1.92e-01
IL-12 (p70) (pg/ml) 7.88 ± 5.12 9 ± 5.16 2.83e-01

IL-13 (pg/ml) 3.15 ± 1.82 3.5 ± 3.15 4.53e-01
IL-17 (pg/ml) 8.77 ± 8.9 12.91 ± 11.52 5.81e-02

Eotaxin (pg/ml) 31.6 ± 19.46 39.41 ± 35.38 1.28e-01
G-CSF (pg/ml) 38.42 ± 12.87 42.59 ± 14.11 1.2e-01

IFN- (pg/ml) 40.57 ± 17.46 45.75 ± 25.55 2.05e-01
IP-10 (pg/ml) 570.47 ± 494.21 467.13 ± 218.56 2.36e-01

MCP-1 (pg/ml) 10.16 ± 4.86 9.84 ± 3.66 7.24e-01
MIP-1 (pg/ml) 8.76 ± 11.55 4.52 ± 9.45 3.86e-02

PDGF-BB (ng/ml) 464.06 ± 568.28 526.34 ± 641.18 6.17e-01
MIP-1 (pg/ml) 21.18 ± 8.62 26.08 ± 23.56 1.04e-01

RANTES (ng/ml) 1258.59 ± 593.56 1464.76 ± 744.95 1.46e-01
TNF- (pg/ml) 26.43 ± 10.83 26.85 ± 11.99 8.57e-01

Oxidative stress markers
PON (U) 0.37 ± 0.1 0.36 ± 0.1 7.03e-01
ROS (M) 1542.61 ± 189.22 1546.04 ± 194.95 9.3e-01

TBARS ( M) 1.94 ± 0.81 1.4 ± 0.54 5.96e-04

Table 6: Biochemical characteristics of diabetic and non-diabetic subjects at 
baseline. Data are presented as mean SD. Here Gastric inhibitory peptide 
(GIP), Glucagon like peptide-1 (GLP-1), Granulocyte colony stimulating factor 
(G-CSF), Interleukin (IL), Interleukin-1 receptor agonist (IL-1ra), Interferon-
gamma (IFN-), Interferon-gamma-inducible protein-10 (IP-10), Monocyte 
chemo attractant protein-1 (MCP-1), Macrophage in ammatory protein-1 
(MIP-1), Macrophage in ammatory protein-1 (MIP-1), Platelet-derived growth 
factor-bb (PDGF-bb), Tumor necrosis factor- (TNF-), Paraoxonase-1 (PON-
1), Reactive oxygen species (ROS), Thiobarbituric Acid Reactive Substances 
(TBARS).

Elastic net coefficient hdi significant p-value
HDL -0.75 -
PBF 0.44 1.49e-09
TBW 0.16 6.29e-06
SLM 0.06 -
Age 0.02 -

Waist 0.01 -
MIP-1 4.54e-03 -
MIP-1 -3.79e-03 -
ROS 1.41e-03 -

RANTES 5.78e-04 -
Insulin 7.12e-05 -

Table 7: Elastic net and hdi results for BMI study.
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in R package gplots [40]. In the lean subjects, as shown in Figure 1A, 
we observe two predominant clusters where the paired variables have 
high mutual dependence whereas in the obese case depicted in Figure 
1B we see several clusters with relatively lower mutual dependence 
between the variables within the clusters. To highlight the subtle 
differences between the lean and obese cases we utilised the Closed-
Form technique. First, we show in Figure 2 the mutual dependence 
networks for lean Glean (Figure 2A) and obese G_obese cases (Figure 
2B). The G_lean network comprises 40 nodes with 716 edges whereas 
Gobese consists of 49 node and 1272 edges. We used the Louvain method 
[41] for the task of identifying communities [42-44] in all the networks 
that we built. We identified five clusters in both networks using the 
Louvain method. 

In the case of Glean there are two main giant connected components 
corresponding to inflammatory markers (IL*) and metabolic features 
respectively. There is also presence of two small and compact 
communities, one corresponding to clinical features like TGL, Chol 
and LDL while the other corresponds to cluster of physical features like 
Waist, PBF, TBW, Gender and SLM. A mixed cluster (orange colored) 
also exists in G_lean whose size and density is more in comparison 
to the mixed cluster in G_obese. Further, it is apparent from Figure 
2A and Figure 2B that there is a strong mutual dependence among the 
biochemical features resulting in bigger nodes which is proportional to 
the degree of these variables in the corresponding network.

We observe in G_obese that there is one large community composed 
primarily of inflammatory markers like IL*, another large community 
made up of mainly physical features like Waist, PBF, Gender, TBW 
etc. There is another giant cluster in Gobese consisting of metabolic 
markers like Insulin, Vista n, C-peptide, Ghrelin etc. along with two 
small groups where one corresponds to clinical traits like Chol and 
LDL and the other is a mixed cluster.

Next, we applied the Closed-Form technique (see Material 
and Methods: Network Based Analysis) to generate the differential 
subnetwork of G_lean and G_obese as shown in Figure 3. We observe 
four clusters in the differential subnetwork of G_lean (Figure 3A) 
where one community primarily consists of biochemical features, one 
community comprises physical features and one cluster is made up of 
clinical features like Chol and TGL. Majority of the nodes present in 
the mixed cluster of Glean are part of a community in the differential 
subnetwork of Glean. However, the mutual dependence between these 
features has been reduced to small sized nodes as observed in Figure 3A.

In contrast the differential subnetwork of Gobese (Figure 3B), though 
composed of more nodes, is also divided into four communities by 
the Louvain method. In this network we observe that there exists 
one community made primarily from physical features and one 
community composed of mainly biochemical features. Interestingly, 
we discover one small cluster made up of Glucose (GLU), HbA1c, 
Diabetic and RANTES. This indicates that the mutual dependence 
between these features is stronger in G_obese in comparison to G_lean, 
thereby resulting in a separate community in the differential network 
of Gobese. Several nodes from the mixed cluster of Gobese form a 
community in the differential sub network of Gobese. However, the 
mutual dependence between these characteristics has reduced resulting 
in smaller size nodes as observed in Figure 3B.

Diabetes

In this subsection we report the difference in the effects of the 
physical, clinical and biochemical features w.r.t. to diabetes by applying 
the same techniques.

In Figure 4 we illustrate significant MI values of all variable pairs 
for the dataset Ddiabetes as heat maps. In the non-diabetic subjects, we 
observe one predominant cluster where the characteristics have low 
mutual dependence (Figure 4A) whereas in the diabetic case shown in 
Figure 4B we see four clusters with relatively higher mutual dependence 
between the variables within the communities. Next, we applied the 
same procedure as in the previous subsection to highlight the intricate 
differences between the non-diabetic and diabetic cases.

In Figure 5 we represent the mutual dependence networks for 
non-diabetic Gcontrol (Figure 5A) and diabetic Gdiabetes (Figure 5B) 
subjects. The Gcontrol network consists of 46 nodes with 1348 edges 
whereas the Gdiabetes network is composed of 42 nodes with 682 

1st feature 2nd feature β Glinternet coefficient
PBF - 0.75
HDL - -0.65
TBW - 0.34

RANTES - 9e-04
Age PON 1.61e-02
IL-6 G-CSF -7.55e-03
IL-4 MIP-1 -6.08e-03
GLU Eotaxin -5.33e-03
SLM TBW -2.06e-03
TBW MIP-1 -1.2e-03
HDL PAI-1 4.52e-04
TBW IL-1ra 6.34e-05
PBF ROS -5.03e-05
Age Glucagon 3.39e-05
GIP Glucagon 2.88e-06
Age Resistin 4.01e-07

Insulin RANTES -1.87e-07

Table 8: Glinternet results for BMI study.

Elastic net coefficient hdi significant p-value
TBARS 0.3 -

Age 0.03 -
TGL 0.02 -
PBF 0.02 -

Table 9: Elastic net and hdi results for diabetes study.

1st  feature 2nd feature Glinternet coefficient
TBARS - 6.65e-01

TGL - 1.26e-01
Age - 2.93e-02

MIP-1 - 5.95e-04
RANTES - -4.36e-05

HDL TNF- 5.77e-02
IL-13 TBARS -8.58e-03
Age PBF 3.65e-03

G-CSF MIP-1 -1.21e-03
RANTES PON -1.10e-03

Age SLM -9.86e-04
GIP MIP-1 -4.28e-04
Chol Resistin 4.24e-04
LDL Eotaxin 1.70e-04

Glucagon TNF- -4.14e-05
G-CSF ROS 1.23e-05
Insulin IL-9 -5.79e-06

Glucagon PAI-1 -2.16e-07

Table 10: Glinternet results for diabetes study.
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Figure 2: Mutual dependence networks for Glean and Gobese. Dependence network of characteristics for lean cases (A) and obese cases (B).

Figure 3: Differential sub networks for Glean and Gobese. MI based differential sub networks of features for lean cases (A) and obese cases (B).

Figure 1: Mutual information heat map for the Dobesity data set. MI based heat map of variables representing lean cases (A) and obese cases (B).
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edges. The Gcontrol network is split into four communities including 
one corresponding to physical, one clinical, one metabolic and one 
inflammatory feature. It is readily evident from Figure 5A that the 
nodes have high degree indicating strong mutual dependence.

In the Gdiabetes network (Figure 5B) we detect the presence of 
four communities where one cluster comprises only of clinical features 
Chol, TGL, HDL and LDL. There are two clusters corresponding to 
biochemical variables where one is mainly composed of inflammatory 
features and the second consists of metabolic characteristics. The 
fourth community is composed primarily from physical features like 
Age, Weight, Waist, BMI, SLM, Height etc. Interestingly, we noticed 
that the number of edges, i.e., the mutual dependence between the 
nodes, is much smaller than in the Gcontrol network. 

We applied the Closed-Form method to generate the differential 
sub networks for Gcontrol and Gdiabetes illustrated in Figure 6. 
In the control case we detect three coherent communities where 
one corresponds to biochemical, one to physical and one to clinical 
features. There is another mixed cluster consisting of several 
physical and metabolic features. We observe from Figure 6A that the 

biochemical features retain strong mutual dependence in the case of 
non-diabetic subjects with a marker like Insulin having a very high 
mutual dependence with other biochemical traits Figure 6B.

However, in the differential subnetwork of G_diabetes we observe 
seven clusters where two clusters belongs

to inflammatory markers, one big community is made up of 
metabolic features, two small clusters correspond

to physical features and one small community of clinical 
characteristics. There is also a presence of mixed cluster in the 
differential subnetwork of Gdiabetes. An interesting observation is 
that Insulin is not present in the community of metabolic markers 
indicating that in diabetic patients Insulin loses its mutual dependence 
with other metabolic features.

Apparently, the differential subnetwork of G_diabetes has far fewer 
edges in comparison to the subnetwork of G_control which indicates 
that each individual characteristic in the diabetic case is dependent on 
fewer features than in the control.

Figure 4: Mutual information heat map for the Ddiabetes data set. MI based heat map of variables representing non-diabetic cases (A) and diabetic cases (B).

Figure 5: Mutual dependence networks for Gcontrol and Gdiabetes. Dependence network of characteristics for non-diabetic cases (A) and diabetic cases (B).
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Figure 6: Differential sub networks for Gcontrol and Gdiabetes. MI based differential sub networks of features for non-diabetic cases (A) and diabetic cases (B).

Discussion
In this study, we successfully applied state-of-the art statistical 

and network analysis techniques on Kuwaiti expression profile data 
of human subjects with and without T2D. First, we inferred high 
dimensional models that provide strengths of physical, clinical and 
biochemical features w.r.t. to lean and obese as well as diabetic and 
non-diabetic cases. In particular, we used the regularisation methods 
elastic net, hdi and glinternet.

We found that PBF and TBW are significantly associate with BMI. 
This result confirms that waist circumference explains obesity-related 
risk [45]. Thus, for a given PBF and TBW values, obese and normal 
weight persons have comparable health risks. However, the other 
markers such as SLM, HDL, MIP, ROS and RANTES are interesting 
to investigate especially the latter as it can be a promising therapeutic 
target for the reduction of NAFLD and NASH NAFLD: Excessive fat 
accumulation in the form of triglycerides in the liver and has become 
the most common cause of chronic liver disease in wealthy countries as 
was confirmed by Xu et al. [46].

On the other hand, when we used elastic net we showed that 
Diabetes is associated with a significant increase in Thiobarbituric 
Acid Reactive Substances (TBARS) which are considered as an 
index of endogenous lipid peroxidation as it is explained by Turk et 
al. [47]. When we used glinternet, TBARS was shown to be a marker 
with the highest coefficient along with thirteen other interactions 
including those involving Eotaxin and other inflammatory markers. 
Some of these markers have angiogenic properties, i.e., IL-13, 
IL-9, while others also contribute to leukostasis and interstitial 
inflammation, i.e., ROS and the chemokine MIP as explained in  Turk 
et al. [47]. Therefore, eotaxin and co-varying inflammatory markers 
may be part of a complex pathway resulting in glomerulosclerosis 
and interstitial brosis for patients with T2D as seen in advanced 
chronic kidney disease [48].

We successfully inferred high-dimensional models that provide 
effect strengths of physical, clinical and biochemical features w.r.t. lean 
and obese as well as diabetic and non-diabetic cases. The algorithms 
work very well as they do not only infer univariate effects of physical, 
clinical, inflammatory and metabolic markers but also provide pairwise 
effects via interaction between the variables.

Furthermore, from the mutual dependence networks we observe 
that the mutual dependence between pairwise features dramatically 

changes with the phenotype cases. This is reflected in the case of 
obesity where G_lean is much sparser (has fewer connections) in 
comparison to G_obese, thereby indicating less dependence of 
markers on each other. Similarly, in case of diabetes, G_diabetes is 
much sparser in comparison to G_control. A significant observation 
is that Insulin is not even present in G_diabetes indicating that for 
diabetic patients Insulin loses its mutual dependence with other 
metabolic markers as observed in G_control. Another interesting 
observation is that HbA1c, G_lucose (GLU), Diabetic and RANTES 
form a well segregated community in the differential sub-network 
of G_obese whereas they are part of a mixed community in case of 
differential sub-network of G_lean. This indicates that the mutual 
dependence between these variables is much stronger in the 
differential sub-network of Gobese in comparison to that of Glean.

Conclusion
This case study has several strengths. We used clinically relevant data 

using human samples. We also used robust statistical tools to analyse 
our data and established networks based on cross talk between different 
variables. Our result show that diabetes was associated with a significant 
increase in Thiobarbituric Acid Reactive Substances (TBARS) which 
are considered as an index of endogenous lipid peroxidation and two 
inflammatory markers MIP-1 and RANTES. Furthermore, we obtained 
13 pairwise effects from glinternet. The pairwise effects include pairs 
from and within physical, clinical and biochemical features, in particular 
metabolic, inflammatory, and oxidative stress markers. This result 
confirms for the first time that factors of oxidative stress such as MIP-1 
and RANTES participate in the pathogenesis of many diseases such as 
diabetes and obesity that act millions of human subjects. Our results 
show that markers such as RANTES is interesting to investigate as it 
can be a promising therapeutic target for the reduction of NAFLD and 
NASH (NAFLD: excessive fat accumulation in the form of triglycerides 
in the liver and has become the most common cause of chronic liver 
disease in wealthy countries).

We would like to point out that the current dataset is relatively 
small. Nevertheless, the applied techniques provided fairly impressive 
results. In future, we are looking forward to apply these techniques on 
larger clinical datasets and team up with experimentalists to verify our 
funding’s. Our aim is to encourage researchers in the field to use these 
techniques for analysis and identification of potential bio-markers 
from large scale diabetes or obesity data.
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