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Abstract
The present study deals with the effects of gettering process on the structural and mineralogical composition of 

Tunisian phosphate rock. The treated samples were characterized to investigate the variation of physical structure 
and chemical composition as compared to the reference phosphate rock. The quantitative analysis of the impurities 
concentration before and after gettering treatment using energy-dispersive (EDX) reveals a significant reduction of 
impurity concentration (more than 75%) such as Al, Si, S, Na, and Mg. Scanning electron microscopy (SEM) shows 
that gettering process promoted structural alterations of phosphate rock sample due to fusion of impurities. The XRD 
patterns show that the chief mineral constituent of treated sample is only fluorapatite, while those in the reference ore 
were calcite, dolomite, quartz and carbonate-fluorapatite. FT-IR characterization show a disappearance of the bands 
related to calcite at 714 cm-1 as well as B carbonate situated at 1430 cm-1, 1458 cm-1 after gettering treatment. This 
result is in good correlation with Raman analysis.
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Introduction
Gafsa which is located in the south of Tunisia is one of the 

largest phosphate producers in the word (more than 10 million tons 
per year since the early nineties) [1]. The phosphate rock is used to 
manufacture phosphate fertilizers and industrial products and, also 
the only significant global resource of phosphorus used in animal feed 
supplements, food preservatives, anti-corrosion agents, cosmetics, 
fungicides, ceramics, water treatment and metallurgy [2]. The rock is 
composed essentially of the apatite group in association with a wide 
assortment of accessory minerals mainly fluorides, carbonates (calcite 
and/or dolomite), clays, quartz, silicates, metal oxides as well as organic 
matters and trace impurities such as U, REEs (rare earth elements), Cd, 
As, V, Cr, Zn, Cu, Ni, etc., which can be harmful for several application 
at certain concentration [3-6]. 

Gettering process typically consists on a combined a rapid thermal 
treatment (RTP) followed by a chemical etching after the growth of 
a porous layer in order to reduce impurities amount and to enhance 
the phosphate quality. The rapid thermal treatment aims to migrate 
the impurities to the boundaries surface where they undergone an 
elimination process by a chemical attack.

The gettering treatment is an effective process to eliminate 
these impurities which was already applied in our laboratory for the 
purification of silica [7]. Although, characterization and quantification 
of the impurities contained in Tunisian phosphate is well established, 
there are not many reports about their elimination and phosphate 
purification [5,8-12]. In the present work, we aim not only to improve 
the structural and mineralogical properties but also to eliminate the 
majority of these impurities contained in Tunisian phosphate by 
gettering treatment. The changes in physical structure and chemical 
composition of the samples after gettering treatment have been 
investigated by using X-ray powder diffraction (XRD), scanning 
electron microscopy (SEM/EDX), FT-IR, and Raman spectroscopies. 
Transmission electron microscope (TEM) micrographs were 
performed to inspect the morphological properties after treatment.

Materials, Procedure and Methods
Materials

Phosphate rock samples used in this study was obtained from the 
phosphate deposits from the Metlaoui basins located in the south of 
Tunisia. It was crushed, ground, and then sieved, the fraction in the 
range between 180 µm and 600 µm was used. This fraction was crushed 
by a jaw breaker, reaching a dimension of to 180 μm. Another manual 
grinding is performed using an agate mortar in order to increase 
specific surface area.

Procedure

The experimental procedure consists in two steps:

First step (formation of porous layer): the porous layer of phosphate 
rock is formed by CAVP technique (Chemical Attack in the Vapor 
Phase) when the sample is exposed to an acidic vapor composed of 
64% HNO3, 20% CH3COOH and 16% HF. The vapor phase etching 
is performed under heating at 45°C for 60 minutes. The objective of 
growing of porous layer on the grain surface is to increase the specific 
surface layer, thus the impurities can be removed easily.

Second step (gettering process): the sample of porous phosphate is 
introduced in the rapid thermal furnace (RTP) at a fixed temperature 
900°C for 45 minutes under a flow of oxygen. In order to remove the 
impurities from the samples, the thermally treated porous phosphate 
undergoes four iterative etchings: 1 g of the former sample is etched 
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with 20 ml of diluted solution of CP4 (3 ml HCl + 1 ml HNO3 were 
dissolved in 996 ml of deionizer water). The mixed solution undergoes 
a stirring for 3 minutes. The treated phosphate in the final phase is 
separated from the obtained solution by a filtration system of 0.54 
mesh diameter. The solid remaining was washed, dried during 1 hour 
at 100°C then weighed with a precision. For simplification, we have 
noted (RP) the reference phosphate sample and (TP) phosphate after 
gettering treatment (treated phosphate). 

Methods

X-Ray diffraction were performed using X'PERT Pro Philips 
analytical diffractometer operating at wavelength Kα copper (λ = 
1.5418 nm) and the obtained results were analyzed using the software 
X'PertisHigh Score Plus.

The IR spectra were recorded using a Nicolet 560 spectrometer; 
samples pelletized using a pressein potassium bromide (KBr) to 2 mg 
of product 300 mg of KBr. Registration is realized in the range between 
4000 cm-1 and 400 cm-1. 

Raman shift were recorded with micro-Raman spectroscopy 
(Jobin Yvon Horibra LABRAMHR) in 400 cm-1-1100 cm-1 range. The 
excitation source was 632.8 nm line of He-Ne laser. The microstructure 
of samples was characterized by transmission (Technai G2) electron 
microscopy. The chemical composition was determined by energy 
disersive X-ray EDX analysis. For the TEM sample preparation, we 
employed the ultrasound vibration method [13]. The samples were 
immersed in ethanol solution and ultrasound vibration was applied to 
separate precipitates from the phosphate. After that, the precipitates 
were carefully extracted in the solution and picked up using TEM 
copper meshes with carbon film coatings.

Results and Discussion
XRD characterization

A powder X-ray diffraction (XRD) analysis was used to determine 
the crystalline phases of the Tunisian natural phosphates rocks before 
and after getting process. The XRD patterns of the treated phosphate 
rocks as well as the raw material are illustrated in Figure 1. 

The main minerals in reference phosphate rocks (RP) are carbonate-
fluorapatite (2Ө: 25.99°; 28.17°; 29.44°; 31.97°; 33.24°; 34.15°; 40.31°; 
42.48°; 44.48°; 47.01°; 49.55°; 50.81°; 53.09°) (JCPDS 00-021-0141), 

quartz SiO2 (2θ: 26.54°; 51.9°; 56.25°) ( JCPDS 01-080-2146), carbonates 
which are in the form of dolomite CaMg (CO3)2 (2θ : 30.7°, 41.06°, 
50.09°) ( JCP¨DS 01-073-2409) and calcite CaCO3 (2θ : 29.44°, 39.42°, 
43.18° and 48.46°) (JCPDS 01-072-1652). Calcite and quartz were the 
main gangue minerals in the Tunisian phosphate rock. Concerning the 
treated sample (TP), as expected from Figure 1, the major crystalline 
phase is hexagonal fluorapatite (FAp) (Ca10(PO4)6F2), space group 
P63/m (JCPDS 01-079-1459). The highest intensity near 33° confirms 
the fluorapatite behavior of the treated sample [2,7,9,10,14,15].

Calcite and quartz diffraction lines are disappeared as a result 
of gettering process, also carbonate-fluorapatite has changed to 
fluorapatite because carbonates are decomposed by rapid thermal 
treatment. Therefore, it was proved in others works that rapid thermal 
treatment at 900°C leads to a phosphate with relatively higher P2O5 
and CaO contents and a disappearance of organic matter [16,17]. In 
this work CaO formed after rapid thermal treatment was eliminated by 
chemical attack in vapor phase (ACPV).

XRD pattern of treated phosphate compared with reference sample 
(Figure 1) shows a good resolution of the peaks and a decrease of the 
width at half maximium which proves an amelioration of crystalinity 
after gettering process.

X-ray diffraction analysis indicates that certain level of impurities 
were removed during gettring process of phosphate rock. However, the 
improvement of the phosphate quality of treated sample depends on 
the mass percentages of the remaining impurities, notably the quartz, 
calcite and dolomite. In previous work, it was demonstrated also 
that the reduction of phosphate impurities was associated with some 
structural changes in the apatite [16].

FT-IR characterization

Figure 2 shows the FT-IR spectra of Tunisian phosphate before and 
after gettering treatment in the region of 4000 cm-1-400 cm-1. From this 
figure, we can observe that the gettering process had a remarkable an 
important effect on the vibrational bands intensity and its positions; 
also we can note the appearance and disappearance of some pics.

The FTIR spectrum indicates that the reference phosphate rock 
spectrum shows that the characteristic absorption bands corresponds 
to the carbonate fluorapatite [7,17,18]. The symmetric ʋ1 (stretching) 
mode assigned to PO4

3- is represented by a single band at 966 cm-1. The 
ʋ2 (bending) mode of phosphate groupment is located at 474 cm-1. 
The strong absorption band at 1044 cm-1 ascribed to asymmetric ʋ3 
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Figure 1: Diffractogramms of the reference phosphate (RP) and the treated 
phosphate (TP).
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Figure 2: FT-IR spectrum of Tunisian phosphate rock before (RP) and after 
treatment (TP).
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mode. The asymmetric ʋ4 mode is splited in three bands: 568, 578 and 
604 cm-1. The two bands at 1430 cm-1 and 1458 cm-1 were assigned to 
ʋ2 vibration of CO3

2- group located in the B site of apatite (carbonate 
substituting phosphate) [17]. The spectrum of main component of the 
phosphate rock reference sample is in a good agreement with published 
IR spectra of apatite [19-21].

FT-IR spectra of the TP sample illustrated in Figure 2 reveals 
that the vibrational bands of treated phosphate were clearly observed 
compared with reference phosphate rock. The absorption peaks located 
at 1098 cm-1 and 1062 cm-1 originated from asymmetrical stretching ʋ3 
of PO3

-4 and the peaks localized at 568 cm-1 and 606 cm-1 were attributed 
to bending modes ʋ4 of PO3

-4. While the symmetric stretching modes 
ʋ1 and ʋ2 of PO3

-4 were also observed at around 964 cm-1 and 520 cm-1 
respectively [21]. 

Moreover, after gettering process, the band positions and their 
intensities are slightly affected and we observe a change in the number 
of phosphate bands, the treated phosphate indicates that the bands at 
520 cm-1 correspending to ʋ2 strongly shifted from 474 cm-1 to 520 cm-

1. Concerning the shift, it can be due to the variation repulsion potential 
of the contracted or dilated crystal lattice which is confirmed by XRD 
analysis [7,22]. The positions of ʋ4 and ʋ1 modes didn’t change but an 
important increase of intensity was marked. The ʋ3 asymmetric mode 
was degenerated in tow distiguitched peacks at 1042 cm-1 and 1062 cm-1. The 
appearance of the two distinct peaks is due to the presence of different 
P-O distances in the crystal. 

Besides, a considerable reduction in the absorption of carbonate 
bending is shown clearly after gettering treatment. In fact, we remark 
a disappearance of the bands related to calcite at 714 cm-1 as well as B 
carbonate situated at 1430 cm-1, 1458 cm-1. This implies that carbonate 
and calcite substitutions induce vacancies at the OH sites, and we 
assume that thermal treatment is responsible of the total decomposition 
of carbonate bands and intensities decreases [23]. Thus, the results 
indicate that mixture acids can be used to reduce calcium carbonate 
in low-grade calcareous phosphate rock as it improves the degree of 
beneficiation [24].

RAMAN characterization

Raman scattering is a sensitive tool for studying the phosphate 
material because it gives direct structural evidence qualitatively 
related to the different components in the material. Figure 3 shows 
the Raman spectra for RP and TP. From this figure, we can’t observe 
any vibrational mode for reference sample (RP). This is due to the 
fact that Raman bands are completely overlapped by the fluorescence 
background originated from organic matter, metal compouned and 
rare earth existing in natural phosphate rock (RP) [25-29]. As a result 
of this overlap, we can’t differentiate between the different vibrational 
modes.

For the TP, Raman spectra shows obviously the different vibrational 
modes of phosphates groupement after Gettering process. The strongest 
Raman active ʋ1 of PO3

-4 mode appearance in the spectrium of the TP 
sample at 961 cm-1 [30,31].

To better clarify the vibrationnal modes existing in TP, 
deconvolution of the Raman spectrum were shown in Figures 4 and 5. 
The Raman spectrum of phosphate in the 125-300 cm-1 spectral range 
is illustrated in Figure 4. Raman bands are observed at 139, 169, 214, 
234, 265 and 283 cm-1. These bands are assigned to lattice vibrations as 
it was reported by many authers [11,18,32].

The Raman spectrum of treated phosphate over the 400-620 cm-1 
spectral range is reported in Figure 6. This range is assigned to the 
vibration of ʋ2 and ʋ4 PO4

3- bending modes. It was reported by S. 
Elgharbi and H. Lefires when they work about Tunisian phosphate rock 
that the Raman bands at 582, 591 and 607 cm-1 are assigned to ʋ4 PO4

3- 
and the bands at 431 and 435 cm-1 are due to the ʋ2 PO4

3- [12,13]. Then, 
the work reported by Karampasa about calcium phosphate confirmed 
very well the results above [29].

The Raman spectrum over the 850-1200 cm-1 range is reported in 
Figure 6. Similar intensity bands are found at 1056, 1100, 1116 cm-1 
which are assigned to ʋ3 PO4

3- antisymmetric stretching vibration, the 
three bandes are attributed to a pure fluorapatite [18]. Low intensity 
Raman band at 1009 cm-1 is attributed to ʋ1 PO4

3- symmetric stretching 
mode [28,33,34].

From Raman analysis, we can conclude that the gettereing process 
in necessary to eliminate the impurities and organic matters which 
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Figure 4: Raman spectrum of treated phosphate over the 125 cm-1-300 cm-1 
spectral range.
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Figure 3: RAMAN spectrum of Tunisian phosphate rock before (RP) and after 
treatment (TP).
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are the main causes of overlopped in reference phosphate rock, and 
consequently improves the structural properties.

TEM-EDAX characterization 

The change in the physical structure of the treated sample in 
comparison with the raw ore was investigated by TEM. This scanning 
procedure consisted of looking for structure alterations, agglutination, 
porosity, morphology, compaction, and distribution, with qualitative 
and semi quantitative identification of elements [35].

It is shown in Figure 7 that the phosphate rock consists of two 
different particule phases with estimated sizes of 60 µm. Moreover, 
these phases are defined with tow portions which can be due to the 
accumulation of the impurities which escape the dispersion of the 
particles. The portion in light grey is formed by phosphorous rich 
components whereas the portion in dark grey are formed by calcium-
rich components, which can be defined as CaCO3, based on chemical 
analysis. No phosphorous was found in the carbonate parts. Carbonate-
fluorapatite existing in the ore has only been observed in the parts 
with phosphorous-rich components. The surfaces of the parts with 
phosphate exhibit a compact structure with only little porosity.

The TEM micrographs of the treated sample by gettering process 
(porous phosphate treated 45 min at 900°C and eatching in mixture 
acid ) is given in Figure 8 shows that the TP sample is formed by many 
crystals with baton forms. It seems that the RP sample was subdivided to 
many particles with different sizes. It was determined that the shrinkage 
and the cracks at the surrounding parts with phosphate occurring due 
to thermal and etching treatments [36]. The holes on the surfaces of the 
parts with phosphate prove that carbonate–fluorapatite was calcined 
and that the carbonate–fluorapatite changed to fluorapatite. This is 
due to the disappearance of the impurities which occupied interstitial 
sites, grain boundaries. Only the preponderant elements appear in the 
imagery which is confirmed by quantitative analysis. These results are 
in good agreement with the XRD analysis.

To get more insight of the composition of the RP and TP samples, 
Energy-dispersive X-ray (EDX) was used in many places of the sample 
area. The results were summarized in Table 1. From Figures 7 and 8, 
we noticed that the major elements before treatment are P, Ca, F in 
addition to the impurities such as Al, Si, S, Na, Mg…Whereas, after 
treatment only the P, Ca, F are presented with small traces S, Na and Si.

Table 1 shows the quantitative chemical composition. The analysis 
shows a homogeneous phase composed by P, Ca and F as being major 
elements consists mainly of fluorapatite. The chemical composition 
of phosphate rock shows that after treatement process, it changes to a 
rather poor in magnesium, in silica and metal such as Al, Fe.

Moreover, the electron microprobe analysis of samples allows us to 
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spectral range.
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Figure 7: TEM and EDX analysis of reference phosphate rock.

Element RP TP
Ca 26.27 49.03
P 10.92 28.8
F 3.4 13.43
Si 37.62 7.73
Al 9.08 1.53
Mg 8.87 1.85
Fe 2.31 0.06
S 1.38 0.51

Na 1.12 0.06
K 0.28 0.07

Ca/P 2.4 1.7

Table 1: Atomic percent of reference phosphate (RP) and treated phosphate (TP).
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Figure 8: TEM and EDX analysis of Tunisian phosphate rock after treatment.

evaluate the ratio Ca/P. Compared to the reference phosphate are 2.4, 
treated phosphate (TP) is become 1.7 which is closer to the theoretical 
Ca/P molar ratio of pure FAP: 1.67. However, this proves the presence 
of carbonate-FAP and calcite in reference sample and the presence of 
calcium oxide in excess [28]. This difference in composition may take 
place by incorporation of ion present in the site of PO4

2- group. In our 
case these elements are F-, Na+, CO3

2- known to be incorporated into 
the network of the apatite. 

Conclusion
A marked change on the properties of Tunisian phosphate rock 

was observed following the gettering process. The experimental results 
in this study suggest a significant improvement in the structure as 
well as the composition of the treated phosphate rock. Therefore, we 
consider that gettering process is not only a promising way to eliminate 
the impurities but also it enhances the use of phosphate rock in many 
fields. 
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