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Abstract
Achilles tendon injuries are common and complex especially in athletes and active people. Healing process 

occurs via scar tissue formation leading to poor outcomes for patients. Current surgical and non-surgical treatment 
modalities lead to sub-optimal tendon healing and each of them have complications. Therefore, to repair and restore 
tendon structure and function, a tendon graft is needed; therefore autografts, allografts and xenografts have been 
used. However, each of these grafts is associated with several limitations such as donor site morbidity and pain, 
poor biocompatibility, disease transmission and immune reaction which lead to graft rejection and failure. Tissue 
engineering is an advancing field that can either augment surgical repair or provide an alternative method for Achilles 
tendon repair. Among the components of tissue engineering technologies, the present article has discussed scaffolds 
and emphasized on collagen-based biomaterials. This article illustrated the causes behind the essential need for tissue 
engineering in Achilles tendon repair. Furthermore, it described the current literature regarding the use of collagen in 
Achilles tendon repair and the main points regarding application of collagen biomaterials and scaffolds in tendon tissue 
engineering. 
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Introduction
The incidence of Achilles tendon rupture is increasing and about 

75% of all ruptures occur during sport activities particularly among 
racket sports [1,2]. Tendon healing is an important and hot topic in 
orthopedics and orthopedic sports medicine [3]. The treatment of 
Achilles tendon is performed surgically using either standard open 
or mini-invasive (percutaneous) technique and/or non-surgically 
through different mobilization substitutes  [3-5]. Surgical treatment 
is recommended in highly active sport persons because of earlier 
and safer return to sports [1,2]. This kind of treatment may lead to 
shorter rehabilitation period and safer return to sport player [4]. 
Various immobilization methods such as casting, functional bracing 
with or without weight-bearing and range of motion training have 
been designed in managing tendon injuries [4,5]. These modalities 
are associated with limitations including tendon adhesion, infection 
and the risk of tendon re-rupture; therefore there is a need for another 
promising method to facilitate the healing process of the Achilles 
tendon defects [1,2]. There are some concerns with tendon grafts, 
including autografts, allografts and xenografts, because of their well-
known disadvantages [3,6-9]. Tissue engineering as a multidisciplinary 
approach introduces and suggests some solutions to enhance tendon 
healing and regeneration [3,10,11]. Of the most appropriate scaffolds 
used in the field of tendon tissue engineering are collagen-based 
constructs [10]. Many collagen structures alone or in combination with 
other bioactive molecules and cells have been applied in tendon healing 
[10,12,13]. Therefore, the purpose of this study was to review the 
treatment techniques of Achilles tendon injuries to explain how tissue 
engineering can help in this field. Moreover, we clarified the advantages 
and disadvantages of the collagen-based structures, and explained some 
collagen characteristics and properties with some recent studies.

Structure and function of tendon

Tendons are considered as dense fibrous connective tissues that 
connect muscles to bones and facilitate joint movement [3,10,14,15]. 
Generally, tendons are formed dominantly from type I collagen (85% of 
dry weight) embedding in a proteoglycan-water matrix [6]. Collagen is 
produced by fibroblasts and tenocytes. After production of the collagen 
molecules as procollagens within the cells, they are secreted out of the 
cell and converted into tropocpllagen [3]. The tropocollagen molecules 

are cross-linked and aggregated to microfibrils that form collagen 
fibrils. Aggregation of numerous collagen fibrils form a collagen fiber 
as the basic and the smallest unit of a tendon that is visible by light 
microscopy. Bundles of collagen fibers form fiber bundles and then 
fascicles that form tertiary fiber bundles [3,5,10]. These architectures 
of tendon are covered by a loose connective tissue named endotenon 
containing blood and lymphatic vessels and nerves [10]. The large fiber 
bundles and tertiary fiber bundles with endotenon are surrounded by 
another connective tissue called epitenon. Finally, all these structures 
together are covered by a connective tissue layer namely the paratenon 
or the synovial sheath that sometimes together with the epitenon are 
called the peritenon or peritedineum [3,10,16]. Tendons are attached 
to bones and muscles by a type III collagen-rich fibrocartilaginous 
tissue named enthesis and myotendinous junction, respectively [5]. The 
collagen proteins are responsible for mechanical properties of tendons 
because of their high tensile strength [14]. In addition to tendon cells 
and collagens especially type I collagen (85% of dry matter) and smaller 
amounts of other collagens including collagens types III, V, XII and 
XI, tendons are composed of water, proteoglycans, glycoproteins and 
elastic fibers [6,14,16]. 

Achilles tendon injuries

The Achilles or calcaneal tendon is considered as the most prone to 
rupture tendon in body [2,17]. It is the largest and strongest tendon in 
human body [2]. Most sports-related injuries in tendons occur in this 
tendon. Tendinopathies affecting the Achilles tendons are related to two 
locations including the mid portion and the insertion site of the tendon 
onto the calcaneus [4,17,18]. The Achilles tendon injuries are relatively 
frequent in young and active people and in most instances occur during 
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sports activities such as racket games, football, and handball as well as 
in running athletes and in the age groups of 30-39 years old associated 
with repetitive movements [2,18]. Three mechanisms of injury include 
a sudden pushing off from weight-bearing forefoot with the extended 
knee (sprint starts, racket sports and jumping), unexpected dorsiflextion 
of the ankle (slipping into a hole or falls), and violent dorsiflextion of a 
plantar-flexed foot (falling from height) [2,17].). Intrinsic factors such 
as age, sex, biomechanics, presence or absence of systemic diseases 
and genetic factors may be involved in tendon injuries. On the other 
hand, extrinsic factors including physical load and trauma also may 
be stimulant [1,2,18]. Administration of steroids or fluoroquinolones 
and previous rupture of the contra lateral tendon are some risk factors 
for rupture of Achilles tendon [4]. Other possible factors include 
tendon degeneration, poor vascularity of the tendon and hyperthermia 
induced by exercise [2]. Tendon injuries occur most commonly in male 
individuals than females [1].

Tendon healing

Healing of tendon is a complex process in which many factors are 
involved. In fact, the process is interaction of several elements including 
blood cells, tissue cells, growth factors, cytokines, inflammatory 
mediators, hormones and so on [8,10,19]. Tendon healing is composed 
of three phases including inflammatory, proliferative and remodeling 
phases. At the moment of injury, a hematoma is formed and an 
inflammatory reaction is initiated [3,10]. During this phase, leukocyte 
cells, erythrocytes and platelets are present in the blood clot and initiate 
further inflammatory and angiogenesis processes [3]. The blood clot, 
necrotic tissue and debris in the injured are phagocytized by the 
inflammatory cells. Platelets release several molecules which regulate 
and progress the process. This phase lasts 24 hours to five days [20]. 

During the second phase, the fibroblasts are the predominant 
cells; they produce collagen molecules dominantly type III collagen 
and proteoglycans and a temporary stability is provided. This stage 
lasts from five days to a few weeks [3,10,20]. The third phase can be 
divided to consolidation and maturation phases. Cellularity and tissue 
hydration decrease, collagen type III is replaced with collagen type I 
and the collagen fibers start to align along the line of stress during this 
phase [3,10]. At the end of the consolidation phase or beginning of the 
maturation phase, the hierarchical organization of the tendon starts 
to develop and the small-sized, unimodal collagen fibrils differentiate 
to larger fibrils and form a bimodal and then multimodal fibrils’ 
pattern [3,10,18]. The fibrils are then assembled to fibers, fiber bundles 
and fascicles. These developmental changes result in more weight 
bearing capability and higher physical activity [18,20]. In fact, these 
morphological and physical changes are responsible in enhancing the 
biomechanical properties of the injured tendon during its long term 
remodeling phase [10,15,18]. Tendon healing is complicated when 
the tendon injury is severe and the defect size is large [3,10]. In such 
cases, treatment is associated with more limitations such as adhesion 
of the injured area to the surrounding tissues and muscle disturbance 
such as muscle necrosis, fibrosis and atrophy; in such instances the 
outcome is poor [19]. Because of low vascularity and cellularity and 
minimum metabolic rate in tendons, the healing process is slow and 
normal structural hierarchy and biomechanical performance similar to 
those of the intact tendon may never be achieved [18,19,21]. Treatment 
and management of tendon injuries remains a clinical challenge for 
orthopedic medicine.

Current treatment methods of tendon injuries 

Diagnosis of a tendon rupture is based on the clinical examination 
and confirming a palpable gap at the ruptured site and a positive 

Thompson’s or Simmonds’ test [1,2,4]. Because of pain and weakness 
especially in the chronic injuries, the patients are unable to weight bear 
on the affected limb [4,5,18]. The early diagnosis can be confirmed by 
ultrasonography or magnetic resonance imaging [1,4]. It is important 
that the patients with Achilles tendon rupture return to their pre-injury 
level of sport activity [1,2,18]. The purpose of treatment is to shorten 
the immobilization period and return the patients sooner to sports 
[4,5]. Conservative treatments including rest, corticosteroid therapy, 
ultrasound, laser therapy or shockwave relieve pain and it is likely to 
fail [1,2]. Treatment can be divided into non-surgical (cast or splint 
immobilization or functional bracing) or surgical (open, minimally 
invasive or percutaneous) approaches [1,2,4]. Both surgical and non-
surgical treatment regimes exhibit advantages and disadvantages. 
It seems the surgical procedures can reduce the risk of re-rupture in 
Achilles tendon compared to the non-surgical treatment methods 
[1,4,18]. In fact, non-surgical treatment lowers re-rupture rate to 10-
12% compared to less than 3% in surgical treatment [4]. However, 
it has been stated that the risk of other complications is higher with 
operative methods [1,2]. Complications other than re-rupture include 
skin complications such as wound infection, skin or tendon necrosis 
and draining sinus formation, scarring and fibrous adhesions at the 
wound site, and disturbed sensation [1,2,4,18,20]. Compared with 
percutaneous and minimally invasive surgery methods, open surgery is 
associated with higher complication, higher costs, but lower re-rupture 
rate [1,2,17]. Although it is accepted that surgical therapy should be 
performed for young and active patients versus conservative or non-
surgical treatment for the elders [2]. Optimal treatment for Achilles 
tendon injuries or rupture remains controversial. Cast immobilization 
or functional bracing after the initial intervention can accelerate 
rehabilitation [1]. 

Regarding the cases of severe injuries, an option for replacing 
damaged tendons is biological grafts including autografts, allografts 
and xenografts [3,21,22]. However, these grafts were not associated 
with satisfactory outcomes because of their drawbacks including high 
morbidity and pain at the donor site, need to further surgery and limited 
availability for autografts. Additionally, the risk of disease transmission 
and tissue rejection are the disadvantages with allografts and xengrafts 
[3,10]. Furthermore, with the exception of autografts that provide all 
tenogenic, tenoinductive and tenoconductive properties, other grafts 
have no tenogenisity or even tenoinductivity [3,10,20]. 

 Tissue engineering

Despite all efforts to improve the treatment quality, alternative 
strategies are required to treat tendon injuries. To achieve such promising 
clinical progress, a wide knowledge from different sciences including 
medicine, biomechanics, biochemistry, biology, nanotechnology and 
engineering is required [10]. Given the limitations associated with 
the treatment methods of tendon injuries, one helpful and promising 
option may be the use of tissue engineering modalities [16,20,23]. 
Tissue engineering is regarded as a promising option for managing 
large tendon defects having three different constituents including tissue 
scaffolds, factors promoting healing and cells or stem cells [3,10]. The 
most important part of tissue engineering field is scaffold because of 
its crucial function. In fact, the therapeutic value of an engineered 
tissue without a suitable scaffold but containing the two other elements 
is low [10]. A scaffold should provide an appropriate environment for 
cell attachment, migration, differentiation and proliferation as well 
as matrix remodeling and regeneration [24]. Scaffolds should have 
several properties including biodegradability, biocompatibility and 
bioactivity. Moreover, they should be porous to facilitate cell migration 
and proliferation and movement of growth factors. They should have 
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suitable mechanical properties and could be constructed in a three-
dimensional mode [2,10]. Porosity is regarded as a fundamental 
characteristic that provides space for cell adhesion and migration and 
allows transport of nutrients and metabolic discharge [10]. An ideal 
tissue-engineered scaffold should have at least 70% porosity and pore 
size ranging from tens to hundreds micrometers to provide a suitable 
three-dimensional space to facilitate cell attachment and proliferation 
and promote regeneration of the new tissue [12]. However, high 
porosity may be associated with reduced mechanical strength. 

Scaffolds are classified on the basis of different variables; for instance, 
based on the source, the scaffolds are divided into three main categories 
including biologic (natural), synthetic (artificial) and hybrid scaffolds 
[3,10,24]. Biologic scaffolds are produced by biologic molecules such 
as collagen, gelatin, fibrin, alginate, elastin, chitosan, hyaluronic acid, 
demineralized bone matrix, chondroitin sulfate and so on [10,24]. 
Despite all advantages, the biologic scaffolds exhibit poor mechanical 
properties. The synthetic scaffolds are associated with higher mechanical 
properties and lower biocompatibility compared to the natural scaffolds 
[24]. These polymers include polylactic, polypropylene, polyglycolic 
acid, polydioxanone, polycaprolacton, nylon, carbon fibers, calcium 
phosphates, hydroxyapatite and ceramics [3,10,24]. Hybrid scaffolds 
are constructed by a combination of biological and synthetic scaffolds 
to overcome the well-known limitations when are used alone [24]. 
Among these scaffolds, collagen is very important from many points 
of view, since it constitutes the most frequent protein component in the 
extracellular matrix (ECM) of many soft and hard connective tissues of 
mammals [10]. 

Collagen and tendon healing

Collagen is a favorite material for tendon regeneration since it is the 
major ECM component in tendons. Several studies have demonstrated 
the applicability of different forms of collagen in tendon healing [25-
28]. Collagen has well-documented structural, physical, chemical and 
immunological properties including high availability, easy purification 
from living organisms, low antigenicity, non- or low-cytotoxicity, 
good hemostatic and cell-binding properties as well as biological 
plasticity [10,29]. Nevertheless, several disadvantages of collagen-
based scaffolds such as cost, and the possibility of immunogenic and 
disease transmission risks, should be considered when are used as a 
tendon substitutes [20]. In addition, some other properties of collagen 
such as high cost of pure type I collagen, variation in fiber sizes, low 
elasticity, poor mechanical strength, poor dimensional stability because 
of swelling, and possible antigenic reaction may adversely affect its 
application [10,19,30]. Collagen has high biodegradability character so 
that it can undergo degradation upon implantation within four to five 
weeks [31]. It has been stated that collagen membrane could prevent 
tendon adhesion following surgical treatment of the ruptured Achilles 
tendon in rat [32]. Moreover, the tensile strength and expression of 
collagen type I were improved in the animals which were treated by the 
collagen membrane. 

Collagen can be applied in various forms including films, gels, 
sponges, membranes, nanoparticles, scaffolds or powder [30-32]. As 
an example, Geistlich Bio-Gide® is a resorbable collagen membrane 
with a bilayer structure consisting of natural collagen of pig without 
further cross-linking or chemical additives with a porous and dense 
surface [31]. There are several collagen-based grafts derived from 
different sources such as small intestinal sub-mucosa (SIS) of porcine 
jejunum, urinary bladder membrane, pericardium or dermis [3,10,14]. 
To form such membranes, the non-collagenous components are 
removed and the natural collagen structure is retained [20]. Some 

commercially available collagen materials approved by the Food and 
Drug Administration (FDA) for tendon repair include RestoreTM 
(from SIS, not cross-linked), and CuffPatch (from SIS, cross-linked 
with carbodiimide), GraftJacketTM (human acellular dermal matrix, 
not-cross-linked), TissueMend (bovine dermis and bovine dermal 
ECM), Zimmer collagen repair patch (porcine dermis cross-linked 
with diisocyanate), OrthADAPTTM (equine pericardium), Permacol 
(porcine acellular dermal matrix) and Bio-BlanketTM [10,14,19,30,33]. 
Two main issues with collagen include the low strength provided by 
collagen and its high degradation that is not desired for an ideal delivery 
system or carrier [34]. To overcome these issues and having a sustained 
release of growth factors, some researchers have fabricated the delivery 
systems to express lower degradation rate so that the scaffold can retain 
the growth factors for a long time at the implantation site [27,28,34]. 
Some researchers have cross-linked the collagen fibers with other 
biomaterials to enhance their biomechanical properties [35,36]. Others 
have incorporated some compounds to biomaterials and loaded in 
scaffolds to immobilize growth factors and prolong their retention at 
the defect site [37,38]. 

Cross-linking and biomechanical properties of collagen

The naturally cross-linked collagen fibrils in the structure of skin, 
tendons and bones lead to rigidity of these organs [35,39]. These 
fibrils are made and stabilized by forming covalent bonds between 
four to eight collagen molecules. Three α-chains are interlaced in the 
collagen triple-helix to form the collagen molecules [35]. The triple-
stranded collagen helix (Triple-helix) is composed of repeated Gly-X-Y 
sequences and is stabilized by intra- and inter-chain hydrogen bonds. 
It should be noted that X and Y are largely proline and hydroxyproline, 
respectively [35,39]. Telopeptides made of 15 to 26 amino acids mostly 
lysine and hydroxylysine residues are the very short N- and C- terminal 
regions that do not participate in triple-helix formation [35]. The 
total Gly-Pro-Hyp sequence content is considered as one of the most 
important factors influencing collagen thermostability [35]. 

One of the major limitations of collagen-based scaffolds in tendon 
engineering technologies is their low biomechanical properties 
[10]. Physical or chemical cross-linkers are expected to improve the 
biomechanical performance of the engineered tendons [10,39,40]. 
It has been demonstrated that the mechanical properties of collagen 
can be improved by cross-linking process [39-41]. For this purpose, a 
variety of reagents and methods such as chemical cross-linkers such 
as aldehydes like gluteraldehyde (GTA), formaldehyde, diisocyanates 
such as hexamethylenediisocyanate, carbodiimides such as 1-ethy-3-
(3-dimethylaminopropyl) carbodiimide, and acyl azides and physical 
cross-linking by the use of dehydrothermal treatment, ultraviolet and 
gamma irradiation have been employed [2,10,39,41]. These physical 
methods increase the resistance to the collagenolytic degradation [39]. 
Although UV-irradiation may induce the free radicals formation, it can 
improve the mechanical strength of the material [39]. In addition to 
amino groups, GTA react with carboxylic, amides and other protein 
groups [39,40]. 

There are some concerns about cross-linking of the collagen-
based structures with GTA including cytotoxicity due to releasing the 
monomer from the glutaraldehyde polymer and calcification of the 
collagen-based material as well [39-41]. However, GTA reduces the 
immunogenicity and increases the resistance of the collagenous scaffold 
to enzymatic degradation [39,41]. Cross-linking with formaldehyde 
prolongs the absorption and reduces the tensile strength of collagen-
based scaffolds [39,41]. Moreover, there is the potential of toxicity and 
adverse reactions due to the brittleness of scaffolds cross-linked with 
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formaldehyde [39]. All other cross-linking agents are associated with 
cytotoxicity and this consequence limits their application [40]. Given 
these limitations, effective and non-toxic cross-linkers such as genipin, 
a natural iridoid glycoside derived from the fruit extract of the gardenia 
plant (Gardenia jasmindides Ellis), have been used and approved. 
Genipin has been applied for gelatin films and hydrogels [40,41]. 
Genipin cross-links gelatin through the epsilon amino group present in 
lysine and hydroxylysine residues [41]. 

Another method for enhancing the collagen affinity to growth 
factors is the application of polysaccharides such as heparin that have a 
high binding affinity with many proteins such as bone morphogenetic 
proteins (BMPs) and growth factors present in platelets such as vascular 
endothelial growth factor (VEGF) and basic fibroblast growth factor 
(bFGF) [36,38]. Hannink et al. [38] stabilized growth factors and 
protected them from proteolytic degradation for long-term delivery 
of BMP-2, by covalently incorporating heparin into the cross-linked 
collagen coated tri-calcium phosphate-hydroxyapatite granules. Wenpo 
et al. [36] added pectin, an anionic plant polysaccharide hydrogel, to 
collagen-hydroxyapatite composite and obtained desirable mechanical 
properties, low cytotoxicity and suitable enzyme degradation rate. 
Pectin is involved in the mechanical and morphological development 
of plant tissues and it has been considered as an interesting option for 
tissue engineering approaches such as a carrier for drug delivery and 
an implant coating [42]. In fact, polysaccharides such as heparin and 
pectin interact with proteins rich in hydroxyproline including collagen 
via covalent bond [36,38,41]. 

The combination of different materials is also a strategic design for 
achieving hybrid scaffolds. For instance, Kwon et al. [43] fabricated an 
artificial Achilles tendon comprising a braided silk tube and lyophilized 
collagen sponge that improved regeneration of neo-tendon tissues 
in rabbits. The structure and tensile strength of these neo-tendons 
were similar to those of the native tendon. In fact, collagen alone 
has poor physical properties and it cannot bear the mechanical load 
of the materials; therefore, the silk tube scaffold compensated these 
limitations. 

Collagen degradation

Since collagen is the main structural protein in the body, it is 
resistant to neutral proteases [39]. Only specific collagenases which 
are metalloproteinases requiring calcium can cleave the triple helix 
from the N-terminus. In addition, elastases and cathepsins involve in 
proteolysis of collagen fibers through digesting the non-helical regions 
[10,39]. When the collagen molecules are administrated in tissue 
engineering technologies, different cellular responses occur depending 
on the shape of collage material [10,39]. For example, collagen gels 
are penetrated by fibroblasts to contract the gel, while fibroblasts, 
macrophages and neutrophils penetrate to the surrounding structures 
to degrade the collagen [39]. It has been stated that the collagen films 
without crosslinking are degraded during two to seven weeks. However, 
absorption and degradation can be manipulated by crosslinking 
methods. 

Antigenicity, immunogenicity and sterilization

Collagen is known for its excellent biocompatibility and poor 
immunologic reactions. Nevertheless, since most of the collagen-
based structures are derived from animal tissues, their implantation 
may be associated with immune reaction of the host and even 
rejection [3,10]. In fact, since the main source of collagen is the tissues 
harvested from porcine or bovine skins, tendons or bones, the risk 
of allergic reactions and transmission of zoonotic disease such as 

bovine spongiform encephalopathy (BSE) or transmissible spongiform 
encephalopathy (TSE) must be noticed [10,39]. To avoid this problem, 
acellularization modalities can eliminate the immunogenicity and 
enhance incorporation of the collagen-based scaffolds [10,24,44]. 
These methods remove the nuclear and cytoplasmic antigens, while 
the ECM structure and mechanical properties of the scaffold are 
maintained [10]. Enzymatic, physical and chemical methods have been 
used for this purpose including sodium dodecyl sulfate, Triton X-100, 
NaCL, trypsin, ethylene diamine tetraacetic acid (EDTA), and tributyl 
phosphate [10,24,44,45]. Vavken et al. [45] introduced Triton X as 
the most effective solution for acellularization of the porcine anterior 
cruciate ligament. However, in a study conducted by Elder et al. [44], 2% 
SDS was the most efficient concentration for cartilage acellularization. 
In addition, glutaraldehyde as a chemical cross-linker can reduce, 
but does not eliminate the antigenicity of the scaffolds of the collagen 
sources [10,39]. Despite such theoretical concerns, collagen seems safe 
and demonstrates low antigenicity when it is used as an implantable 
and injectable biomaterial [39]. Among moist heat, dry heat, ethylene 
oxide and γ-irradiation, the last one has been considered as the most 
reliable method in sterilizing the collagen biomaterials so that a dose 
of 2.5 Mrad has been used for complete sterilization [39]. However, 
γ-irradiation can decrease the mechanical strength of collagen; therefor 
it makes the material sensitive to collagenase degradation [10,39]. 

Collagen-based scaffolds with cells and growth factors

To optimize the benefits of treatment methods of Achilles tendon 
defects, it may be advantageous to seed the scaffolds with stem cells to 
support healing and remodeling processes and enhance the potential 
of migration of the mesenchymal cells and their differentiation 
into tenocytes and tenoblasts [1,46,47]. Different forms of collagen 
structures have been used alone or in combination with other bioactive 
molecules, growth factors alone or in the form of platelet-rich plasma 
(PRP) or stem cells [10]. The ECM from porcine SIS is a biomaterial 
that can recruit stem cells to participate in the tendon healing. Zhang 
et al. [47] combined type I collagen matrix with weft-knitted silk-poly 
(lactide-co-glycolide) mesh scaffold and seeded this structure with 
mesenchymal stem cells and enhanced Achilles tendon repair in rabbit. 
Pietschmann et al. [46] showed that polyglycolic acid in combination 
with collagen type I scaffolds seeded with mesenchymal stem cells may 
be less effective than the scaffolds loaded with tenocytes. Sixteen weeks 
after repair, the Achilles tendon of rat treated with scaffolds seeded with 
tenocytes had better structural performance and mechanical properties 
than those treated with scaffolds seeded with stem cells or controls. 

Since stem cells differentiate and integrate into tendon, the 
combination of scaffolds and cells can promote maturation of collagen 
fibers and result in enhanced tendon repair [10,47]. It should be 
highlighted that if the degradation rate of the scaffold is too rapid, it will 
lead to loss of the scaffold as the cell support and result in formation 
of an unorganized granulation tissue formation [39,47]. On the other 
hand, slow rate of degradation of the material may accumulate it for a 
longer time in the defect area so that there is not enough space for tissue 
regeneration. In addition, such material behaves as a foreign material 
and negatively affects tissue regeneration [47]. 

In addition to stem cells, addition of tenocytes to collagen-based 
scaffolds has been represented as a valuable source of cells for tendon 
tissue engineering purposes [13]. It should be paid attention that an 
optimal cell-to-collagen ratio can improve the delivery of stem cells to 
the healing tendon, while application of higher ratio of mesenchymal 
cells has not been found beneficial [13,46]. The collagen gels exhibit 
superior cell-seeding efficiency, while the collagen sponges present 
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collagen derived from bovine sources are other limiatations. Therefore; 
given these explanations, the use of collagen-based scaffolds and 
biomaterials particularly in clinical studies remains challenging. 
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greater mechanical strength so that a combination of collagen gels 
with collagen fibers or sponges represents a promising strategy [14]. 
Martinello et al. [48] fabricated a re-cellularized collagen gel scaffold 
using adipose-derived mesenchymal stem cells in treatment of tendon 
injuries. This scaffold resulted in an enhanced expression of collagen 
type I production in the ECM. 

The healing and regeneration processes are affected and regulated 
by many factors such as metalloproteinase, growth factors and 
inflammatory mediators at different times during the healing processes 
[3,10,24,34]. These factors play important roles in tendon healing 
by regulating cellular migration, proliferation, differentiation and 
maturation as well as production of extracellaular matrix [3,10,34]. 
However, the growth factors such as BMPs are very expensive that limits 
their exogenous application on tendon healing [39]. Therefore, some 
researchers successfully embedded the platelet-rich plasma as a cost-
effective source of several growth factors within the tissue-engineered 
collagen-based implants to promote the healing and regeneration of 
large Achilles tendon defects in rabbits [25,26,28]. 

Future Directions and Conclusion
Another promising approach in application of collagen-based 

constructs is development of collagen nano-particles in the field of 
drug delivery carriers [14,39]. Some advantages of such nanoparticles 
include sustained release, reduced side effects, improved bioavailability 
and drug protection [14]. For the drug-loaded collagen systems, it 
must be paid attention to the drug because of its effects on the cellular 
reactions for collagen degradation [39]. For example, corticosteroids 
can decrease degradation of collagen, whereas the immunostimulants 
or growth factors increase the degradation rate [39]. Electrospinning 
that is a unique method in which the scaffolds are fabricated exhibit 
high porosity and micro- to nano-scale topography similar to the 
natural ECM structure, has received considerable attention as a possible 
processing technique for fabrication of the scaffolds used in tendon 
tissue engineering [3,10,14]. Xu et al. [12] fabricated a 3D aligned 
nanoyarn collagen-based scaffold, using electrospinning technology 
that provides sufficient space for cell adhesion and infiltration with 
desirable mechanical properties in comparison to the random 
nanofiber and aligned nonofiber scaffolds. The materials in collagen 
solution are formed into nano- and micro-sized continuous fibers 
by electrospinning and the fibers are in uni-directional and parallel 
alignment [12,27]. The electrospun nanofibrous scaffolds can be used 
to improve cell attachment and increase cellular activity [12,27,49]. 
However, this technology has limitations such as availability of 
electrospinning devices, poor biomechanical properties of the collagen-
based constructs, cell-interaction with biomaterials and cost in respect 
to 3D structures [14,18]. 

In conclusion, advantages of collagen including good 
biocompatibility and biodegradability, suitable porosity especially in 
sponge forms, and ability to enhance cellular penetration all reflect the 
potential of collagen in the growing field of tissue engineering. These 
factors make collagen suitable for scaffolds fabrication to delivery 
growth factors or cells for enhancing the healing and repair of Achilles 
tendon injuries. However, it should be noticed that the disadvantages 
mentioned above such as fast biodegradation of collagen implants, high 
cost of pure type I collagen preparation can limit further application of 
collagen implants. Other disadvantages include hydrophilicity resulting 
in swelling and rapid release of its contents, and poor biomechanical 
strength. In addition, variability of the isolated collagen in terms of fiber 
size, cross-linking density and fiber alignment, variability in enzymatic 
degradation rate and the risk of zoonotic disease transmission with 
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