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Introduction
Hydrolase enzymes play significant roles in biotechnology be-

cause of their extreme versatility with respect to substrate specificity 
and stereoselectivity [1-3]. Lipases [triacylglycerol acylhydrolases (EC 
3.1.1.3)] are enzymes which catalyze the hydrolysis of fatty acid ester 
bonds in triacylglycerol to give free fatty acids, diacylglycerols, mono-
acylglycerols and glycerol at the lipid water interface [2]. Various mi-
crobial lipases have been purified, characterized and studied for their 
biotechnological applications in food, dairy, detergents, pharmaceuti-
cals, textile, cosmetics & paper industry, bioremediation of oil contain-
ing effluents and preparation of various flavor and fragrances as well 
[1-5]. Most of lipases produced commercially are currently obtained 
from fungi or yeasts [1-3]. Rhizopus, Aspergillus, Mucor, Geotrichum, 
Penicillium and Candida are the potential sources of commercial li-
pase production. The lipase from Rhizopus has 1,3-regioselectivity, for 
selectively catalyzing the hydrolysis of triacylglycerol [6]. However, 
the lipase production with Rhizopus sp. is relatively low-yield and eco-
nomically unfavorable [6]. Various methods have been investigated in 
the literature to optimize the fermentation process to enhance lipase 
production yields, and most of literatures have reported improvement 
in lipase yield after optimization. Elibol and Ozer [7] optimized lipase 
production by Rhizopus arrhizus using response surface methodol-
ogy and obtained 0.37 U/mL lipase activity (tributyrin as substrate). 
D'Annibale  et al. [8] investigated the utilization of olive-mill wastewa-
ter as a growth medium for the microbial production of extra-cellular 
lipase using Rhizopus arrhizus NRRL 2286, Rhizopus sp. ISRIM 383 and 
Rhizopus oryzae NRRL 6431 and obtained a maximum lipase activity 
of 0.30, 0.35 and 0.36 IU/mL (β-naftilmyristate as substrate) respec-
tively. Repeated-batch-fermentation by immobilized R. arrhizus was 
conducted by Yang et al. [6] and observed that the lipase productivity 
increased from 3.1 U/mL h in batch fermentation to 17.6 U/mL h in 
repeated batch fermentation, which was 5.6 times as high as that in 
batch fermentation.

Screening and evaluation of nutritional and environmental re-

quirements of microorganism are important steps for bioprocess de-
velopment. Microbial lipase fermentations are significantly affected 
by the environmental conditions such as medium pH, temperature, 
aeration, agitation and inoculation size. Response surface methodology 
(RSM) is a collection of experimental strategies, mathematical methods 
and statistical inference for constructing and exploring an approximate 
functional relationship between a response variable and a set of design 
variables [9,10].

Due to the metabolic complexity of microorganisms, the develop-
ment of rigorous models for a given biological reaction system based 
on physical and chemical parameters is still a challenge. This is mainly 
due to the non-linear nature of the biochemical networks and lack of 
complete knowledge [11,12]. Artificial neural network (ANN) methods 
have been utilized with great success for system design, modeling, pre-
diction, optimization and control. This is mainly due to their capacity 
to learn, filter noisy signals and generalize information through train-
ing procedures [12]. Mathematical models of bioprocess kinetics facili-
tate data analysis and definitely provide a strategy for solving problems 
encountered in industrial fermentation processes [13,14]. The goal of 
the fermentation kinetic studies is to increase the productivity of batch 
process and to optimally design and operate continuous fermentation. 
Objectives of the present study are;

(i) Optimize the fermentation conditions such as pH, tempera-
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Abstract
The response surface optimization strategy was used to enhance the lipase production by Rhizopus arrhizus 

MTCC 2233 in submerged fermentation. Various vegetable oils were experimented as an inducer using the optimized 
medium to study the influence on lipase production, and corn oil was found to be the best inducer for lipase production 
by Rhizopus arrhizus. The optimization of fermentation conditions, temperature, initial pH and agitation speed was 
carried out using corn oil as the inducer. Statistical analysis of the experimental data showed that the temperature, 
agitation speed, quadratic effects of temperature, initial pH and agitation speed and interactive effects of temperature 
and agitation speed are significant parameters that affect lipase production. The optimum fermentation conditions were 
achieved at 32°C; pH 6.0 and agitation speed of 107 rpm with the maximum lipase activity of 4.32 U/mL. Artificial neural 
network model was used to predict the lipase activity and cell mass production under various fermentation conditions. 
Unstructured kinetic models, Logistic model, Luedeking-Piret model and modified Luedeking-Piret model were used to 
describe the cell biomass, lipase production and glucose utilization kinetics respectively. 
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ture and agitation speed for lipase production by Rhizopus arrhizus us-
ing RSM in an optimized medium 

(ii) Utilize the ANN model for the prediction of lipase activity 
and cell biomass at various conditions 

(iii) Predict lipase fermentation kinetics using unstructured ki-
netic models.

Materials and Methods
Materials

The medium components and other chemicals used were procured 
from Himedia Ltd, Mumbai, India. All chemicals used were of ana-
lytical grade unless otherwise specified. The orbital shaker is a make of 
Remi Laboratories India, RIS - 24 BL; centrifuge from Remi Laborato-
ries India, C-24 BL; homogenizer from Global-Butterfly India, 230V 
AC, 550W heavy duty and the spectrophotometer is a make of Elico 
India Ltd., (Double Beam UV-VIS Spectrophotometer-SL 164).

Microorganisms and culture maintenance 

Rhizopus arrhizus MTCC 2233 was obtained from Microbial Type 
Culture Collection of gene bank (MTCC), Institute of Microbial Tech-
nology, Chandigarh, India. The Rhizopus arrhizus stock culture was 
maintained on potato dextrose agar slants containing potato infusion 
(infusion from 200 g potatoes) 4.0 g/L; Dextrose 20.0 g/L. Spirit blue 
agar (Himedia-Mumbai, India) was used for the detection of lipolytic 
activity of the microorganisms. 

Submerged batch fermentation

The R. arrhizus MTCC 2233 slant was kept at 30°C for 2 days. 
After growth and sporulation, 10 mL sterile distilled water was asep-
tically added to the agar slant which was then scraped to release the 
spores. The spore suspension was centrifuged at 2500g for 10 min and, 
supernatant was discarded and then the spores were resuspended in 
1 mL of sterile distilled water. Spore suspension (1 mL) was used as 
inoculum for 250 mL shake flask containing 100 mL of fermentation 
medium (glucose- 15 g/L; oil inducer -10 mL/L; peptone- 6 g/L; yeast 
extract- 6 g/L; K2HPO4- 0.1 g/L; KH2PO4- 2 g/L; CaCl2.2H2O- 1 g/L; 
MgSO4.7H2O- 0.5 g/L; ZnSO4- 0.01 g/L; FeSO4.7H2O- 0.05 g/L; CuSO4- 
0.02 g/L; MnSO4 .H2O- 0.02 g/L). After the inoculation, flasks were 
placed on a rotary shaker at 30°C and 120 rpm incubated for 2 days and 
were then used to inoculate the production medium at 5% (v/v) level. 
The lipase production by R. arrhizus was studied in 250 mL Erlenmeyer 
flask with 100 mL of the production medium. The pH of fermenta-
tion medium was adjusted using 2M NH4OH and sterilized at 121°C 
(15 psi) for 20 min. The flasks were incubated in an orbital shaker at 
constant agitator speed and temperature for the fermentation period of 
108 h. Identical flasks were used for the fermentation and the cells were 
separated from the medium by centrifugation at 5000g for 15 min. The 
clear supernatant was used for the analysis of lipase activity, protease 
activity, total soluble protein and glucose. All the submerged batch fer-
mentations were conducted in triplicate and average results were given 
in this report. Lipase production was measured and compared at dif-
ferent conditions.

Lipase activity assay

Lipase activity was estimated with olive oil emulsion by the pro-
cedure of Ota and Yamada [15]. Olive oil emulsion was prepared by 
homogenizing 25 mL of olive oil and 75 mL of 2 % w/v polyvinyl al-
cohol solution in a homogenizer for 6 min at 20000 rpm. The reaction 

mixture composed of 2 mL olive oil emulsion, 2.5 mL 0.05 M phos-
phate buffer and 0.5 mL enzyme solution was incubated at 37°C for 
15 min. The emulsion was disrupted by addition of 10 mL acetone im-
mediately after 15 min incubation and the liberated fatty acids content 
was titrated against 0.05 N NaOH. One unit (U) of lipase activity was 
defined as 1 µmole of free fatty acids liberated per mL of enzyme per 
minute at 37°C.

Protease activity assay

The protease activity was assayed by modified Anson method [16] 
using casein as the substrate. 2 mL of 1% w/v casein solution is mixed 
with 0.5 mL of enzyme solution and incubated at 37°C for 30 min and 
reaction was quenched by addition of 2.5 mL of 0.4 M trichloroacetic 
acid to the reaction solution. The solution with precipitate was filtered 
and to the 1 mL of filtrate, 5 mL of 0.4 M Na2CO3 and 0.5 mL of folin 
reagent were added. After 10 min of incubation at 37°C, the colour in-
tensity was measured at 660 nm. One unit (U) of protease activity was 
defined as 1 µgram of tyrosine liberated per minute by 1 mL of enzyme 
at 37°C.

Biomass, glucose and protein determination

The biomass concentration (dry cell weight) was determined by 
gravimetric method. The glucose concentration in the cultivation broth 
was determined as described by Miller [17] using dinitrosalicylic acid. 
The total soluble protein in the medium was determined as described 
by Lowry et al. [18]. 

Central Composite Experimental Design (CCD)
An orthogonal (2)3 factorial central composite experimental design 

with six star points and six replicates at the centre with a total of 20 
experiments were used to optimize the fermentation conditions such 
as temperature, medium pH and agitation speed [19-22]. These con-
ditions were tested at five coded levels, –1.682, –1, 0, +1 and +1.682. 
The experimental range and levels of the three fermentation conditions 
used in RSM in terms of coded levels and actual values and the CCD 
experimental plan were given in Table 1. The CCD experiment was de-
signed using the MINITAB software package, version 14.0, The Math 
Works Inc. The variables were coded according to the following equa-
tion, 

ix  = i c

i

X X
X
−
∆

 , i = 1, 2, 3 … k.                (1)

Where,   is the coded value of an independent variable, Xi is the real 
value of an independent variable, Xc the real value of an independent 
variable at the center point and ∆Xi is the step change value. Multiple 
regression analysis of the experimental data gives the second order 
polynomial equation for optimization of variables. The behaviour of 
the system was explained by the following second degree polynomial 
equation, 

Y = β0 + Σβixi  + Σβii 
2
ix  + Σβij xixj                 (2)

Where, Y is the predicted response, β0 the offset term, βi the coefficient 
linear effect, βii the coefficient squared effect and βij the coefficient of 
interaction effect. The MINITAB software statistical program package 
was used for regression analysis of the experimental data obtained and 
to estimate the coefficients of the regression equation. The response 
surface plots were used to describe the individual and cumulative ef-
fects of the variables as well as the interactions between the variables on 
the lipase activity. The second degree polynomial equation was maxi-
mized by a constraint search procedure to obtain the optimal levels of 
the independent variables and the predicted maximum lipase activity. 
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Artificial Neural Network Model (ANN)
The feed forward back-propogation algorithm with one hidden 

layer was used in the training of the neural network, based on vary-
ing input/output pair data sets. ANN was applied for the purpose of 
simulation on the same experimental data (Table 1) used for RSM. 
The accuracy of the neural network prediction is dependent on the 
training patterns as well as the structure of the neural network [23]. 
Neural network consist of many processing elements called neurons 
interconnected by information channels. The number of neurons in the 
input and output layers are given by the number of input and output 
variables in the fermentation process. The input signals are amplified 
or dampened by a weight associated with each information channel. 
The neuron then sums all weighted inputs and passes them through a 
threshold to determine the activation value (the fired output signal) of 
this neuron. The inter neuron activity can be modeled by an activation 
function [24]. Sigmoid activation function which is commonly used in 
back propagation algorithm is given below,

yj = -  
1

1
1 exp

n

i ij j
i

a w θ
−

=

  
+ +  

  
∑                           (3)

Where, ai - input signal, yj - fired output signal, wij -weight associ-
ated with the input signal ai, θj- threshold value of neuron j. 

In back propagation networks, the process is executed according to 
an error feedback method by which it will first update the values of all 
the neurons corresponding to input data based on current weights and 
then adjust the weights according to the error between fixed outputs 
and desired outputs to reduce the error. The summation of output er-
rors, E is given by,

E =  ( )21
2 j j

j
y d−∑                    (4)

Where, dj is the desired output from neuron j. A common scheme 
used for neural network training is the maximum gradient scheme, in 
which each connection weight wik was changed by ∆wik as given below,

∆wik = – η 
ik

E
w
∂
∂

                         (5)

Where, η is the positive constant controlling the speed of learning. 
The Neural network toolbox in MATLAB software was used to con-
struct the ANN topology. This topology of neural network was used in 
this study for the prediction of the lipase activity and cell mass under 
various environmental conditions.

Unstructured Model Development for Fermentation 
Kinetics

Various unstructured models were proved to be sufficient for char-
acterizing the fermentation kinetics. In an unstructured model the cel-
lular representations are single component representations [13,25,26]. 
The exponential growth phase can be characterized by the following 
first order equation which states that the rate of increase of cell biomass 
is proportional to the quantity of viable cell biomass at any instant time, 

dX X
dt

µ=                          (6)

Where, dX/dt is the growth rate (g/L.h); X is the concentration of 
biomass (g/L); µ is the specific cell growth rate (1/h). The growth of 
cell is governed by a hyperbolic relationship and there is a limit to the 
maximum attainable cell biomass concentration. Such growth kinetics 
is described by logistic equation [25] as,

 0
max

1dX X
dt X

µ
 

= − 
 

X                       (7)

Where µ0 is the initial specific growth rate (1/h) and Xmax is the 
maximum cell mass concentration (g/L). Equation (7) on integration 
using X0 = X (t = 0) gives a sigmoidal variation X (t) that may empiri-
cally represent both an exponential and a stationary phase.

( )

0

0

0

0

max

( )
1 1

t

t

X eX t
X e

X

µ

µ

=
 

− − 
 

                                                                                    (8)

The kinetic parameter, µ0 in this equation is determined by rear-

Run 
No.

CCD Experimental Design matrix (Coded 
and real values) Experimental

Predicted Lipase 
activity 

Predicted  
Cell mass

x1 x2 x3

Cell massa 
(g l-1) Lipase activityb

(U ml-1)

Protease activi-
tyc

(U ml-1)
RSM (U ml-1) ANN (U ml-1) RSM (g l-1) ANN (g l-1)

1 -1 (28) -1 (5) -1 (120) 4.20 2.15 0.95 1.969 2.15 4.432 4.2
2 1 (32) -1 (5) -1 (120) 6.56 3.00 1.65 3.36 3.0 6.807 6.56
3 -1 (28) 1 (6.5) -1 (120) 3.15 2.20 1.05 2.052 2.2 3.159 3.15
4 1 (32) 1 (6.5) -1 (120) 5.82 3.8 0.45 3.518 3.8 5.499 5.82
5 -1 (28) -1 (5) 1 (160) 3.30 1.90 0.85 1.975 1.9 3.772 3.3
6 1 (32) -1 (5) 1 (160) 3.65 2.25 1.95 2.191 2.25 3.792 3.65
7 -1 (28) 1 (6.5) 1 (160) 3.12 2.65 0.65 2.083 2.65 3.024 3.12
8 1 (32) 1 (6.5) 1 (160) 3.09 2.40 1.26 2.374 2.4 3.008 3.09
9 -1.682 (26.6) 0 (5.75) 0 (140) 2.60 1.20 0.55 1.588 1.2 2.305 2.6
10 1.682 (33.3) 0 (5.75) 0 (140) 4.21 3.10 2.15 3.003 3.1 4.29 4.21
11 0 (30) -1.682 (4.46) 0 (140) 5.81 2.60 0.88 2.383 2.6 5.232 5.81
12 0 (30) 1.682 (7.01) 0 (140) 3.14 2.10 0.45 2.607 2.1 3.503 3.14
13 0 (30) 0 (5.75) -1.682 (106.4) 6.41 3.20 1.65 3.249 3.2 6.382 6.41
14 0 (30) 0 (5.75) 1.682 (173.6) 3.92 2.05 1.65 2.292 2.05 3.733 3.92
15 0 (30) 0 (5.75) 0 (140) 5.20 4.10 2.15 3.841 3.925 5.139 5.133
16 0 (30) 0 (5.75) 0 (140) 4.92 3.70 1.95 3.841 3.925 5.139 5.133
17 0 (30) 0 (5.75) 0 (140) 4.56 4.20 1.89 3.841 3.925 5.139 5.133
18 0 (30) 0 (5.75) 0 (140) 5.95 3.85 2.30 3.841 3.925 5.139 5.133
19 0 (30) 0 (5.75) 0 (140) 4.85 3.90    1.65 3.841 3.925 5.139 5.133
20 0 (30) 0 (5.75) 0 (140) 5.32 3.80 2.01 3.841 3.925 5.139 5.133

I1: Temperature; x2: Initial pH; x3: Agitation speed 
a, b, cThe maximum values of cell mass, lipase activity and protease activity respectively and they are the mean values of triplicates. 250 ml Erlenmeyer flask containing 100 
ml production medium (constant) was incubated in an orbital shaker (variable) for the fermentation period of 48 hrs. 

Table 1: Central composite experimental design and comparison of experimental values with RSM and ANN predicted values of lipase activity using R. arrhizus in sub-
merged fermentation methods.
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ranging equation (8) as,

max
0

0

ln 1 ln
1

X Xt
X X

µ
  

= − +   
−                       (9)

Where
max

XX
X

= , if the logistic equation describes the data suit-

ably, then a plot of ln
1

X
X

 
 
−  

 vs. t should give a straight line of slope ‘µ0’ 

and intercept  max

0

ln 1X
X

  
− −  

   

The kinetics of lipase production was described by Luedeking-Piret 
equation [27] which states that the product formation rate depends 
upon both the instantaneous biomass concentration (X) and growth 
rate (dX/dt) in a linear fashion.

dP dX X
dt dt

α β= +                                                                                   (10)

where α(gP/gX) and β(gP/gX•h) are empirical constants that may vary 
with fermentation conditions. Integrating equation (10) using equa-
tion (7),

Pt = P0 + α A(t) + β B(t)                (11)

Where P0 and Pt are the product concentrations at initial time and 
at any time (at time t) respectively and,

A(t) =   
( )

0

0

0
0

max

1
1 1

t

t

eX
X e

X

µ

µ

 
 
 −  
− −  

   

                         (12)

       B(t) =  ( )0max 0

0 max

ln 1 1 tX X e
X

µ

µ
 
− − 

 
                   (13)

The parameters α and β in equation (11) are determined by plotting 
– P0/B(t) vs 

A(t) /B(t) which is a straight line with slope ‘α’ and intercept ‘β’.

The substrate utilization kinetics is given by the following equa-
tion, which considers substrate conversion to cell mass, to product and 
substrate consumption for maintenance [25].

/ /

1 1
e

X S P S

dS dX dP k X
dt Y dt Y dt

= − − −                (14)

Where, YX/S and YP/S are yields of cell mass and product with respect 
to substrate and Ke is the maintenance coefficient for cells. Rearranging 
the substrate material balance equation (14),

dS dX X
dt dt

γ η= − −                                                                                   (15)

Where,     

' '
/ /

1(gS/gX)
X S P SY Y

αγ = +                                                                         (16)

( ) '
/

. e
P S

gS gX h k
Y
βη = +                                                                             (17)

Equation (15) is the modified Luedeking- Piret equation for sub-
strate utilization kinetics.

Substituting for µ from equation (7) and integrating gives 

St = S0 – γ m(t) – η n(t)                         (18)

Where, S0 and St are the substrate concentrations at initial time and 
at anytime ‘t’ respectively and,

m(t) = 
( )

0

0

0
0

1
1 1

t

t

m

eX
X e
X

µ

µ

 
 
 −  
− −  

   

              (19)

 

n(t) =  ( )00

0

ln 1 1 tm

m

X X e
X

µ

µ
 
− − 

 
                                      (20)

Kinetic parameters (γ,η) in equation (18) is determined by plotting    

0
( )

tS S
n t
−  vs 

( )
( )

m t
n t

 which is a straight line with slope γ and intercept η.

Results and Discussion 
Optimization of inducer 

Lipase production by Rhizopus arrhizus was experimented in sub-
merged batch culture in shake flasks. In the first step, the medium com-
ponents that have the more influence on the lipase production were 
identified using Plackett-Burman (PB) statistical experimental design. 
The statistical analysis of PB design (data not presented) showed that, 
the medium components such as olive oil, peptone, CaCl2.2H2O and 
MgSO4.7H2O were found to have the most profound influence on the 
lipase production with a confidence level of more than 95%. 

The composition of culture medium, in particular addition of dif-
ferent lipid substances can result in the production of different isoen-
zymes and oils play a vital role in the lipase synthesis [28]. The oils 
mainly contain various proportions of three main types of fatty acids 
such as saturated, monounsaturated and polyunsaturated fatty acids in 
addition to vitamins and growth factors. The basic constituents of vege-
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Figure 1: Effect of inducers on lipase production by R. arrhizus in submerged 
fermentation.



Citation: Rajendran A, Thangavelu V (2012)  Application of Central Composite Design and Artificial Neural Network for the Optimization of Fermentation 
Conditions for Lipase Production by Rhizopus arrhizus MTCC 2233. J Bioprocess Biotechniq 2:118 doi: 10.4172/2155-9821.1000118

Page 5 of 9

J Bioproces Biotechniq
ISSN:2155-9821 JBPBT, an open access journal Volume 2 • Issue 3 • 1000118

table oils are 16-carbon acids (palmitic and palmitoleic) and 18-carbon 
acids (stearic, oleic, linoleic and linolenic). The effect of vegetable oils 
on lipase production was studied by single factor optimization method 
keeping all other media constituents and process conditions constant. 
The optimized medium used for the inducer optimization studies 
which contains glucose- 15 g/L; peptone- 6 g/L; yeast extract- 6 g/L; 
K2HPO4- 0.1 g/L; KH2PO4- 2 g/L; CaCl2.2H2O- 1 g/L; MgSO4.7H2O- 0.5 
g/L; ZnSO4- 0.01 g/L; FeSO4.7H2O- 0.05 g/L; CuSO4- 0.02 g/L; MnSO4 
.H2O- 0.02 g/L and various vegetable oil inducers at the concentration 
of 10 mL/L. The vegetable oils used in this study were sesame oil, coco-
nut oil, groundnut oil, castor oil, palm oil, sunflower oil, corn oil, bassia 
oil and olive oil. Among all oil inducers tested in this study, corn oil was 
found to be the best inducer for lipase production by Rhizopus arrhizus 
followed by sunflower oil, coconut oil, groundnut oil, olive oil, sesame 
oil, palm oil, castor oil, and bassia oil (Figure 1). Maximum lipase activ-
ity of 3.15 U/mL was observed at 84 h of cultivation using corn oil as an 
inducer. Elibol and Ozer have also reported similar results for the lipase 
production by Rhizopus arrhizus using corn oil [7]. 

Central Composite Experimental Design and Optimi-
zation of Fermentation Conditions by Response Sur-
face Methodology 

The experimental plan to determine the optimum combination of 

fermentation conditions for enhancing the lipase production was done 
using CCD and results are presented in Table 1 along with experimen-
tal and predicted values using RSM and ANN. The production medium 
used for the optimum fermentation conditions contain: glucose- 15 
g/L; corn oil-10 mL/L; peptone- 6 g/L; yeast extract- 6 g/L; K2HPO4- 0.1 
g/L; KH2PO4- 2 g/L; CaCl2.2H2O- 1 g/L; MgSO4.7H2O- 0.5 g/L; ZnSO4- 
0.01 g/L; FeSO4.7H2O- 0.05 g/L; CuSO4- 0.02 g/L; MnSO4 .H2O- 0.02 
g/L. 

Multiple regression analysis of the experimental data obtained us-
ing CCD for lipase production gave the following second order poly-
nomial equation (21),

Y1 = 3.9165+0.4207 x1+0.0666 x2-0.2844 x3-0.5721 2
1x  -0.5014 2

2x  -

 0.4042 2
3x  +0.0187 x1x2-0.2938 x1x3+ 0.0062 x2x3              (21)

where Y1 is the lipase activity and x1, x2 and x3 are the coded values 
of the independent variables, temperature, pH and agitation speed re-
spectively. 

The experimental results were analyzed using Minitab statistical 
software and the correlation coefficient (R), determination coefficient 
(R2) and adjusted determination coefficient (Adj R2) was determined 
to check the competence of polynomial model. The value of R is 0.956 
which implies a high degree of correlation between the observed and 
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Figure 2: Response surface plot and contour plots showing the effects of (A) temperature and agitation speed, (B) temperature and initial pH, (C) initial pH and 
agitation speed, on lipase production by R. arrhizus with the remaining factors kept constant at the middle level of the central composite experimental design.
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predicted values. The R2 value is 0.914 suggests that only about 8.6% 
of the total variations are not explained by the model. The adj R2 cor-
rects the R2 value for the sample size and the number of terms in the 
model. If there are many terms in the model and the sample size is not 
very large, the adjusted R2 may be noticeably smaller than the R2. The 
adjusted R2 in this study was 0.837 which is close to R2 value which 
indicates the better prediction of the model. 

Statistical testing of the model was carried out using analysis of 

variance (ANOVA) technique, which is required to test the significance 
and adequacy of the model. The ANOVA of the regression model dem-
onstrates that the model is highly significant as evident from the calcu-
lated F value (Explained variance /unexplained variance; Fmodel = 11.84) 
and a very low probability value (Pmodel > F =0). Moreover the computed 
F value is much greater than the tabulated F value (F9,10 = 3.02 at 5% 
significance level) indicating that the treatment differences are highly 
significant. The Model F-value of 11.27 implies the model is significant. 
The students-t-distribution and the corresponding P values, along with 
parameter estimates for lipase activity was evaluated using MINITAB 
software. The P value signifies that the coefficient for the linear effect of 
temperature and agitation speed, the quadratic effects of temperature, 
pH and agitation speed and the interactive effects of temperature and 
agitation speed are significant. The regression equation was solved us-
ing MATLAB software and the optimal values of the test variables in 
the coded units were found to be x1= 0.504, x2= 0.078, x3 = –0.533 and 
the corresponding uncoded values were x1= 31°C, x2 (pH) = 5.80, x3 = 
129.3 rpm with a predicted maximum lipase activity of 4.101 U/mL. 
The normal probability plot of the residuals is an important diagnostic 
tool to detect and explain the departures from the assumptions that 
errors are normally distributed, independent of each other and the er-
ror variances are homogenous. An excellent normal distribution con-
firmed the normality assumption and the independence of the residu-
als. The residual plot shows equal scatter of the residual data above and 
below the x- axis indicating that the variance was independent of the 
value of the lipase production and thus supporting the adequacy of the 
least square fit.

The response surfaces obtained using the MINITAB software were 
shown in Figure 2 for lipase production and the figures express the 
significance of various fermentation conditions. The shapes of the re-
sponse surfaces may be circular or elliptical indicating the significance 
of the interactions between the variables. The elliptical nature of the 
contour plots between the conditions temperature and agitation speed 
indicates that the interaction between these set of variables has a sig-
nificant effect on lipase yield. Comparison of experimental and RSM 
model predicted values of lipase activity and the comparison of experi-
mental and ANN model predicted values of lipase activity by R. arrhi-
zus is shown in Figures 3A & 3B respectively.

Figure 4 illustrates the main effects plot of mean lipase activity with 
the fermentation conditions temperature, pH and agitation speed. The 
mean lipase activity was high at the center of the experimental range of 
temperature, pH and agitation speed. Further increase in the variables 
causes a decrease in lipase activity. The mean lipase activity was very 
low at the lowest temperature setting (26.6°C) when compared to the 
other factor settings. The mean lipase activity was high (3.2 U/mL) at 
the lowest level of the agitation speed (106 rpm) when compared to the 
tested higher levels (173 rpm). Probably at lower agitation speed the 
microorganism may attain its complete morphological structure for 
high extracellular lipase secretion. 

An experiment was conducted at the optimized fermentation 
conditions determined by RSM to confirm the predicted optimum re-
sponse. The maximum lipase activity of 4.32 U/mL was obtained at 72 
h of cultivation and illustrated in Figure 5. The experimental and the 
predicted values of enzyme activity showed good agreement with one 
another with high degree of accuracy of the model substantiating the 
model validation under the experimental conditions. The lipase pro-
duction was found to increase gradually after the 24 h of the fermen-
tation period when the growth of microorganisms reached the early 
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Figure 3: (A) Comparison of experimental and response surface methodol-
ogy model predicted values of lipase activity by R. arrhizus (B) Comparison 
of experimental and artificial neural network model predicted values of lipase 
activity by R. arrhizus.
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uct inhibition such as the formation of more protease enzyme at the 
post exponential growth phase of the microorganism or due to the non 
availability or less availability of inducer oil and the carbon source in 
the fermentation medium or may be due to the accumulation of fatty 
acids. Thermal deactivation and digestion of lipases by proteases were 
prevented due to the presence of vegetable oil inducers in the fermenta-
tion medium [29]. The cell mass concentration reached a maximum of 
6.2 g/L at 84 h during the stationary phase and there was no further in-
crease in the cell mass concentration after 84 h. The maximum protease 
activity of 1.4 U/mL at 108 h of the fermentation was obtained at the 
stationary phase of the microorganism. The rate of lipase production 
was found to be much greater than the rate of protease production. The 
total soluble protein was found to decrease gradually till 36 h of fer-
mentation due to the consumption of medium components containing 
proteins by the microorganism for its growth and metabolic formation 
and was found to increase from 36 h to 108 h due to the secretion and 
accumulation of various proteins and enzymes in the medium. The pH 
of the medium was found to decrease gradually from the initial pH of 
5.9 to pH 4.3 at 60 h during the exponential phase and the pH increases 
from pH 4.3 to pH 5 during the stationary phase of the microorganism. 
The decrease in the pH might be due to some organic acid production 
during the enzyme production and free fatty acid production by R. ar-
rhizus and the increase in pH might be due to the production of free 
amino acid [30]. The rate of glucose utilization by the microorganism 
was found to increase rapidly after 12 h of the fermentation when the 
microorganism reaches the mid exponential phase. The rate of glucose 
utilization was directly proportional to the biomass production at any 
instant and 95.6% of the glucose was consumed at the end of the fer-
mentation at 108 h, and maximum lipase production was obtained at 
72 h of fermentation. 

A well-trained artificial neural network was employed for the pre-
diction of lipase production by Rhizopus arrhizus under various fer-
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Figure 5: Fermentative production of lipase by R. arrhizus in submerged 
fermentation. Profile of lipase activity (∆), protease activity (), pH (■), cell 
mass concentration (●), glucose concentration (□) and total soluble.

exponential phase being a growth associated product. The maximum 
lipase activity was found in the late exponential phase and early sta-
tionary growth phase of R. arrhizus. The lipase activity was found to 
decrease after 72 h of fermentation, which may be due to the prod-
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mentation conditions. The developed neural network model using the 
experimental data obtained from CCD gave better predictions when 
compared to RSM model in predicting the lipase activity and cell mass. 
It was found that the neural network predictions were very close to 
the actual experimental values. A relatively good fit of the experimental 
data predicted by ANN was clearly evident from Figure 3B with R2 val-
ues of 0.987 for lipase production. 

Multiple regression analysis of the experimental data for cell mass 
production gives the following second order polynomial equation 22,

Y2= 5.139+0.59 x1–0.5141 x2–0.787 x3–0.651 2
1x – 0.272 2

2x – 

 0.0288 2
3x –0.008 x1x2 – 0.588 x1x3+0.131 x2x3                              (22)

where Y2 is the response variable the cell mass and x1, x2 and x3 are 
the coded values of the independent variables, temperature, pH and 
agitation speed respectively. Both the RSM and ANN models predicted 
the experimental lipase activity and cell mass extremely well with high 
R2 value and the ANN predictions are more accurate than RSM. The 
experimental results agree closely with the results predicted by regres-
sion equation substantiating that the RSM using the statistical design of 
experiments can be effectively used to optimize the process conditions 
for lipase production. 

Unstructured Kinetic Models for Prediction of Lipase 
Fermentation 

Various unstructured kinetic models were used to predict the kinet-
ics of lipase fermentation by R. arrhizus. Logistic model for cell growth, 
Logistic incorporated Luedeking Piret model for lipase production and 
Logistic incorporated modified Luedeking Piret model for substrate 
utilization provides an accurate approximation of the fermentation 
kinetics with high R2 values of 0.997, 0.94 and 0.972 respectively. The 
value of µ0 is 0.082 1/h for the cell growth model. The value of α and β 
is 0.65 and 0.002 respectively which shows that the lipase production 
by R. arrhizus is growth associated since the magnitude of the growth 
associated parameter ‘α’ is much greater than the magnitude of non-
growth associated parameter ‘β’ in Luedeking Piret model. The product 
formation models were able to predict the kinetics of lipase produc-
tion during the exponential phase of the microorganism accurately. 
But during the stationary phase, the lipase production models did not 
predict the lipase activity precisely since the unstructured models did 
not contain a term for inhibitory action of the protease enzyme during 
the later stages of the fermentation. 

For lipase production by Rhizopus arrhizus from Figure 5 it was 
observed that the cell growth rate was found to be maximum at 36 h 
and the glucose utilization rate was found to be maximum at 48 h of 
fermentation time. The lipase production rate was found to be almost 
constant between 36 to 48 h of the fermentation and reduced with the 
reduction in the cell growth rate and reached to zero at 84 h. The cell 
growth rate declined after 36 h and the growth rate stopped at 84 h. The 
increase in cell growth rate is accompanied by the increase in substrate 
utilization rate and lipase production rate. There was a reduction in 
substrate utilization rate even when the growth rate of the microorgan-
ism reached to zero at 84 h. The substrate utilization rate declined after 
48 h and stopped at the 108 h of fermentation. 

Conclusion
Response surface methodology was employed to optimize the fer-

mentation conditions temperature, pH of the fermentation medium 
and agitation speed. The present study identified the effect of various 

process parameters on the lipase yield and the lipase production was 
found to be significantly influenced by temperature, agitation speed, 
the quadratic effects of temperature, initial pH and agitation speed and 
the interactive effects of temperature and agitation speed are significant 
parameters that affect lipase production. The optimized fermentation 
conditions for lipase production by R. arrhizus using the statistical ap-
proach was found to be: Temperature, 32°C; initial pH 6 and agitation 
speed, 107 rpm. Maximum lipase activity of 4.32 U/mL and maximum 
cell mass concentration of 6.2 g/L was obtained at 72 h and 84 h respec-
tively. The experimental results and RSM model predictions shows that 
the response surface methodology can be successfully used to optimize 
and to study the interaction effect among the fermentation conditions 
for lipase production. 
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 xi  Coded value of an independent variable 

Xi  Real value of an independent variable 

Xc   Real value of an independent variable at the cen-
ter    point 

∆Xi  Step change value

Y1   U/mL  Predicted response (lipase activity) 

Y2   g/L Predicted response (cell mass) 

β0   Offset term 

βi   Coefficient of linear effect

βii   Coefficient of squared effect 

βij  Coefficient of interaction effect

ai  Input signal 

yj  Fired output signal 

wij  Weight associated with the input signal ai

θj  Threshold value of neuron j

dj  Desired output from neuron j

θ   Positive constant controlling the speed of learning

µ0   1/h Initial specific growth rate 

X0   g/L Initial cell mass concentration 

Xmax                   g/L  Maximum cell mass concentration 

X(t)   g/L Cell mass concentration at any time ‘t’ 

µmax   1/h Maximum specific growth rate 

S   g/L Concentration of the limiting substrate 

α  gP/gX Growth associated parameter 

β  gP/gX. h Non-growth associated parameter 

γ, η  Constants in the modified Luedeking-Piret model

P0, Pt   U/mL Product concentrations at initial time and   
  at anytime ‘t’ respectively 

S0, St   g/L Substrate concentrations at initial time and at   
  anytime ‘t’ respectively 
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YX/S Yield coefficient of cell mass with respect to sub 
strate 

YP/S Yield coefficient of product with respect to sub 
strate 

YP/X Yield coefficient of product with respect to cell 
mass

dX/dt  g/L.h Cell growth rate 

dP/dt  U/mL.h Product formation rate 

dS/dt g/L.h Substrate utilization rate 

Ke Maintenance coefficient for cells
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