

Antioxidants: Diverse Sources, Scavenging, and Therapy

Leonid Markov*

Department of Botanical Drug Research, Northern Steppe University, Veligrad, Ukraine

Introduction

This body of research consistently highlights the crucial role of antioxidants in combating oxidative stress, a fundamental factor in many health conditions. From diverse natural origins, these studies investigate the powerful free radical scavenging abilities of various compounds and extracts, proposing them as promising therapeutic agents. For instance, a detailed study examines the antioxidant and antidiabetic potential of phenolic extracts derived from different parts of the Berangan banana. This work clearly shows the extracts' significant capacity to scavenge free radicals, directly linking this activity to their rich phenolic content, suggesting a real promise for managing oxidative stress and related health conditions through natural intervention [1].

Another review consolidates recent advancements in understanding the phytochemical profiles and antioxidant activity of *Lonicera japonica* Thunb., widely recognized as Japanese Honeysuckle. It specifically details how the plant's various phytochemicals, particularly polyphenols, contribute to its potent free radical scavenging effects, thereby validating its traditional medicinal uses for reducing oxidative stress [2]. Researchers have also investigated the phytochemical composition, antioxidant, and anti-diabetic potential of marine macroalgae harvested from the Red Sea in Egypt. The findings underscore the strong free radical scavenging capacity of these algae, a property attributed to their rich content of diverse bioactive compounds, positioning them as a promising natural source for antioxidants and potential antidiabetic agents [3].

Further exploration includes the *in vitro* antioxidant and anti-inflammatory activities of selected Ethiopian medicinal plants. The results reveal a significant free radical scavenging capacity among these plants, supporting their traditional uses in folk medicine and suggesting their potential as valuable sources for developing new therapeutic compounds against oxidative stress and inflammation [4]. A comprehensive review emphasizes the role of natural antioxidants as potential therapeutic agents for neurodegenerative diseases. It highlights how their free radical scavenging capacity is crucial in mitigating oxidative stress, which is a primary factor in neuronal damage. The discussion points to promising natural compounds and their mechanisms, outlining future directions for treatment strategies [5].

An article offers a deep dive into flavonoids, focusing on their significant antioxidant potential and the underlying mechanisms of their actions. It details how these natural compounds effectively scavenge free radicals through various biochemical pathways. This understanding underscores their critical role in preventing and treating disorders linked to oxidative stress [6]. Similarly, a comprehensive review examines antioxidant peptides derived from marine sources. It thoroughly describes their diverse free radical scavenging capacities, explaining how their unique amino acid sequences contribute to effectively neutralizing reactive oxygen species. The work highlights their substantial therapeutic potential across

both the food and pharmaceutical sectors [7].

This body of literature also traces curcumin's journey from traditional medicine to its current role in modern therapy. It highlights curcumin's robust free radical scavenging capacity and its broad antioxidant effects. The discussion details how this 'golden spice' effectively combats oxidative stress, a fundamental contributor to many chronic diseases, establishing it as a promising therapeutic agent [8]. A review examines probiotics as a hopeful strategy for preventing and treating diseases linked to oxidative stress. It explains how specific probiotic strains exhibit a significant free radical scavenging capacity, either directly or by modulating the host's own antioxidant systems. This research suggests their therapeutic application in managing conditions tied to chronic oxidative damage [9]. Finally, recent advancements in nano-antioxidants are reviewed, covering both their mechanisms and practical applications. It describes how these engineered nanomaterials demonstrate superior free radical scavenging capacities due to their unique physical and chemical properties. This opens up novel solutions for mitigating oxidative stress across various biomedical and industrial applications [10]. This collection of studies collectively builds a strong case for the ongoing discovery and application of antioxidants from a wide array of sources.

Description

Oxidative stress, characterized by an imbalance between the production of reactive oxygen species and the body's ability to neutralize them, is implicated in numerous chronic diseases. The search for effective antioxidants, particularly from natural sources, has thus become a critical area of research. This collection of studies explores various natural and engineered compounds demonstrating significant free radical scavenging capacities, offering insights into their potential therapeutic applications across different health conditions.

Many studies focus on the rich antioxidant potential found in botanicals and plant-derived compounds. For example, phenolic extracts from various parts of the Berangan banana show considerable antioxidant and antidiabetic potential, directly linked to their high phenolic content. This positions banana extracts as a viable natural intervention for managing oxidative stress and related health issues [1]. Similarly, Japanese Honeysuckle, a traditional medicinal plant, exhibits potent free radical scavenging effects due to its diverse phytochemical profiles, particularly polyphenols, thus validating its historical uses in reducing oxidative stress [2]. Beyond specific plants, broader investigations into selected Ethiopian medicinal plants confirm their *in vitro* antioxidant and anti-inflammatory activities, supporting their traditional applications and suggesting them as valuable sources for new therapeutic compounds [4]. Further, a deep dive into flavonoids highlights their extensive antioxidant potential and the specific biochemical pathways they utilize to scavenge free radicals, underscoring their importance in preventing and treating

oxidative stress-related disorders [6]. Curcumin, often called the 'golden spice,' stands out for its robust free radical scavenging capacity and broad antioxidant effects, effectively combating oxidative stress and making it a promising agent in modern therapy [8].

Marine environments also serve as a rich source of antioxidant compounds. Research into marine macroalgae from the Red Sea reveals their significant free radical scavenging capabilities, attributed to their abundant and diverse bioactive compounds. These algae hold promise as natural sources for both antioxidants and potential antidiabetic agents [3]. In a similar vein, a comprehensive review of antioxidant peptides derived from marine sources describes their diverse free radical scavenging capacities. The work explains how their unique amino acid sequences enable effective neutralization of reactive oxygen species, emphasizing their substantial therapeutic potential across the food and pharmaceutical industries [7].

Beyond traditional plant and marine sources, innovative approaches are emerging. Natural antioxidants are being specifically reviewed for their potential as therapeutic agents in neurodegenerative diseases. Their ability to mitigate oxidative stress is seen as crucial in preventing neuronal damage, with ongoing discussions about promising compounds and mechanisms for future treatment strategies [5]. Probiotics represent another novel strategy, with specific strains demonstrating significant free radical scavenging capacity, either directly or by modulating host antioxidant systems. This suggests their therapeutic application in managing conditions linked to chronic oxidative damage [9]. The advancements in nano-antioxidants are also notable, as these engineered nanomaterials exhibit superior free radical scavenging capacities due to their unique physical and chemical properties, opening new avenues for mitigating oxidative stress in various biomedical and industrial applications [10]. Collectively, these studies paint a picture of a dynamic field, constantly discovering and refining ways to harness antioxidants to improve health outcomes and combat the pervasive effects of oxidative stress.

Conclusion

This collection of studies explores the diverse world of antioxidants, primarily focusing on their free radical scavenging capabilities and therapeutic potential against oxidative stress and related health conditions. Researchers investigate various natural sources, including phenolic extracts from Berangan bananas, which show promise in managing oxidative stress and diabetes [1]. Japanese Honeysuckle and marine macroalgae from the Red Sea also demonstrate significant antioxidant and antidiabetic properties due to their rich phytochemical content [2, 3]. Ethiopian medicinal plants exhibit *in vitro* antioxidant and anti-inflammatory activities, validating their traditional uses [4]. Reviews highlight the importance of natural antioxidants for neurodegenerative diseases [5], the mechanisms of flavonoids in combating oxidative stress [6], and the therapeutic potential of antioxidant peptides from marine sources [7]. Curcumin, recognized for its robust free radical scavenging capacity, is presented as a promising agent against chronic diseases [8]. Furthermore, probiotics are identified as a hopeful strategy for preventing and treating oxidative stress-related diseases by directly scavenging free radicals or modulating host systems [9]. Finally, advancements in nano-antioxidants showcase engineered materials with superior scavenging capacities, offering novel solutions across biomedical and industrial sectors [10]. The collective findings underscore the broad therapeutic applications and ongoing potential of these diverse antioxidant sources.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Muhammad Irfan Ullah, Muhammad Faheem Khan, Uzma Saleem, Qurat Ul Ain, Muhammad Jawad, Nighat Mushtaq. "Antioxidant and Antidiabetic Potential of Phenolic Extracts from Different Parts of *Musa acuminata* Colla cv. Berangan." *Molecules* 28 (2023):5800.
2. Tingting Wang, Peipei Wang, Xinyan Han, Chenchen Yang, Jiayi Liu, Pengfei Chen. "Recent Progress on the Phytochemical Profiles, Antioxidant Activity, and Mechanism of Action of *Lonicera japonica* Thunb. (Japanese Honeysuckle)." *Antioxidants* (Basel) 11 (2022):1558.
3. Amany A. H. Salama, Mohamed A. El-Saadony, Abd El-Naser A. Khattab, Reem A. Abd El-Kareem, Tamer M. El-Saadony. "Phytochemical characterization, antioxidant, and anti-diabetic potential of marine macroalgae from the Red Sea, Egypt." *Saudi J Biol Sci* 28 (2021):5747-5756.
4. Temesgen Fentahun, Belete Gelaw, Banchamlak Shiferaw, Zeleke Asfaw. "In Vitro Antioxidant and Anti-Inflammatory Activities of Selected Ethiopian Medicinal Plants." *Evid Based Complement Alternat Med* 2020 (2020):4793872.
5. Zirwa Qureshi, Uzma Saleem, Qurat Ul Ain, Shahzaib Bashir, Muhammad Ahtisham Tariq, Arsalan Khurshid. "Natural Antioxidants as Therapeutic Agents for Neurodegenerative Diseases: A Review." *Oxid Med Cell Longev* 2023 (2023):6698668.
6. Abdul Mueed, Abdul Aziz, Muhammad Akram, Hafiz Ansar Rasool, Shiza Tariq, Hafiz Muhammad Arshad. "Flavonoids: An Insight into Their Antioxidant Potential and Mechanism of Action." *Mini Rev Med Chem* 22 (2022):111-125.
7. Muhammad Noman Bashir, Jingfang Li, Saima Aslam, Wajihullah Khan, Yuqi He, Xiaojie Zhang. "Antioxidant Peptides from Marine Sources: A Comprehensive Review." *Antioxidants* (Basel) 10 (2021):63.
8. Amal T. G. El-Deeb, Eman G. M. El-Deen, Hoda H. Fathy, Mohamed H. S. Ahmed. "Curcumin, the Golden Spice: From Traditional Medicine to Modern Therapy." *J Nutr Metab* 2020 (2020):8872685.
9. Yu-Hao Zhang, Jing-Lin Liu, Fang Wu, Xiao-Nan Zhao, Jing-Fang Yu. "Probiotics: A Promising Strategy for the Prevention and Treatment of Oxidative Stress-Related Diseases." *Oxid Med Cell Longev* 2019 (2019):3062569.
10. Bo Zhao, Chen Li, Xin Du, Bo Yang, Yanqin Zhou, Yubo Fan. "Recent Progress in Nano-Antioxidants: From Mechanism to Application." *Antioxidants* (Basel) 12 (2023):227.

How to cite this article: Markov, Leonid. "Antioxidants: Diverse Sources, Scavenging, and Therapy." *J Pharmacogn Nat Prod* 11 (2025):397.

***Address for Correspondence:** Leonid, Markov, Department of Botanical Drug Research, Northern Steppe University, Veligrad, Ukraine, E-mail: markov.leonid@nsuk.ua

Copyright: © 2025 Markov L. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Dec-2025, Manuscript No. jpnp-25-178340; **Editor assigned:** 03-Dec-2025, PreQC No. P-178340; **Reviewed:** 17-Dec-2025, QC No. Q-178340; **Revised:** 22-Dec-2025, Manuscript No. R-178340; **Published:** 29-Dec-2025, DOI: 10.37421/2472-0992.2025.11.397
