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Introduction
P-coumaric acid (p-CA) is a hydroxyderivative of cinnamic

acid widely found in fruits, vegetables and plant products, including 
propolis, rice, cranberry syrups, tremella fuciformis, apple cider, grape 
juices, tomatoes, etc. [1-6], which is also a main metabolite from other 
biological phenolic acids such as rosmarinic acid and chlorogenic 
acid [7]. P-CA has been reported to possess various activities 
such as anti-platelet, anti-UV damage, anti-angiogenic, antioxidant, 
antimicrobial, anti-Alzheimer’s disease, anti-metabolic disorders, and 
immunomodulatory activities [8-17]. The anti-inflammatory activities 
of P-CA were also verified in various animal modes in vivo [14-17]. 
However, the specific mechanisms involved in its anti-inflammatory 
activities remain unclear. Since inflammation is a complex process 
mediated by activated immune cells like macrophages [18], and 
they plays critical role in the ignition, maintenance, and resolution of 
inflammation [19].

Lipopolysaccharide (LPS)-mediated activation of macrophages 
leads to initiates a cascade of signaling events, including both Nuclear 
transcription factor kappa-B (NF-κB) and MAP kinase pathways, as 
well as the production of various proinflammatory cytokines, such 
as tumor necrosis factor-a (TNF-a), interleukin (IL)-6, IL-1β, and 
nitric oxide (NO) [20]. NF-κB plays a fundamental role in the 
inflammatory and acute response [21]. In addition, mitogen-activated 
protein kinases (MAPKs), including extracellular signal-regulated 
kinases (ERK) 1 and 2, c-Jun N-terminal kinase (JNK), and p38, also 
regulate inflammatory gene transcription, such as proinflammatory 
cytokines, COX-2 and iNOS [22]. In this study, we sought to study the 
anti-inflammatory effects of P-CA in LPS-stimulated macrophage and 
elucidate the potential anti-inflammatory mechanism through NF-κB 
and MAPK signaling pathways.

Materials and Methods
Materials

RAW264.7 mouse macrophages were ordered from American 
Type Culture Collection (Rockville, MD, USA). P-CA (purity>98%) 
was purchased from Pure One Biotechnology (Shanghai, China). High-
glucose Dulbecco’s Modified Eagle’s Medium (DMEM) and fetal bovine 
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serum (FBS) were purchased from Gibco BRL (NY, USA). Phosphate 
buffer saline (PBS) was purchased from Thermo Scienfic HyClone 
(Logan ,  UT). Lipopolysaccharide (LPS), dimethylsulfoxide (DMSO) 
and 3-(4, 5-dimethyl-thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide 
(MTT) were purchased from Sigma Chemicals Co. (MO, USA). 
TRIZOL Reagent was purchased from Invitrogen (Carlsbad, CA, USA). 
Hypoderm Molecular Biology Grade Water, Thermo RevertAid First 
Strand cDNA Synthesis Kit and BCA Protein Assay Kit were purchased 
from Thermo Scientific. Complete Protease Inhibitor Cocktail Tablets. 
Phos STOP Protease Inhibitor Cocktail Tablets and FastStart Universal 
SYBR Green Master (Rox) were purchased from Roche Applied 
Science (Mannheim, Germany). Rragents ECL Western blotting kit 
was purchased from Millipore. The antibodies against COX-2, iNOS, 
p38, JNK, ERK (1/2), p-IkBα, NF-κB (p65), loading buffer, and RIPA 
Buffer were purchased from Cell Signaling Technology (Beverly, 
MA). GAPDH was purchased from Santa Cruz Biotech (Santa Cruz, 
CA). The goat anti-rabbit IgG-HRP were purchased from Asbio.

Instruments

Multi label Plate Reader (VICTOR™ X5, PekinElmer, USA); 
NanoDrop 2000C Spectrophotometer (Thermo Scientific); ABI 7500 
Real-Time PCR System; Trans -Blot Cell (Bio-Rad); Mini-PROTEAN 
Tetra Electrophoresis System (Bio-Rad); ChemiDoc XRS (Bio-Rad).

Total RNA extraction and RT-PCR

RAW264.7 macrophages were cultured at a density of 2 × 105 
cells/ml in 6-well plates overnight. The cells were incubated for 2 h in 
combination with different concentrations of P-CA. The cells were 
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further cultured for 12 h on treatment with LPS (1 µg/mL). The cells 
were rinsed with cold PBS, and total cellular RNA from RAW264.7 cells 
was extracted using a TRIzol Reagent kit according to instructions 
of the manufacturer. Total RNA (1 μg) was converted to cDNA using a 
Thermo Revert Aid First Strand cDNA Synthesis Kit. The PCR primers 
used in this study are listed below and were purchased from Life 
Technology: Mouse IL-1β (Forward TGGGATAGGGCCTCTCTTGC 
and Reverse CCATGGAAT CCG TGTCTTCCT); iNOS (Forward 
TGAGTTCCGAAGCAAGCCAA and Reverse AGACCTCAACA 
GAGCCCTCA; TNF-α (Forward GTGTC CCA ACATTCA 
TATTGTCAGT and Reverse TGGGAAGAGAAACCAGGGAGA; 
COX-2 (Forward TCTCCAACCT CTCCTACTAC and Reverse 
GCACGTA GTCTTCGATCACT; and GADPH (Forward 
GTTTTCAGGGATGAAGCGGC, and Reverse TGGGATAGGG 
CCTCT CTTGC). The gene expressions of TNF-α, iNOS, IL-1β, 
and COX-2 were amplified from the synthesized cDNA. Real-time 
PCR was performed using Roche FastStart Universal SYBR Green 
Master. GADPH mRNA levels were used as internal controls. The PCR 
reactions were carried out as the following: 95°C for 10 min; 40 cycles 
of 95°C for 15 s. Final extension was performed at 60°C for 1 min.

Western blot analysis

RAW 264.7 macrophages (1 × 106 cells/mL) were seeded in 6-well 
plates and incubated for 24 h, then pretreated with 1.64, 8.2 and 16.4 
μM of P-CA for 2 h. After LPS (1 μg/ml) stimulation for 1 h (ERK1/2, 
JNK and P38 analysis) and 8 h (iNOS, COX-2 IκBα and NF-
κB analysis), the cells were collected and washed twice with cold 
PBS. The cells were lysed in RIPA buffer containing protease inhibitors. 
After lysis, the lysates were clarified by centrifugation at 10,000×g 
for 5 min at 4°C; the protein concentration in the supernatants 
was determined using a BCA Protein Assay Kit. Proteins (35 μg/
lane) were separated by 10% acrylamide SDS-PAGE and transferred 
to a polyvinylidene difluoride (PVDF) membrane. The membrane 
was blocked using 5% skim milk and sequentially incubated with 
specific primary antibody at 4°C overnight. With the use of rabbit 
peroxidase-conjugated secondary antibodies, membrane-bound 
antibodies were detected using ECL plus. Rabbit anti- iNOS, COX-
2, JNK, ERK1/2, IκBα, NF-κB (p65) and p38 were utilized as primary 
antibodies and HRP-goat anti-rabbit IgG was used as a secondary 
antibody, and detected with ECL reagent (Millipore, USA).

Statistical analysis 

Data are shown as mean ± SD. Differences between mean values 
of normally distributed data were assessed by the one-way ANOVA 
(Dunnett’s t-test). Values were considered significantly different at 
p<0.01 or p<0.05.

Results
P-CA suppresses COX-2, iNOS, TNF-α and IL-1β mRNA 
expression in LPS-stimulated RAW264.7 macrophages

P-CA has been reported to inhibit NO production in LPS-
stimulated RAW264.7 macrophages [7]. Since inflammatory mediators 
(COX-2, iNOS) and cytokines (TNF-α, IL-1β) are important factors 
in inflammation. To understand whether P-CA can inhibit LPS-
induced activation of pro-inflammatory genes expression, a semi-
quantitative RT-PCR was performed. Treatment of RAW264.7 cells 
with LPS resulted in significantly increased pro-inflammatory genes 
expression (p<0.01 versus control; Figure 1), while pre-treatment with 
P-CA (10-100 μg/ml) significantly inhibited COX-2, iNOS, TNF-a, IL-

1β mRNA expression in a dose-dependent manner, compared with 
LPS-treated cells (p<0.01).

P-CA suppresses COX-2 and iNOS protein expression in LPS-
stimulated RAW264.7 macrophages

To understand whether p-CA can inhibit LPS-induced activation 
of iNOS and COX-2 protein, the levels of COX-2 and iNOS protein 
expression were examined by Western blot analyses. LPS treatment 
significantly induced iNOS and COX-2, but the pre-treatment of 
p-CA (50-100 μg/ml) for 12 h resulted in decreased iNOS (p<0.01) 
and COX-2 (p<0.05) protein expression (Figure 2).

P-CA suppresses LPS-induced NF-κB pathway

NF-κB is a critical key transcription factor that expresses the genes 
involved in inflammation and has attracted attention as a new target 
for treating inflammatory diseases. The activation of NF-κB plays 
critical roles in the LPS-induced expression of inflammatory mediators 
and cytokines such as COX-2, iNOS, TNF-α, IL-1β and IL-6. NF-κB 
and IκBα protein were examined by Western blot to test whether the 
inhibition of inflammatory response by P-CA is mediated through the 
NF-κB pathway. As shown in Figure 3, phosphorylation of of IκB-α 
and nuclear translocation of p65 was increased after treatment with 
LPS (1 h). However, the pretreatment with P-CA for 12 h, at 10 to 
100 μg/ml, markedly inhibited LPS-induced phosphorylation of IκB-α, 
thereby preventing the translocation of p65 into the nucleus.

P-CA suppresses LPS-induced MAPK pathway

In order to determine whether the suppression of inflammatory 
reactions by p-CA was mediated through a MAPK pathway, we 
assessed the effects of p-CA on the LPS-induced phosphorylation of 
ERK, JNK and p38 MAPKs in RAW 264.7 cells. The phosphorylation 
of ERK, JNK and p38 were enhanced after LPS stimulation, but the 
expression levels of ERK, JNK and p38 were unaffected. However, 
pre-treatment with p-CA for 2 h, at 10 to 100 μg/ml, obviously 
inhibited the LPS-induced phosphorylation of ERK1/2 and JNK 
(Figure 4).

Discussion
Macrophages are centrally involved in acute and chronic 

inflammatory responses. The NO enhances the ability of macrophages 
to kill microorganisms [23]. In addition, studies found that COX-2 
expression was related to the production of PGE2, which is known 
to play a key role in inflammatory processes including pain, 
fever, swelling and tenderness [24]. IL-1β, IL-6 and TNF-α were 
proinflammatory cytokines secreted by activated macrophages [25]. 
High levels of TNF-α could injure tissues, and even caused sepsis 
and death [26]. IL-1β acted as playing a pivotal role in the pathogenic 
mechanism of periodontal tissue destruction [27]. NF-κB regulates 
cell survival and coordinates the expression of proinflammatory 
mediators, including iNOS, COX-2 and proinflammatory cytokines 
[28]. The MAPK pathways, including ERK1/2, JNK and p38, were 
thought to modulate NF-κB activation, and in turn promote the 
expression of pro-inflammatory cytokines and inflammatory process 
[29-31]. Our study indicated that P-CA decreased the production of 
iNOS, COX-2, IL-1β and TNF-α expression both at mRNA and/or 
protein levels in LPS-stimulated RAW264.7 cells. The decreased level of 
these cytokines will reduce further activation of the MAPK and NF-κB 
pathway and thus alleviate immune response. Based on all above, our 
finding provides an important proof-of-principle for understanding the 
anti-inflammatory mechanisms of P-CA.
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Figure 3: Effect of p-CA on LPS-induced p-IκBα and NF-κB nuclear translocation in cultured RAW 264.7 cells. RAW264.7 
cells cultured in 6-well plates were incubated with 10, 50 and 100 μg/ml of p-CA or not for 2 h, followed by incubation with LPS 
(1 μg/ml) for 8 h. Cells were then lysed and p-IκBα, and NF-κB protein levels were analyzed by Western blotting. Equal 
loading  protein was confirmed by GAPDH.
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Figure 3: Effect of p-CA on LPS-induced p-IκBα and NF-κB nuclear 
translocation in cultured RAW 264.7 cells. RAW264.7 cells cultured in 6-well 
plates were incubated with 10, 50 and 100 μg/ml of p-CA or not for 2 h, 
followed by incubation with LPS (1 μg/ml) for 8 h. Cells were then lysed and 
p-IκBα, and NF-κB protein levels were analyzed by Western blotting. Equal 
loading protein was confirmed by GAPDH.

Figure 1: Effects of P-CA on inflammation-related gene expression in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The mRNA levels (A: COX-2; B: 
iNOS, C: IL-1β; D: TNF-a) were analyzed using real-time PCR; ++p<0.01, control group vs LPS-stimulated group;**P<0.01, LPS vs LPS plus P-CA-treated group. Values 
shown in the graphs are mean ± standard deviation (SD).
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Figure 1: Effects of P-CA on inflammation-related gene expression in 
lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The mRNA 
levels (A: COX-2; B: iNOS, C: IL-1β; D: TNF-a) were analyzed using real-time 
PCR; ++p<0.01, control group vs LPS-stimulated group;**P<0.01, LPS vs LPS 
plus P-CA-treated group. Values shown in the graphs are mean ± standard 
deviation (SD).

Figure 2: Effects of p-CA on LPS-induced iNOS and COX-2 protein expression. iNOS protein expression levels were determined by Western blot 
analysis. RAW264.7 cells cultured in 6-well plates were incubated with 10, 50 and 100 μg/ml of p-CA or not for 2 h, and then were stimulated with 
LPS (1 μg/ml) for 8 h .Cell lysates were prepared and subjected to Western blot by using anti-iNOS and COX-2 antibodies. GAPDH expression 
was used as control. Equal loading protein was confirmed by GAPDH. The data are represented as the mean ± SEM (n=3) (++p<0.01, control 
group vs LPS-stimulated group;**P<0.01, LPS vs LPS plus P-CA-treated group;*P<0.05, LPS vs LPS plus P-CA-treated group).
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Figure 2: Effects of p-CA on LPS-induced iNOS and COX-2 protein 
expression. iNOS protein expression levels were determined by Western blot 
analysis. RAW264.7 cells cultured in 6-well plates were incubated with 10, 50 
and 100 μg/ml of p-CA or not for 2 h, and then were stimulated with LPS (1 μg/
ml) for 8 h .Cell lysates were prepared and subjected to Western blot by using 
anti-iNOS and COX-2 antibodies. GAPDH expression was used as control. 
Equal loading protein was confirmed by GAPDH. The data are represented 
as the mean ± SEM (n=3) (++p<0.01, control group vs LPS-stimulated 
group;**P<0.01, LPS vs LPS plus P-CA-treated group;*P<0.05, LPS vs LPS 
plus P-CA-treated group).
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Figure 4: Effects of p-CA on the phosphorylation of MAP kinases. RAW264.7 
cells were pretreated with 10, 50 and 100 μg/ml of p-CA for 2 h and then 
stimulated with LPS (1 μg/ml) for 1 h. Phosphorylation of ERK, JNK 
and p38 MAP kinases was determined by specific antibodies against the 
phosphorylated form of MAP kinases. Equal loading protein was confirmed 
by GAPDH.
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