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Introduction
Motors are ubiquitous in everyday life and have wide ranging 

applications, such as industrial, commercial and residential utilization. 
Statistics indicate that electrical motors account for about two-thirds 
of the total industrial power consumption in each society. Because of 
the unlimited number of electric motor applications, there are over 
700 million motors of various sizes in operation across the world [1]. 
Induction motors constitute by far the largest portion of electrical motors 
in the market. However, motors that are more efficient began to appear 
as an alternative. In the last few years, “Line Start Permanent Magnet 
Synchronous Motor (LSPMSM)” emerged as a powerful candidate in 
the motor industry, and has been promoted for industrial, commercial 
and residential applications. This motor has many desirable features 
that will likely expand its market size. Therefore, LSPMSM is expected 
to replace the currently utilized motors, such as induction motors. On 
the other hand, it is well known that the AC motors are susceptible to 
many faults types such as broken rotor bars fault. Motor failures may 
result in catastrophic events, including production shutdowns. Such 
shutdowns are costly in terms of lost production time, maintenance 
costs and wasted in the raw materials. For these reasons, studying the 
LSPMSM and finding a reliable diagnostic and monitoring tool under 
broken bar fault condition is urgent need.

Recently, monitoring machine faults has constituted an interest of 
research teams. Broken rotor bars are a common fault in AC machines. 
Dedicated diagnostic techniques and systems are demanded to detect 
an upcoming machine defect as early as possible. Consequently, there is 
an extensive body of work on the monitoring and detection techniques 
of the broken rotor bars in induction motors. For example, Hwang [2] 
proposed an algorithm for detecting the broken bar faults in induction 
motors based on the dimension order of the frequency signal, which 
was called Frequency Signal Dimension Order (FSDO). FSDO was 
used to analyze the stator current signal, as well as to estimate the 
fault type based on the resultant frequency. The fault decision model 
analyzed the data derived from FSDO to decide whether there is a fault 
or not based on certain indices. This work was verified by comparing 
simulation and experimental results pertaining to a 3-phase, squirrel 
cage induction motor. The main disadvantage of this work was FSDO 
estimator, which gave a good performance for steady-state operations 
only. Carlos [3] demonstrated the effect of the broken bar fault on the 
stator current signature in the induction motor, and then used the 
“zero setting protection element” method to detect the occurrence 
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of the broken bar fault under different loading levels. This work has 
successfully detected the broken rotor bar fault under different loading 
levels with high accuracy.

Another method for diagnostics of broken rotor bar in induction 
motors was introduced by Zarei et al. [4], the broken bars are 
monitored based on the artificial neural network using “particle 
swarm optimization” in training process that work was performed 
in two stages, commencing with designing a filter to remove noise 
components from the faulty motor current. The least squares algorithm 
was also used to find the filter coefficients. In the second stage, a neural 
network was trained to extract the fault classifications. The output of 
this network was utilized to classify the state of the motor into four 
types: healthy bar, cracked on the bar, one and two broken bars. 

Guo-Liang [5] proposed a method to diagnose the broken bar 
faults in induction motors based on “empirical decomposition 
method”. In that work, several intrinsic mode functions (IMF) were 
used to decompose and analyze the starting current, before applying 
Hilbert transform for frequency analysis. As a result of this work, 
and because of the symmetry in the rotor, broken bar fault caused a 
frequency component (1-2s)f, where s denotes slip and f pertains 
to source frequency. Using Hilbert transform, several researches 
attempted developing diagnostics methods for broken rotor bar in 
induction motors under no load conditions. For example, Aydin [6] 
utilized sliding window for several periods. That method was used to 
detect one or two broken bars only under no load and with a supply 
voltage greater than 260 V. The entropy of the incoming data was 
calculated and compared with some threshold as the first stage. In the 
second stage, the fault size was determined, i.e., the number of faulty 
bars. High accurate results were obtained using this method with 
little computation cost in short time, which were tested under limited 
conditions. 
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Authors of many previous studies have found that the faulty 
motors contain two sideband frequencies on the stator current 
spectrum. Thus, transformation methods such as Fourier, Fast Fourier, 
Discrete-time Fourier and Wavelet transform have been used to 
achieve that frequency band. Chen [7] utilized these findings to detect 
these frequency bands, but because of the limitations in the previously 
mentioned transformation—where the detection accuracy of broken 
rotor bar would be affected depending on the loading condition, or 
even the length of the processed data records—the author used Prony 
spectrum analysis method to overcome these limitations. The main 
advantage of that method was its ability to overcome the data window 
length restriction, along with its reliability under light or varying loads. 
Both mathematical and simulation models were built to implement the 
effect of broken rotor bars in induction motors by relating its effect to 
the stator current, which was represented by two sideband frequencies. 
The author has reported that the amplitude of the frequency component 
increased as the number of broken bars increased, resulting in a series 
of harmonies.

Shashi [8], Dhara [9] and Siddiqui [10] proposed methods to detect 
broken bars fault based on the “Wavelet transform” using different 
mother wavelet. These models received the phase stator current as an 
input, after which the authors applied daubechies (db8, db9, db10), 
and symlet (sym7, sym8) mother wavelets to analyze the stator current 
components. The results were compared to determine the optimal 
mother wavelet in detecting the broken rotor bars, and to determine 
the number of faulty bars in the motor. It can be concluded from these 
studies that, as the load or the number of broken bars increases, the 
harmonic components will be increased.

On the other hand, there has been relatively little research 
for detecting the broken bar fault in the LSPMSM. Recently, four 
research articles addressed the behavior of LSPMSM under broken bar 
conditions. Mehrjou et al. [11,12] used ANSYS Maxwell® software to 
study the performance of the motor under broken bar fault condition. 
The authors concentrated on the stator current and air-gap signatures 
to investigate the possibility of broken bar occurrence because of its easy 
measurability, reliability and high accuracy. Hilbert transform which is 
the convolution between the original signal (real time stator current) 
and the function 1/лt were applied to extract the envelop of the stator 
current signals. Fourier Transform has been applied on the function 1/
лt, which can be viewed as a filter for unity amplitude and ± 90 phase 
depending on the frequency sign of the input signal. The analytic 
signal, which is created by adding both real and its Hilbert transform 
signals has been used to filter the negative frequencies of the stator 
current signals. After the signal envelops were obtained at different 
conditions, many statistical features were examined on the obtained 
envelops for broken bar fault detection. Such features are the Mean, 
RMS, Energy, Peak index, Tolerance index, etc. The statistical features 
were compared for healthy and faulty motor. The authors indicated 
that the load effect in the starting time should be considered in fault 
detection in this motor type, unlike induction machines. Moreover, 
the results showed that only seven features from the proposed twelve 
features could be used in fault detection. These features are Mean, RMS, 
RSS, Shape factor, Skewness and Kurtosis index. Other features could 
not be used because of the occurred overlap between healthy and faulty 
trends of the current signal. In addition, the same authors in [13,14] 
have analyzed the stator current envelope under broken bar condition 
using statistical features in time domain as a fault diagnosis method. 
Following up, they applied some statistical features in time domain as 
a fault diagnostics method.  

Based on the literature review, it is evident that diagnostics of 
the broken bar fault based on artificial intelligence and mathematical 
modelling of LSPMSM has not been performed thus far. Therefore, 
in this work, a diagnosis method of the broken rotor bar faults in the 
LSPMSM using neural network will be developed. The accuracy of 
the developed model will be tested through different tests and under 
different number of broken bars and loading levels.

Dynamic Model of LSPMSM
In this section, a dynamic mathematical model of LSPMSM under 

healthy and broken bar fault conditions are presented. 

Mathematical modelling of healthy LSPMSM

A mathematical model of healthy LSPMSM has been developed in 
the literature [15,16]. These models are built based on the symmetry in 
the resistance and inductance matrices. Equations (1) to (5) describe 
the mathematical model of the healthy LSPMSM.
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Where the primed quantities indicate that, the values pertain 
to the stator side. The Subscripts s, r refers to the stator and rotor, 
respectively. (Vqs, Vds), (Vqr, Vdr), (Iqs, Ids), (I’qr, I’dr), (λqs, λds) and (λ’qr, 
λ’dr) are the quadrature and direct axes of the stator and rotor voltages, 
currents and flux linkages, respectively. rs is the stator resistance and 
(r’qr, r’dr) are the rotor resistances in the q and d reference frames, 
respectively. ωr is the angular speed. (Lls, L’lr) are the stator and rotor 
leakage inductances, respectively. (Lmq, Lmd) are the mutual inductances 
in q and d reference frames, respectively. (Tem, Tload, and Tdamp) are the 
motor electromechanical torque, mechanical torque applied by the 
load and the damping torque in the direction opposite to the rotor 
rotation, respectively. Finally, J denotes the rotor inertia and P is the 
number of motor poles.

Equation (1) describes the stator and rotor electric voltages in the 
qd reference frame, while Equation (2) provides the stator and rotor 
fluxes in the qd reference frame. In addition, the rotor angular rotation 
and electromagnetic torque of the LSPMSM are given in Equations 
(3) and (4), respectively. The PM inductance can be combined with 
the d-axis mutual inductance of the stator (Lmd) [15]. Therefore, the 
magnetizing flux of the PM is defined in (5), where I’

m is the equivalent 
magnetizing current of the PM.  
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On the other hand, a dynamic mathematical model, which takes 
into consideration asymmetrical conditions such as broken bars, 
was developed based on the winding function approach and coupled 
magnetic circuit theory in the qd reference frame. 

Mathematical modelling of a faulty LSPMSM under broken 
bar condition

The LSPMSM stator consist of three sinusoidally distributed 
windings displaced by 120 degree with Ns turns. The rotor cage 
contains Nr bars, forming Nr loops; each contains two adjacent rotor 
bars connected by two end-rings. For modelling purposes of the 
LSPMSM, rotor eddy current losses of the PM are ignored since the 
ohmic resistance of the magnet material is 80 times greater than the 
copper losses. In addition, the rotor airgap is assumed to be uniform 
and the inter-bar currents are ignored [15]. It is documented in the 
pertinent literature that LSPMSM is a highly symmetrical motor; thus, 
any fault will cause a degree of asymmetry in its parameters. However, 
broken rotor bar faults will cause asymmetry in the rotor resistance and 
inductance matrices. In addition, such fault type will affect the mutual 
coupling inductance matrices between rotor and stator. In order to 
study the effect of the broken bar fault condition on the LSPMSM, 
the proposed model should be modified to include the effect of each 
rotor bar. Since the rotor includes Nr loops, and each loop includes 
two bar leakage inductances, two bar resistances, two end-ring leakage 
inductances and two end ring resistances, then the electric (voltage 
mesh) equation governing the jth loop is defined as [17]:   

1 10 2 b e j b ( j ) b ( j ) rj
dR )I R I R I
dt

( R λ− ++ − − +=                      (6)

where Rb and Re are the rotor bar and end-ring resistances, 
respectively. Subscripts r, j denotes the rotor and the rotor loop number, 
respectively.  Ij,  λr are the rotor bar current and flux, respectively. Thus, 
the general expression of the rotor electric equation can be written as:   

0 r r r
dI
dt

R λ+=                    (7)

where, Rr is an Nr × Nr equivalent rotor resistance matrix, described 
as follows:   
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The rotor flux is a combination of the self-flux (Lr), which is coming 
from the rotor loops current (self and mutual), the mutual flux between 
stator coils and rotor loops (Lm(rs)) and the PM flux (λ’pm), which can be 
expressed as follows:   

'
r r r s pmm( rs )L I L Iλ λ= + +                   (9)

The total inductance of the jth rotor loop (loop self-inductance) is 
equal to the sum of its principal inductance (Lrp), leakage inductance of 
the two bars in the loop (Lb) and the leakage inductance of the two end 
rings closing the loop (Le), which can be described as follows:    

( )2rr rp b eL L ( L L )= + +                (10)

The mutual inductance between two adjacent meshes (Lrk(k-1) = 
Lrk(k+1)), k ϵ {1, 2 … Nr} can be defined as follows:  

1 rrrk( k ) bL M L± = −                    (11)

where Mrr is the mutual magnetic coupling between two rotor 
loops. Therefore, the general expression of the rotor cage inductance 
can be rearranged in Nr × Nr matrix, as follows:   
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One further step is required for the simulation purposes, in which 
rotor parameters are transformed from the abc to the qd reference 
frame using multi-phase to two phase (Kr) transformation matrix. 
Therefore, the rotor electrical equation in qd reference frame can be 
written as follows:   

1 10 r r r r qdrrqdr qdr
dV R K I ( K )
dt

[ ] K K λ− −+= =                  (13)

0 qdr qdr qdr
dI
dt

R λ+=                (14)

In addition, rotor flux equation in the qd reference frame can be 
expressed as follows:   

'
qdr qdr mqd qds qd ,pmqdr I L ILλ λ+ +=                   (15)

Inductances calculation 

In this paper, winding function Approach (WFA) was used to 
derive the inductance formulas of the stator and rotor. WFA is used 
to describe the coils along the airgap geometrically. According to the 
pertinent literature, and for uniform airgap, the mutual inductance 
between any two windings x and y is given by [18,19]:   
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where, μo is the space permeability, r is the average radius of the 
airgap, g is the radial airgap length, l is the motor stack length, θr is 
the angle between rotor and stator and γ is the angle along the airgap. 
Wx and Wy denote the winding function of  the x and y windings, 
respectively. The motor utilized in the present study has a 3-phase 
stator, each with Ns windings. Thus, in order to obtain a smooth MMF; 
a sinusoidal distribution of the stator windings along the airgap should 
be used. The normalized stator phase a winding function can be 
described as follows [18,19]:   

2
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In addition, and as mentioned previously, rotor cage is modeled as 
Nr magnetically coupled loops. Since the rotor-bars are equidistantly 
placed along the rotor circumference, which is non-sinusoidal 
distribution, then non-sinusoidal distribution of the loop windings 
was used. In order to calculate the rotor cage inductances, the winding 
function of the ith rotor loop can be expressed as follows [18,19]:   
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where Wri is the rotor loop winding function, and θi and θi+1 are the 
positions of two adjacent rotor bars that form the rotor loop. 

Consequently, the stator flux linkage due to the stator current is 
caused by self-inductance of the stator coils, which is the sum of the 
stator phase leakage and the magnetizing inductances, given by:   

Lsa=Lsb=Lsc= Lls + Lmsi                      (19)

where Lls  is the stator leakage inductance, and Lmsi, i ϵ {a,b,c} is 
the stator phase magnetizing inductance calculated by substituting 
Equation (17) into Equation (16). For instance, the magnetizing-
inductance of the phase a is calculated as follows:  
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For the remaining phases b and c, the same steps can be followed, 
where Lmsa=Lmsb=Lmsc=Lms.

Also the mutual inductance of the stator coils i and j; i, j ϵ {a,b,c} 
and (i≠j), is given by [19]: 
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The stator flux linkage due to the rotor current results in the mutual 
inductance between the stator coils and the rotor loops. The mutual 
inductance between the stator phase  j ϵ {a,b,c}  and the rotor loop  i ϵ 
{1,2, … Nr}  can be calculated by substituting Equations (17) and (18) 
into (16), The final inductance formula will be as follows: 
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From Equation (22), it can be noticed that the mutual inductance 
between stator and rotor depends on the relative position between 
stator and rotor.

Rotor self and mutual inductances 

Rotor current contribute a flux linkage on the rotor loops, which 
can be represented by the loop inductance Lrp. Substituting Equation 
(18) into (16) can calculate the rotor Loop inductance. Its final formula 
will be as follows:  

1
2

o r
rp r

lr
L

g
µ α

α
π

 = − 
 

                 (23)

In addition, the mutual inductance between two rotor loops i and 
j, i, j ϵ {1, 2, … Nr} and (i≠j)  can be calculated by substituting (18) into 
(16) as explained in [19]. The final formula of the calculated inductance 
will be as follows.   
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The effect of the broken bars can be represented by simply 
eliminating the faulty bar elements, i.e. resistances and inductances. 
If the broken bar was the bar number Nr, then the fault will affect rotor 
current vector by removing the element Ir(Nr). In addition, the fault 
will eliminate the Nr row and column from both matrices Rr and Lr 
described in (8) and (12), respectively. The remaining Nr-1 branches 
in both equations should be re-evaluated. In addition, the effect of 

the fault on the mutual coupling matrix is represented by eliminating 
column number Nr from Lm(sr) matrix and the row number Nr from 
Lm(rs) matrix. Re-evaluation of the remaining Nr-1 rows and columns 
is required. The fault will also change the separation angle (αr) with 
the adjacent bar to the faulty bar Nr, i.e. it will be doubled. Therefore, 
the WFA used in (18) will be changed in the case of faulty loop, as 
follows:  
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In general, for nb broken bars, the target parameters of nb faulty 
branches will be eliminated from the rotor resistance and inductance 
matrices. In addition, the nb columns and rows should be eliminated 
from the rotor-stator mutual coupling inductance matrix. The 
remaining Nr-nb branch elements should be re-evaluated to include the 
fault effect. The results of the rotor inductance matrix and rotor-stator 
mutual coupling inductance matrix will be as follows: 
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LSPMSM Simulation
In this section, a simulation models are built based on MATLAB/

SIMULINK® software and tested based on FEM method using JMAG® 
software package.

Proposed mathematical model simulation 

To investigate the effectiveness of the proposed mathematical 
equations, a SIMULINK® model has been built to explore the behavior 
of the torque, speed and stator current of the 3-phase, 415V, 4-hp, 
4-pole, 50Hz, LSPMSM. The motor parameters are given in Table 1. 
The simulation is intended to investigate the performance of the motor 
under different faulty conditions. This is in addition to investigating 
the ability of the motor to synchronize at different mechanical loading 
levels under both healthy and faulty conditions. SIMULINK® model 
simulates the operation of LSPMSM in both transient and steady 
state, and return a clear indication regarding starting and steady state 
behavior of the motor’s electromagnetic torque, stator phase current 
and rotor speed.

FEM simulation using JMAG® software

In order to test the accuracy of the proposed mathematical model 
results and to conduct a compressive motor analysis, a new set of 
simulation results were obtained using commercial finite element based 
software, namely, JMAG®. JMAG® is a FEM simulation software package 
for electromagnetic design. It is based on converting conceptual design 
to a comprehensive analysis with a high accuracy in evaluating complex 
physical phenomena. The 2-D model of the LSPMSM is shown in 
Figure 1a and 1b shows the FEM mesh used for analysis. 
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Simulation Results
Simulation of a LSPMSM under healthy and broken bar conditions 

has been made using the proposed mathematical model and JMAG® 
software. Figures 2-7 show a comparison of the stator phase current, 
torque and rotor speed of the healthy motor under no load and 1.5 NM 
loading levels, respectively. The figures show that the time required 
to achieve synchronism is around (0.3 sec.) and (0.4 sec) at no load 
and 1.5 NM load, respectively. The same trend is happened at higher 
loading levels, where the transient time is increased as the loading level 
increased, until the motor lost its synchronism, Figure 8. However, 
Simulation results indicate a very good agreement between SIMULINK® 
and JMAG® models. The difference between the results yielded by two 
models arises due to the assumptions used in each one. For example, in 
the SIMULINK® model, the current of the broken bar is assumed to be 
zero, while some current paths through laminations between adjacent 
bars are assumed to exist in the JMAG® model. In addition, it is difficult 
to obtain the exact resistance value of the Aluminum conductors used 
in JMAG® to represent the rotor bars in MATLAB®. These differences 
may also occur due to the mathematical operations, as the SIMULINK® 
and JMAG® simulations employ different solvers. 

The effect of the broken bar conditions on the motor performance 
has been also investigated. Figures 9-11 show the stator current, torque 
and rotor speed for the case of three broken bars at 1.5 NM loading 
level. 
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Figure 1: LSPMSM model using JMAG software.
a) 2D structure of the motor   b) FEM mesh used for analysis

Figure 2:  MATLAB and JMAG simulations of a healthy LSPMSM stator 
current at no load.

Figure 3: MATLAB and JMAG simulations of a healthy LSPMSM torque at 
no load.

Figure 4: MATLAB and JMAG simulations of a healthy LSPMSM rotor speed 
at no load.

Figure 5: MATLAB and JMAG simulations of a healthy LSPMSM stator current 
at 1.5NM load.
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Figure 6: MATLAB and JMAG simulations of a healthy LSPMSM torque at 
1.5 NM load.

Figure 7: MATLAB® and JMAG® simulations of a healthy LSPMSM rotor speed 
at 1.5 NM.

Figure 8: Simulation results of healthy LSPMSM rotor speed under different 
loading levels.

Figure 9: MATLAB® and JMAG® simulations of a faulty LSPMSM stator current 
at 1.5 NM with 3 broken bars.

Figure 11: MATLAB® and JMAG® simulations of a faulty LSPMSM rotor speed 
at 1.5 NM load with 3 broken bars.

Figure 10: MATLAB® and JMAG® simulations of a faulty LSPMSM   torque at 
1.5 NM load with 3 broken bars.
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In addition, Figure 12 shows the effect of varying the number 
of broken bars on the motor speed under 1.5 NM load. The results 
clearly show that, the synchronism is lost at five broken bars, which is 
approximately 1/3 of the total number of rotor bars. This confirms with 
the findings reported in literature [20].

ANN Based Broken Bar Fault Diagnosis
Under normal operating conditions, the positive sequence of 

3-phase balanced stator current produces a non-zero forward-rotating 
field in the air gap of the motor. This forward-rotating field induces 
currents in the rotor bars and end connectors. These induced rotor 
currents then produce forward and backward rotating fields in the 
air gap of the motor. For a symmetrical rotor, the resultant of the 
backward-rotating fields is zero, while the resultant of the forward-
rotating field is non-zero. However, under any abnormal condition that 
destroys the symmetry of the rotor - such as broken bar fault- different 
scenario regarding the backward-rotating fields arises. In this case, 
the resultant of the backward-rotating fields is no longer zero. It is the 
ultimate identification of the effects of this non-zero backward-rotating 
field that forms the basis for most motor current signature analysis 
monitoring techniques. In other words, when a rotor bar is broken, no 
current flows in that bar. The resulting asymmetry in the rotor results 
in a non-zero backward-rotating field that rotates at a speed with 
respect to the rotor. This non-zero backward-rotating field induces 
harmonic currents in the stator winding which are superimposed on 
the stator winding currents [4]. Consequently, stator current signature 
is considered as a distinguishing primitive attribute or characteristic 
of the faulty motor under broken bar condition. Many methods can 
be applied on the stator current signature to obtain a milestone that 
highlights the differences between current signatures under different 
number of broken bars and at different loading levels. Such methods 
consist of statistical features such as Sum, Mean, Variance, RMS, 
Kurtosis, Skewness, Std., Median and RSSQ, and linear algebra based 
features such as singular value decomposition (SVD). However, 
since the broken bars fault affects the current signals over time, then 
it is preferable to deal with the stator phase current signature in time 
domain. In this paper, different features will be applied on the stator 
phase current to get the sub-optimal distinguishing milestones of the 
broken bars fault effect. Moreover, to achieve the best NN performance 
for diagnosing the broken bars fault, different NN algorithms as well as 
window sizes at different number of neurons were tested. 

Fault detection scheme

The ANNs can adapt itself to learn different types of complicated 
linear and nonlinear functions. Therefore, it can learn a different 
type of motor faults which results in an accurate prediction of 
fault occurrence and its severity. This type of detection schemes is 
inexpensive and noninvasive. This paper aims at developing ANN 
based detection scheme which overcomes cost problems, complexity 
and applies different motor sizes. In conventional detection schemes, a 
detailed mathematical model is required and many features are needed 
to be extracted, which results in a costly instrument for measurement 
purposes [21]. However, the method used in this paper will use only the 
captured stator current data to extract the most important features. If 
these features are selected as the inputs to the ANN, then the detection 
of broken bar fault condition can be implemented. Besides, this scheme 
will be simple, economical, and reliable. The stator current is captured 
for a total time duration of 5 s. Next, some important statistical 
parameters are calculated; this process is called feature extraction.  For 
the selected features, the neural network is initialized with random 

weights to calculate the resultant errors. The calculated error will 
propagate through the backward cycle in order to update the weights 
and reduce the output MSE. This process is repeated until reaching a 
specified global minimum error. The neural network should be trained 
and tested carefully in the healthy and faulty states and under different 
loading levels. Figure 13 shows the main steps followed in the broken 
bar fault detection.

In the process of fault detection using ANNs, two problems are 
faced. First, the selection of neural network inputs, and specifying 
the network parameters. In the LSPMSM, the spectrum components 
of the broken bar fault in the line current are not fully specified. The 
authors in [22] specify the frequency components at which this fault 
can be detected. However, the authors stated that these frequencies 
are highly affected by any change in motor parameters, furthermore, 
the stator current spectrum contains not only the fault components, 
but also additional harmonics are usually presented such as slotting, 

Figure 12: Rotor speed simulation results of a faulty LSPMSM with 0, 1, 3 and 
5 broken bars at 1.5 NM load.

Figure 13: The main steps followed in the broken bar fault detection.
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supply voltage, and air gap space harmonics. In order to overcome 
these drawbacks, the feature extraction process will be based on the 
stator current in time domain. 

Feature selection algorithms determine the most superior input 
variable which maximizes the performance of the detection process. 
The suitable predictor variable depends on the relationship between 
the input data. The selection process is not straightforward due to 
the large set of the available input variables as well as the Correlation 
between input variables, which creates redundancy. Modelers of ANNs 
realize that the input variable selection (IVS) algorithms should be 
utilized to maximize the network performance [23]. However, the 
desired input variables should be informative, i.e. with predictive 
ability, and less redundant. i.e. independent or dissimilar. In this paper, 
different statistical features will be examined as an input to the ANN. 
In addition, principal component analysis (PCA) [21] will be used as 
a filtering method to choose the most appropriate input variable that 
maximizes the ANN performance [23,24]. 

Principal Component Analysis (PCA)

It is observed that there are many features need to be extracted, 
such features require significant computational efforts to calculate. 
Therefore, a method is needed to assist features selection and extraction. 
The concept of PCA can be used to select the most superior feature to 
detect the fault conditions. This method is analyzing the input data and 
extracting the most important information represented by a new set of 
orthogonal vectors called principal components (PCs). Each principal 
component (PC) represented by a vector of data. In mathematics, it’s 
defined as a linear transformation of orthogonal vectors which map 
the data into a new space. Such that, the great variance from the data is 
the first dimension indicated as (F1), which is called the first PC. The 
second greatest variance located in the second dimension (F2) and so 
on [21,25]. For example, performing PCA to a stator current with a 
matrix dimension of 25 by 500 –this size gives the maximum accuracy 
as will be explained later- yields the eigenvalues and variability of 
projection as shown in Table 2.

It is obvious that the first component carries 77.7% of the total 

information in the input signal with the largest eigenvalue of 8.5. 
The second axis carries only 11.4% of the total projection data. Both 
axes implement 89.24% of the total data as shown in Figure 14. The 
variability of data projection on the third and fourth axes is small with 
6.8% for the third axis and 2.9% for the fourth axis, respectively. It can 
be concluded that the first PC can be used as the input variable to the 
ANN with 77.7% of the variability.

Statistical variables

As discussed before, a common selection method of variables is the 
filter method. This selection method process is the one before ANN 
training to choose the best input variable which maximize the network 
performance. This method is based on measuring the relevance between 
individual variables in a group of inputs. This function is performed 
using search algorithm such as the correlation. The selection criteria 
of this method is based on the maximum relevance (MR) which selects 
the most informative variables and the minimum redundancy (mR) 
which selects variables with unique features [23]. Using a collection 
set of dimensional and non-dimensional statistical features to generate 
the input variable, the correlation-based filter method can be utilized. 
For the input row data X (stator current), the selected features to be 
calculated are chose to be as follows:
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Parameter Value

Rated Power (W) 750
Rated Voltage (V) 415 

Stator phase resistance (Ω) 19.15
Number of poles 4
Frequency (Hz) 50 

Air-gap length (mm) 0.3
Outer/inner stator diameter (mm) 120/75

Number of  stator slots 24
Number of rotor bars 16

Axial length of stator core (mm) 75
Number of turns per slot 139

Height of stator yoke (mm) 45
Height of stator/rotor slots (mm) 13/9.5

Remanent of magnet (T) 1.02

Table 1: LSPMSM electromagnetic design.

F1 F2 F3 F4
Eigenvalue 8.554 1.262 0.753 0.320

Variability (%) 77.765 11.474 6.842 2.907
Cumulative % 77.765 89.239 96.081 98.988

Table 2: Eigen values and variability of the stator current projection.
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Figure 14: Stator Current principal component.
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Where N is the number of samples.

These features are calculated under different operating conditions, 
which include a combination of different number of broken bars and 
loading levels. The calculation of the correlation is conducted using 
Pearson method. The obtained correlation matrix is depicted in Table 3.

Based on the PCA assist, it can be noted that the minimum 
redundancy criteria suggest the SVD method as the qualified input to the 
ANN with a minimum correlation to the other variables. Furthermore, 
the PCA can be used to assist the process of selecting the inputs. Figure 
15 presents the correlation circle for the input variables projected in 
the first two PCs based on the previously used statistical features. It is 
obvious that RMS, variance, Median, Mean, Sum, Kurtosis, Skewness, 
and RSSQ are strongly correlated to each other and redundant. Some 
unique features are carried by the SVD feature. In conclusion, the IVS 
method and PCA suggest using SVD of the stator current as the input 
to the ANN for training.

In NN training, the weights are chosen randomly before 
commencing the training process. Supervised training which is requires 
providing the network with the desired outputs before and during the 
training process is the commonly used training method, therefore 
it is utilized in this paper. The network compares the hidden layer’s 
outputs with the desired outputs and adjusts the weights through the 
feedback algorithms known as “backward error propagation”. The 
system terminates at the desired accuracy point. This process is known 
as “self-organization” or “self-adaption” [26].

Combined ANN –SVD Method For Broken Bar Diagnosis
Applying the SVD theorem on the LSPMSM stator current 

In order to apply the SVD theorem in broken bar fault diagnostics, 
current signatures were collected by simulating the motor described in 
Table 1 under different numbers of broken bars and at different loading 
levels for 5 s of simulation time. Each current signature was arranged in 
one row of the matrix Y. Therefore, the stator current matrix Y contains the 
current signatures obtained through motor simulation under 11 different 
loads and 3 different numbers of broken bars, which will be used in 
training process. Hence, the current matrix Y will contain all probabilities 
of simulation cases, which are represented in 33 current rows, where each 
row pertains to a stator current vector with 12500 points at fixed step-size 

with fundamental sampling time (1/2500). The load vector (in per unit) 
and the broken bars vector can be represented as follows:

[ ]
[ ]

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1

0 2 4

L . . . . . . . . .

BRB

=

=
          (29)

where L denotes the loading level vector in pu and BRB is the 
broken bars vector. The entire current matrix Y will be of size 33 × 
12,500. Each current row of the matrix Y is divided into segments 
to obtain a distinguishing attribute from each segment. Tests were 
performed with different numbers of windows and different number of 
points per window to obtain the best window size that will pertain the 
sub-optimal NN performance, as will be shown in the next sub-section. 
The findings indicated that; five current segments with 2,500 data 
points in each represent the sub-optimal current segmentation that 
will yield the best NN performance. These segments were rearranged 
in separate matrices xi, i ϵ {1, 2, …, 33}, where each matrix represents 
one row of the whole current matrix Y and consists of 5 rows and 2,500 
columns. Singular value decomposition approach was applied on each 
matrix with the help of MATLAB® SVD toolbox. This process returned 
SVD matrix with 33 vectors of singular values, whereby each vector 
represents the eigenvector for each simulation case of the previously 
described 33 cases. The formulated SVD vectors will be used later as an 
input to the multi-layer neural network. Error! Reference source not 
found. Figure 16 illustrates the previously described steps that have 
been followed to formulate the NN input data.

Variables SVD MEAN SUM VARIANCE RMS Kurtosis skewness Std Median RSSQ
SVD 1 -0.717 -0.617 -0.870 -0.417 -0.716 -0.697 -0.417 -0.162 -0.717

MEAN -0.717 1 1.000 0.967 0.984 0.802 0.824 0.984 0.656 0.984
SUM -0.617 1.000 1 0.967 0.984 0.802 0.824 0.984 0.656 0.984

VARIANCE -0.870 0.967 0.967 1 0.992 0.643 0.663 0.992 0.632 0.992
RMS -0.417 0.984 0.984 0.992 1 0.689 0.726 1.000 0.635 1.000

Kurtosis -0.716 0.802 0.802 0.643 0.689 1 0.970 0.689 0.422 -0.689
skewness -0.697 0.824 0.824 0.663 0.726 0.970 1 0.726 0.437 0.726

Std. -0.417 0.984 0.984 0.992 1.000 0.689 0.726 1 0.635 1.000
Median -0.162 0.656 0.656 0.632 0.635 0.422 0.437 0.635 1 0.635
RSSQ -0.717 0.984 0.984 0.992 1.000 -0.689 0.726 1.000 0.635 1

Table 3: Correlation matrix of the selected input variables.
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Figure 15: Correlation circle of the input variables.
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Using the formulated SVD matrix in MFNN training

As previously mentioned, MFNN was used to diagnose and 
monitor the occurrence and the size of the broken bars fault in 
LSPMSM. The inputs to the network are the singular vectors of the 
stator current matrix and the outputs are the number of broken bars. In 
order to design and test the neural network, the extracted SVD matrix 
of 33 columns, discussed in the preceding subsection, was forwarded 
to the neural network. Using MATLAB® neural network toolbox, the 
MFNN design requires determining the input training matrix, the 
target training vector (desired outputs) and the number of neurons in 
the hidden layer [27].

During training process, three kinds of samples can be used 
for validation and testing the input data in the MATLAB® neural 
network toolbox. Training samples, which were presented to the 
network during the training, are used to adjust the network per its 
error value. Validation samples are used to measure the network 
generalization and to halt training when generalization stops 
improving. In addition, testing samples, which have no effect on the 
training process but provide an independent measure of the network 
performance during and after training, are also utilized. However, 
in the testing presented in this section, 70% (23 samples) of the 33 

input samples were used for training, 15% (5 samples) were used for 
validation and 15% (5 samples) were used for testing. The next step 
is to determine the network architecture by setting the number of 
neurons in the hidden layer. The sub-optimal number of neurons 
which maximized the network performance were 11 neurons as 
shown in the next section. In addition, Bayesian Regularization 
training algorithm was used because of its beneficial properties, 
while the  parameters used for ANN training are summarized in 
Table 4.

In order to measure the accuracy of the built network during the 
trial and error step, two measurement tools were used, one of which 
is Mean Square Error (MSE); that measures the average squared 
difference between outputs and targets, where lower values are better 
and zero denotes absence of errors. In addition, Regression (R) was 
used to measure the correlation between outputs and targets. R-value of 
1 means a close relationship and 0 indicates no or random relationship. 
The MSE and regression of the trained neural network are presented 
in Table 5.

Figure 16: Methodology of formulating NN input data.

1. 

No. Parameter Value
1 Input training SVD vectors [8x33].
2 Target training [0 2 4]
3 No. of hidden neurons 11
4 No. of Epochs 1000
5 Learning rate 0.018
6 Training algorithm Bayesian Regularization algorithm

Table 4: ANN learning parameters.

Parameter No. of samples MSE R
Training 23 4.785×10-15 1
Testing 5 4.584×10-3 0.99266

Table 5: MSE and regression of the trained NN.

Case 
No.

(Window size, 
No. of points/

window)

No. of 
neurons

Testing samples 
(MSE)

Testing samples 
(Regression)

1

(5,2500)

5 0.0017577 0.984566

2 9 0.530589 0.967486

3 11 0.00058467 0.99266

4 12 0.846713 0.900062

5 15 0.600628 0.926761

6

(10,1250)

5 1.40555 0.755602

7 9 0.113877 0.992901

8 11 0.842064 0.854919

9 12 0.243494 0.982903

10 15 0.827255 0.850975

11

(20,625)

5 0.572729 0.968345

12 9 0.493744 0.953185

13 11 0.964008 0.866366

14 12 0.532925 0.928532

15 15 0.719404 0.896085

16

(25,500)

5 0.738655 0.894466

17 9 0.977169 0.751925

18 11 0.390965 0.992607

19 12 0.79253 0.822196

20 15 0.963993 0.828237

21

(50,250)

5 0.320680 0.959092

22 9 0.643199 0.596024

23 11 1.30952 0.978504

24 12 0.702070 0.922750

25 15 0.540342 0.900495

26

(100,125)

5 4.37762 0.299078

27 9 7.24313 -0.231649

28 11 6.12528 0.795691

29 12 3.62068 0.564662

30 15 1.62543 0.721844

Table 6: NN training using different window sizes and No. of neurons.
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The Effect of Number of Neurons, Window Size and 
Training Algorithm on the NN Performance

In order to achieve the best NN performance for diagnosing the 
broken bars fault, different number of neurons and window sizes as well 
as training algorithms were tested and clarified in the next subsections. 

The effect of the window size and number of neurons on the 
NN performance

The stator current window size affects the network accuracy. Table 
6 shows different trials aiming at obtaining the sub-optimal feature 
at different window sizes and with different numbers of neurons by 
fixing the training algorithm (Bayesian algorithm). The best network 
accuracy was obtained at 25 windows for each stator current with 500 
data points for each, and with 11 hidden layer neurons using the SVD 
feature.

The effect of the training algorithm and number of neurons 

MATLAB NN toolbox presents three types of training algorithms: 
Levenberg-Marquardt, Bayesian Regularization and Scaled Conjugate 
Gradient. Levenberg-Marquardt algorithm typically requires more 
memory but less time. Training automatically stops when generalization 
stops improving, as indicated by an increase in the mean square error of 
the validation samples. Bayesian Regularization typically requires more 
time, but can result in good generalization for difficult, small or noisy 
datasets. Training stops according to adaptive weight minimization 
(regularization). The third algorithm is the Scaled Conjugate Gradient 
algorithm, which requires less memory. Training automatically stops 
when generalization stops improving, as indicated by an increase in 
the mean square error of the validation samples. Table 7 shows the test 
samples MSE and regression obtained using the three algorithms for 
NN training with different numbers of neurons and at fixed window 
size. It is evident that the NN exhibits the best performance when using 
Bayesian algorithm with 11 neurons. Therefore, Bayesian algorithm 
will be used for NN training with 11 neurons.Case 

No.
Used 

Algorithm
No. of 

neurons
Testing samples 

(MSE)
Testing samples 

(Regression)
1

Levenberg-
Marquardt

2 2.09785 0.626813

2 5 1.6266 0.976664

3 7 0.893722 0.846778

4 9 0.75342 0.84581

5 10 0.427154 0.958723

6 11 0.104874 0.98823

7 12 1.28624 0.792055

8 15 0.658078 0.903213

9 17 3.84497 -0.167069

10 20 0.104874 0.98823

11 25 1.87696 0.699264

12 30 0.654845 0.910816

13

Bayesian 
Regularization

2 1.73211 0.852492

14 5 1.539434 0.818052

15 7 0.729192 0.925733

16 9 0.00732756 0.983494

17 10 0.0064469 0.978297

18 11 4.58467x-3 0.99266

19 12 0.124710 0.988456

20 15 1.69543 0.434623

21 17 1.34332 0.935624

22 20 0.748392 0.858596

23 25 0.853030 0.879769

24 30 3.64849 0.591054

25

Scaled 
conjugate 
Gradient

2 0.709130 0.915576

26 5 0.302373 0.971618

27 7 2.68453 0.521451

28 9 0.416194 0.984492

29 10 0.340863 0.970376

30 11 0.200330 0.976306

31 12 0.635342 0.957161

32 15 2.79162 0.771812

33 17 0.261919 0.991968

34 20 0.363748 0.974512

35 25 0.851280 0.947751

36 30 0.285872 0.893380

Table 7: NN training using different algorithms and number of Neurons.

No. Loading 
level (pu)

Detected No. 
of BRB

Actual No. 
of BRB Status %NMSE

1
0

0.71995 1 Correct 0.464319938
2 2.7399 3 Correct 0.964065028
3 5.0395 5 Correct 0.593125662
4

0.1
1.2208 1 Correct 0.0556476

5 2.9327 3 Correct 0.39533232
6 5.3139 5 Correct 0.07160035
7

0.2
0.87234 1 Correct 0.161851479

8 2.9546 3 Correct 0.346502569
9 5.4590 5 Correct 3.356 x10-06

10
0.3

0.0029834 1 Incorrect 3.784421539
11 2.8418 3 Correct 0.632403628
12 5.2899 5 Correct 0.097056213
13

0.4
0.56499 1 Correct 0.931649224

14 3.1973 3 Correct 0.020776107
15 4.7598 5 Correct 1.644594856
16

0.5
0.92849 1 Correct 0.089681601

17 3.0091 3 Correct 0.238952656
18 4.8877 5 Correct 1.098657201
19

0.6
0.74805 1 Correct 0.396830772

20 3.0635 3 Correct 0.151472078
21 4.7788 5 Correct 1.556553288
22

0.7
0.73143 1 Correct 0.43610784

23 3.0838 3 Correct 0.123914315
24 4.7163 5 Correct 1.85528348
25

0.8
0.69073 1 Correct 0.540117313

26 3.1322 3 Correct 0.069363738
27 4.5783 5 Correct 2.60769261
28

0.9
0.66423 1 Correct 0.613811982

29 3.1864 3 Correct 0.026929652
30 4.5354 5 Correct 2.867625891
31

1
0.54143 1 Correct 1.016809983

32 3.2751 3 Correct 2.71706E-06
33 4.5193 5 Correct 2.968362953

Statistics:
%NMSE=0.4064%
No. Wrongs = 1
No. Corrects = 32
% Success = (65/66)*100% = 96.97%

Table 8: NN testing - First test (All input loads are trained and all No. of input 
broken bars are NOT trained).
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No. Loading 
level (pu)

Detected 
No. of BRB

Actual No. 
of BRB Status %NMSE

1

0

0.71995 1 Correct 0.464319938

2 2.7399 3 Correct 0.964065028

3 5.0395 5 Correct 0.593125662

4

0.1

1.2208 1 Correct 0.0556476

5 2.9327 3 Correct 0.39533232

6 5.3139 5 Correct 0.07160035

7

0.2

0.87234 1 Correct 0.161851479

8 2.9546 3 Correct 0.346502569

9 5.4590 5 Correct 3.356 x10-06

10

0.3

0.0029834 1 Incorrect 3.784421539

11 2.8418 3 Correct 0.632403628

12 5.2899 5 Correct 0.097056213

13

0.4

0.56499 1 Correct 0.931649224

14 3.1973 3 Correct 0.020776107

15 4.7598 5 Correct 1.644594856

16

0.5

0.92849 1 Correct 0.089681601

17 3.0091 3 Correct 0.238952656

18 4.8877 5 Correct 1.098657201

19

0.6

0.74805 1 Correct 0.396830772

20 3.0635 3 Correct 0.151472078

21 4.7788 5 Correct 1.556553288

22

0.7

0.73143 1 Correct 0.43610784

23 3.0838 3 Correct 0.123914315

24 4.7163 5 Correct 1.85528348

25

0.8

0.69073 1 Correct 0.540117313

26 3.1322 3 Correct 0.069363738

27 4.5783 5 Correct 2.60769261

28

0.9

0.66423 1 Correct 0.613811982

29 3.1864 3 Correct 0.026929652

30 4.5354 5 Correct 2.867625891

31

1

0.54143 1 Correct 1.016809983

32 3.2751 3 Correct 2.71706E-06

33 4.5193 5 Correct 2.968362953

34

0.99

0.12217 0 Correct 0.077042033

35 3.101 2 Incorrect 4.183356226

36 4.3822 4 Correct 0.001922707

37

0.44

0.17464 0 Correct 0.15742947

38 1.8491 2 Correct 0.638292632

39 4.0557 4 Correct 0.617232187

40

0.53

0.07050 0 Correct 0.025655284

41 1.897 2 Correct 0.476245802

42 4.1954 4 Correct 0.219257557

43

0.67

0.048248 0 Correct 0.012015925

44 2.1636 2 Correct 0.007123874

45 4.2598 4 Correct 0.103642597

Table 9: NN testing - Second test (All input loads are NOT trained and all No. of 
input broken bars are trained).

46

0.18

0.043976 0 Correct 0.009982287

47 1.9644 2 Correct 0.288343258

48 3.9067 4 Correct 1.263740691

49

0.13

0.067706 0 Correct 0.023662079

50 1.9747 2 Correct 0.263759196

51 4.0143 4 Correct 0.77387227

52

0.71

5.6419 x10-03 0 Correct 0.000164304

53 2.3178 2 Correct 0.070719865

54 4.3270 4 Correct 0.02864911

Statistics:
%NMSE=0.5961%
No. Wrongs = 3
No. Corrects = 54
% Success = (54/57)*100% = 94.7%

No. Loading 
level (pu)

Detected No. 
of BRB

Actual No. 
of BRB Status %NMSE

1

0.52

0.92849 1 Correct 0.04230333

2 3.0091 3 Correct 0.034174895

3 4.8877 5 Correct 0.307402594

4

0.14

0.95146 1 Correct 0.026013764

5 2.8202 3 Correct 0.302408599

6 4.9972 5 Correct 0.117531333

7

0.22

1.1969 1 Correct 0.097987171

8 3.3459 3 Correct 0.217162556

9 5.1746 5 Correct 0

10

0.41

0.55860 1 Correct 0.847313384

11 3.1871 3 Correct 0.02532026

12 4.7432 5 Correct 0.695035061

13

0.57

0.72552 1 Correct 0.357509059

14 3.0615 3 Correct 0.006989071

15 4.8262 5 Correct 0.45331775

16

0.64

0.78815 1 Correct 0.227421308

17 3.0583 3 Correct 0.008061296

18 4.7532 5 Correct 0.663186221

19

0.77

1.3813 1 Correct 0.448076376

20 3.4364 3 Incorrect 0.410752528

21 5.01945 5 Correct 0.089897992

22

0.85

0.75798 1 Correct 0.286429541

23 3.6953 3 Incorrect 1.30240205

24 4.8401 5 Correct 0.417867578

25

0.97

1.4600 1 Incorrect 0.674819736

26 4.2336 3 Incorrect 4.758950766

27 5.0495 5 Correct 0.058446842

28

0.62

0.77452 1 Correct 0.253237718

29 3.0589 3 Correct 0.007854427

30 4.7604 5 Correct 0.640717551



Citation: Baradieh K, Al-Hamouz Z, Abido M (2018) ANN Based Broken Rotor Bar Fault Detection in LSPMS Motors. J Electr Electron Syst 7: 273. 
doi:  10.4172/2332-0796.1000273

Page 13 of 14

Volume 7 • Issue 4 • 1000273J Electr Electron Syst, an open access journal
ISSN: 2332-0796

Artificial Neural Network. This method was successfully classified the 
fault size based on the extracted features from the stator phase current 
using singular value decomposition method. In addition, this method 
was successfully applied to the designed LSPMSM. Three different tests 
were performed to assess the reliability of the built diagnosis system: 
The first test has simulated different broken bars that were not trained, 
while all the used loads were trained, achieving 97% accuracy, with only 
one wrongly estimated case. In the second test, different loads were 
applied, none of which were trained, while all broken bars were trained. 
The 94.7% success rate revealed three incorrectly estimated cases. In the 
last scenario, which was the worst case, none of the presented loads or 
broken bars was trained. The percentage of success was around 92.98%, 
due to the network failing to detect four cases properly. 
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31

0.93

1.8181 1 Incorrect 2.290707345

32 3.1836 3 Incorrect 0.023213449

33 4.9688 5 Correct 0.158174756

34

0.44

0.8377 1 Correct 0.14526077

35 3.001669 3 Correct 0.039690625

36 4.89945 5 Correct 0.282738836

37

0.67

1.13892 1 Correct 0.040393651

38 3.25519 3 Correct 0.084511409

39 5.04671 5 Correct 0.061082894

40

0.18

0.908867 1 Correct 0.059340719

41 2.9879 3 Correct 0.051000942

42 4.7429 5 Correct 0.696002066

43

0.71

1.24619 1 Correct 0.166694817

44 3.3863 3 Correct 0.29602381

45 5.0355 5 Correct 0.072260455

46

0.82

1.301 1 Correct 0.26440575

47 3.7031 3 Incorrect 1.337034168

48 4.9261 5 Correct 0.230621195

49

0.18

0.9088 1 Correct 0.059403818

50 2.9879 3 Correct 0.051000942

51 4.7429 5 Correct 0.696002066

52

0.75

1.360957 1 Correct 0.396990586

53 3.4648 3 Correct 0.48411433

54 5.03359 5 Correct 0.074258514

Statistics:
%NMSE=0.4044%
No. Wrongs = 3
No. Corrects = 63
% Success = (53/57*100% = 92.98%

Table 10: NN testing - Third test (All input loads and all No. of input broken bars 
are NOT trained).

Simulation Results
Based on the built neural network, different simulations were 

performed to diagnose the broken bar fault occurrence under different 
loading levels. The first test has simulated different broken bars that are 
not trained, while all of the used loads are trained. The results indicated 
about 97% success rate, as only one case was wrongly estimated, as 
shown in Table 8.

In the second test, different loads were applied none of which were 
trained, while all broken bars were trained. The success rate was 94.7%, 
due to three incorrectly estimated cases, as shown in Table 9.

In the last scenario, which was the worst case, none of the presented 
loads or broken bars was trained. The 92.98% success rate indicated 
that the network was unable to detect four cases properly, as shown in 
Table 10.

These simulation results indicate that the neural network based 
fault detection scheme is capable of detecting the broken rotor bars. 

Conclusion
The purpose of this paper was to develop a monitoring method 

capable of detecting the broken bar faults in the LSPMS motor based on 
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