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Abstract
The failure to find a vaccine against HIV/AIDS has been attributed to numerous factors including the diversity 

and mutability of the virus and the lack of a good animal model. I readily acknowledge that HIV presents unique 
challenges and that these have been problematic for vaccine development. However, the search for, and reliance 
on, animal models is part of the problem and not a means to a solution. I outline why one evolved complex system 
should not be expected to be predictive for another, especially one that has a different evolutionary trajectory, 
regardless of extensive similarities. I also discuss general concepts of scientific methodology, specifically what the 
concept predict means and why animal models fail to qualify as predictive systems for drug and disease response.
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Immunodeficiency Viruses in Humans and Animals
Human immunodeficiency virus (HIV), acquired immunodeficiency 

syndrome (AIDS), and the search for an HIV vaccine provide an 
excellent example of why small differences between two otherwise very 
similar complex systems negate the ability to extrapolate the results 
of perturbations such as drugs and disease from one complex living 
system to another. HIV and simian immunodeficiency virus (SIV), 
the virus used to approximate HIV infections in nonhuman primates 
(NHPs), which is the animal model most frequently used in vaccine 
research, share many features, as do NHPs and humans. When studying 
complex systems, however, the relatively infrequent dissimilarities can 
be more important than the numerous similarities. In terms of vaccine 
development, some of the dissimilarities are not subtle, for example, 
SIV and HIV are different viruses and the NHPs used to model HIV/
AIDS are a different species from the humans that will be administered 
the vaccine. 

Consequently, although a large number of vaccines are effective 
in NHPs, the vaccines against HIV that were developed and tested 
on chimpanzees and monkeys, have all ultimately failed in humans 
[1]. Since the first HIV vaccine trial in 1987, fifty vaccines aimed at 
prevention and thirty aimed at therapy had been tested by the US 
National Institute of Allergy and Infectious Diseases (NIAID) by 2007 
[2]. Reasons listed for why a vaccine has not been forthcoming despite 
decades and billions of dollars in research funding include: 1. HIV is 
able to mutate very easily; 2. HIV has many groups and subtypes; and 
3. HIV not only evades the body’s immune system but also attacks it.
Some would add that there are no animal models that are predictive for
human response to interventions such as vaccines or that respond as
humans do, mechanistically, to HIV[1,3]. I will elaborate on this lack of
an animal model and attempt to place it in a greater context.

Current vaccine testing on NHPs has not only failed to predict 
human response, but has resulted in vaccines that ultimately proved 
harmful to humans [4-7]. This is obviously a suboptimal record of 
accomplishment. Gamble and Matthews have noted the importance of 
this, stating: “Until a model can be derived that will allow for observation 
of each stage of infection, progression of disease, and response of the 
immune system in a way that is comparable to this process in humans, 
we will not be able to logically predict which vaccine candidates should 
be moved forward to clinical trials” [1]. I will argue that even if a model 
could be developed that reproduced those human manifestations and 
mechanisms; it would be inadequate for predictive purposes. 

HIV and SIV are presumably descendants of a common ancestor 
virus and have many similarities [8]. SIV jumped the species barrier 
from NHPs to humans, at least eleven times. SIVcpz crossed from 
chimpanzees (Pan troglodytes troglodytes) to humans resulting in 
HIV-1 groups M, N, O, and P [9,10]. SIVsmm from sooty mangabeys 
(Cercocebus torquatus atys) crossed and resulted in HIV-2 groups A-H 
[11,12]. Each group has various subtypes or clades. Among mammals, 
intra- and inter-species differences have been revealed that are likely 
responsible for differences in susceptibilities and response [13,14]. HIV 
has only nine genes but since it lacks the usual viral repair mechanisms, 
mutations are common. This makes it interesting from an evolutionary 
point of view and a problem from a treatment and prevention 
perspective. 

NHPs are the species most closely related to humans and the 
various NHPs share many genes and characteristics with humans. 
Thus, NHPs have been the model of choice for the study of HIV/AIDS. 
Chimpanzees were the original model of choice despite a number of 
relevant characteristics that demonstrate the important differences 
between chimpanzees and humans. For example, chimpanzees do not 
develop cirrhosis following infection with hepatitis B or C, or suffer 
from rheumatoid arthritis, bronchial asthma, type I diabetes, malaria, 
or Alzheimer’s disease. Another difference proved to be that infection 
with HIV-1 does not progress to AIDS in chimpanzees [8,15,16] (or 
any other animal species except humans) [17-20]. Various differences 
between chimpanzees and humans have been offered in explanation 
of this. Chimpanzees have a higher body temperature [21-26]. HIV 
does not reproduce well in chimpanzees [27,28] and the chimpanzee 
immune system mounts little antibody-mediated or cell-mediated 
responses to HIV-l [28]. Chimpanzees do not develop any of the 
characteristic symptoms of AIDS, such as opportunistic infections 
or malignancies [29-31] and they develop only transient lymph node 
swelling in response to infection [29,30]. Moreover, chimpanzees do 
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not experience degeneration in lymphoid follicles [21-26,32]. CD4+ 
to CD8+ lymphocyte ratios differ in humans and chimpanzees, CD4 
decline is observed only in humans [27,28] and CD4+ T helper cells 
continue to regenerate in chimpanzees [21-26,32]. Chimpanzees do not 
manifest HIV infection of brain tissue or macrophages, and HIV has 
not been found in chimpanzee cerebral spinal fluid or saliva [19,33]. 
Their monocytes and macrophages also resist infection with HIV 
isolates [21-26,32].

Monkeys were the second choice of model system, although 
differences also exist between monkeys and humans and among 
various species of monkeys. For example, the rhesus macaque (RM) 
has failed to predict human response to medications for asthma [34-
36]. Infection with SIV progresses to AIDS in RMs infected with SIVsm 
but not in chimpanzees or sooty mangabeys (SM), or African green 
monkeys (AG) infected with SIVagm. Macaques infected with a hybrid 
of SIV and HIV (SHIV) progress to AIDS but the time to progression is 
significantly different from that observed in humans infected with HIV. 
The pathology revealed in SIV- or SHIV-infected monkeys does not 
duplicate human HIV. In addition, the replicative capacity and other 
parameters differ from HIV [37,38]. SIV and HIV are different viruses 
[39] and although HIV is more closely related to SIVcpz, SIVsm  and
SIVmac are used in most studies [40]. SIV and HIV envelope proteins
are different [39] and SIV has the gene vpx while HIV-1 has vpu [41].
The envelope of SIV is unaffected by antibodies that neutralize HIV
and vice versa [39]. Cytotoxic T lymphocytes (CTLs) against HIV do
not react against SIV-infected cells and vice versa [39]. SIVmac infection
occurs via the CD4 receptor and primarily the CCR5 co-receptor
whereas HIV uses CD4 and the co-receptors CXCR4, CCR5, and DC-
SIGN [21,39]. These co-receptors are expressed differently in various
tissues and thus may affect disease course [40,42]. In approximately
50% of humans, HIV begins by using the CCR5 coreceptor but switches
to the CXCR4 coreceptor [39]. SIVmac is only approximately 50%
homologous with HIV in terms of nucleotide sequences [43]. SIVmac
does not transmit from mother to child [21] and SIV infection is more
aggressive and advances more rapidly in macaques [44]. The main route
of transmission for SIVmac is nonsexual [21] and SIV results in “rapid
and selective depletion of memory CD4 cells in the gut-associated
lymphoid tissue (GALT)” [3].

More differences exist. For example, macaques exhibit a different 
neurological response to different strains SIV and SHIV of with no 
one model reproducing the human response. Different subspecies of 
macaques also demonstrate variability in their susceptibility to the 
central nervous system (CNS) effects of the viruses [45]. RMs differs 
from humans in their gut flora, which might impact on aspects of 
mucosal immunity [21,46]. Considerable inter- and intra-species 
variation among NHPs has been found in the nucleotide sequence of 
the CD4 receptor gene [47,48]. RMs has twenty-two MHC class 1 loci 
active genes or haplotypes compared to six for humans. Humans have 
an HLA-C while RMs does not. The controller haplotypes in RMs is 
Mamu-B08 and Mamu-B03 (>50%), and Mamu-B17 (>20%). Humans 
make use of HLA-B57 and HLA-B27 (<2%). RMs have more Mamu-
DRB genes in their MHC class II loci than humans [21].

Over 1400 proteins that interact with HIV-1 in humans are 
recorded in the HIV-1 Human Protein Interaction Database [49]. 
Bozek and Lengauer [14] analyzed 1439 of these genes in humans, 
chimpanzees, rhesus macaques, and orangutans in order to discover 
genes and proteins under positive selection pressure. They determined 
that ~10% of the genes were under positive selection pressure. Many of 
these genes coded for proteins in the cell membrane or were involved 

in the innate immune response. These are significant findings especially 
in light of the interspecies differences in response to HIV. The results 
also forecast difficulty in inter-species extrapolation in terms of vaccine 
efficacy and safety. 

Kim et al. [50] analyzed peripheral blood mononuclear cells 
(PBMC) from SMs, humans, chimpanzees, AGs, and RMs for the 
apoptotic factor TRAIL and found that the levels were higher in species 
susceptible to AIDS (humans and RMs). They also found that in 
“human and RM myeloid immature dendritic cells and macrophages, 
the virus-induced expression of TRAIL and other interferon-inducible 
genes, which did not occur in the same cells from chimpanzee, SM, and 
AGM, were Tat-dependent.” 

Stansell and Desrosiers [51] discovered that the carbohydrates that 
compose the glycoprotein spikes on HIV-1, thus allowing it to attach to 
receptors on the cell membrane, differ significantly from those on SIV 
in the SM. 

In addition to the above differences, numerous other differences 
between HIV, SIV, and SHIV and the various strains and clades have 
been described [1,3,8,21,27-32,39,40,43,44,52-59]. These differences 
can be accounted for based the evolutionary trajectories of the viruses 
including the host-virus interactions. Further complicating matters, 
humans manifest intra-species differences in response to viruses and 
vaccines [60-83]. Klein et al. [69] evaluated gene response between 
men and women to the yellow fever vaccine. They analyzed microarray 
data and found that 660 genes in women, but only 67 genes in men, 
were differentially expressed after vaccination. They also “established 
that most of the reported TLR [Toll-like receptor]-associated genes that 
activate the interferon pathway are upregulated to a greater extent in 
women than in men during the first 10 days after vaccination” [69]. Men 
and women also differ in the pathogenesis of viral diseases [84-86]. A 
greater inflammatory and cellular immune response occurs in women. 
Because of this intra-species variation, Poland et al. have proposed the 
field of vaccinomics [71]. The above is similar to the differences between 
men and women [87-95] and among ethnicities [96-103] observed in 
response to other drugs and diseases. Monozygotic twins also differ 
in vaccine response [64,82,104-106] as well as in disease susceptibility 
[107-111]. Genetic variation influencing vaccine response has also been 
observed in animals [112,113].

There is a genetic basis to at least some of the above observations. 
Polymorphism occurs in immune response genes three times more 
frequently than other gene families. Kimman et al. [115] state: 
“Comparing sequences of genes common to rodents and humans for 
example revealed that proteins involved in host defense have diverged 
both within and between species three times as quickly as other 
proteins [114]. Vaccines against measles and hepatitis B, for example, 
fail in 2-20% of cases and genetic variability influences response to 
the HBV vaccine [116,117]. Genetic variation in infants has likewise 
been described in the case of vaccines for polio, pertussis, and tetanus 
[118] as well as with other vaccines [64,82,119,120]. If intra-species
variation caused by genetic differences is troublesome, we should
expect interspecies variation to be profound and interspecies prediction
perhaps impossible.

Despite the importance of the above, I believe that focusing on 
these differences and on superficial similarities or dissimilarities 
leads scientists to ignore the real problem of using animals as causal 
analogical (or predictive) models [121] of human disease in general and 
as models for development of an HIV vaccine in particular. The real 
problem lies deeper and is far more important.
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Animal Models 
Animal use in science and research can be broken down into 

essentially nine categories (table 1) [122].

Current use of animals in HIV vaccine research is consistent with 
categories 1 and 2 in table 1. Both of these practices implicitly or 
explicitly make the claim that the animal models in use will reproduce 
the human response and therefore can predict the outcome. This is 
a very different claim from the use of animal models in categories 5, 
7, and 9, which are relevant for basic research. Basic research makes 
no claim of applicability [123-131]. There are important distinctions 
between using animals as predictive models and using them for 
scientific purposes as described by categories 3-9. For example, the 
Varicella-Zoster Virus (VZV) vaccine was developed without an animal 
model but did use cells from animals as part of the growth media, which 
would be an example of category 4 in table 1 [132]. The basis for using 
NHPs to develop and test vaccines is that humans will respond in the 
same way as NHPs; and that causally relevant disanalogies do not exist. 
This leads us to the definition, or more precisely the explanation, of the 
terms predict or predictive as used in science in general and biological 
science in particular.

Theories in science influence what should even be considered as 
possible predictive modalities and we need to understand what a theory 
is before we consider prediction. In science, theory does not mean a 
hypothesis or idea, nor does it refer to a mathematical conclusion that 
has been proven. Theory means a scientific position that has been 
extensively studied and is supported by a vast amount of evidence as 
well as adhering to consilience; the position supports and explains 
observations and facts in other fields of science [133,134]. Theories of 
science include the Theory of Evolution, the Germ Theory of Disease, 
and Chaos and Complexity Theory. The Germ Theory, for example, 
would lead one to believe that even testing the predictive capacity of 
devices that purport to measure chi—the Chinese life force or energy—
would be unproductive. 

Individuals vary from one another and because of this, statistics 
are used in various ways to evaluate a biological phenomenon and 
arrive at certain conclusions. One method used to determine the 
predictive value of a practice, process, technique, or test is to compare 
the reality, or gold standard, to the answer being obtained indirectly 
through the process or test under scrutiny. This can be accomplished 
using the 2X2 binomial classification table and calculations shown in 
table 2. Physicians are familiar with this table as it is used to calculate 

values for practices they encounter, for example the positive predictive 
value (PPV) of a biomarker or practice or intervention, or the negative 
predictive value (NPV) of a blood test. It is important to note that 
PPVs and NPVs must be very high to be useful in endeavors that have 
little tolerance for error, as is the case in the practice of medicine. For 
example, if a blood test for cancer of the gall bladder has a PPV of 0.7 
and a NPV of 0.5, it would not be useful, as these predictive values are 
totally inadequate in medicine.

The values regarding the use of animals as predictive models for 
the study of disease and drug development have been calculated in 
this fashion and found to be far below those needed in medical science 
[135-144]. These values are more similar to what would be expected 
from chance events or a coin toss than from a scientifically viable 
modality. However, when NHPs are used to predict human outcomes 
for vaccines against HIV, one does not need to perform the above 
calculations. The number of successful vaccines has been zero while 
the number of attempts and/or successes in NHPs approximates one 
hundred. Even if a vaccine were discovered tomorrow that resulted in 
immunity in both macaques and humans, one would still be forced to 
conclude that the PPV for the NHP model is approximately 0.01. (The 
NPV is unknown, as negatives in NHPs are not tested on humans thus 
raising the question of lost vaccines). Therefore, the monkey model for 
HIV vaccine development is not a predictive modality. This leads to the 
question: “Why is it being used?” 

If a model is being used as heuristic, as in category 7 of table 1, then 
it should not be judged based on its ability, or lack thereof to predict 
human response. Nevertheless, some scientists still tout the monkey 
model as a predictive modality and state or imply that the results from 
studies with NHP models translate directly to humans [145-151]. 
This practice is not confined to AIDS research [152]. Furthermore, it 
is widely believed that animal models yield results that have a one to 
one correspondence to the human situation [123]. Science journals 
are also complicit in this stance [153], as are the media [154,155]. In 
contrast, some scientists and journalists have commented that NHP 
models are not predictive for human responses. An editorial in Nature 
Biotechnology stated:

The best large animal model for HIV, for example, is simian 

1. Animals are used as predictive models of humans for research into such 
diseases as cancer and AIDS. 

2. Animals are used as predictive models of humans for testing drugs or other 
chemicals. 

3. Animals are used as “spare parts”, such as when a person receives an aortic 
valve from a pig. 

4. Animals are used as bioreactors or factories, such as for the production of 
insulin or monoclonal antibodies, or to maintain the supply of a virus. 

5. Animals and animal tissues are used to study basic physiological principles. 
6. Animals are used in education to educate and train medical students and to 

teach basic principles of anatomy in high school biology classes. 
7. Animals are used as a modality for ideas or as a heuristic device, which is a 

component of basic science research. 
8. Animals are used in research designed to benefit other animals of the same 

species or breed. 
9. Animals are used in research in order to gain knowledge for knowledge 

sake. 

Table 1: Categories of animal use in science and research [122].

Gold Standard
GS+ GS-

Test
T+ TP FP
T- FN TN

T+ = Test positive

T- = Test negative

T = True

F = False

P = Positive

N = Negative

GS+ = Gold standard positive

GS- = Gold standard negative
Sensitivity = TP/TP+FN
Specificity = TN/FP+TN
Positive Predictive Value = TP/TP+FP
Negative Predictive Value = TN/FN+TN 

Table 2: Binomial classification method for comparing a modality, practice, or test 
with a gold standard and for calculating sensitivity, specificity, positive predictive 
value, and negative predictive value.
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immunodeficiency virus infection of macaques (chimpanzees injected 
with HIV fail to develop a human-like disease). To recognize the 
limitations of such models, look no further than the recent high-profile 
failure of Merck's HIV trivalent V520 vaccine—which monkey studies 
had predicted would be protective [156]. (Emphasis added).

Connor and Green writing in The Independent in 2008 state: 

One of the major conclusions to emerge from the failed clinical trial 
of the most promising prototype vaccine, manufactured by the drug 
company Merck, was that an important animal model used for more 
than a decade, testing HIV vaccines on monkeys before they are used 
on humans, does not in fact work [157].

Connor and Green quote Anthony Fauci, then-director of the US 
National Institute of Allergy and Infectious Diseases (NIAID) as saying: 
“We've learnt a few important things [from the clinical trial]. We've 
learnt that one of the animal models, the SHIV model, really doesn't 
predict very well at all.” Yet the SHIV model is still being touted in grant 
applications and media interviews as being predictive.

The failure of the NHP model to predict human response has been 
acknowledged by others [158-162]. Historically, monkeys have failed 
to reproduce human responses in drug and disease response including 
in HIV-related matters. For example, zidovudine was ineffective 
in preventing SIV infection in monkeys but has performed well in 
preventing mother to infant transmission [163-165]. Actinomycin-D, 
one of the first of the chemotherapy drugs, has very different effects in 
monkeys than humans [166]. Cancer research using NHPs has been an 
unqualified failure [167]. The vaccine for Alzheimer's disease, AN1792, 
was tested on monkeys but was withdrawn from development after the 
discovery that fifteen patients, out of 360, had developed severe brain 
inflammation [168-170]. Drugs known to damage the human fetus are 
found to be safe in 70% of cases when tried on primates [171]. Despite 
this history, there are conflicting opinions regarding the role of monkey 
models. Überla states: 

Since only a limited number of vaccines can be tested for efficacy 
in phase 3 studies in humans, a filter is needed allowing selection of the 
most promising ones. Although differences between HIV infection in 
humans and simian immunodeficiency virus infection in nonhuman 
primates (NHP) might limit the predictive value of these models, 
comparative efficacy studies in NHPs could facilitate ranking of vaccine 
candidates [172].

This statement is confusing since it gives the impression that Überla 
is stating mutually exclusive concepts, namely, that monkey models 
are not predictive but that science should continue to use them as a 
screening tool—a practice that is based on the assumption of predictive 
ability. I believe Überla’s statement accurately reflects the current 
situation in HIV vaccine research. For example, Vödrös and Fenyö 
[40] state: “Animal models cannot determine whether a vaccine will
be effective against HIV-1 in human, however, challenge experiments
to the macaque models can potentially broaden our knowledge on
safety and efficacy of the candidate vaccines [173].” The following
from Shedlock et al. is more realistic: “In light of the STEP trial, the
data from rhesus macaque challenge models should not be used as a
gatekeeper for Phase I clinical trials . . .” [21]. In addition to failing to
predict inefficacy, an oft-overlooked problem with using animal models
as predictive modality is the fact that efficacious vaccines may have
been lost because of such practices. Such has probably occurred with
anti-neoplastic drugs [174].

Analyzing past vaccine successes and failures can help us make 

intelligent decisions moving forward. The pursuit for an HIV vaccine 
has been compared to the search for a vaccine for polio. NHPs were 
successfully used in polio vaccine research as reservoirs for the virus 
and to type the virus, but they were not successful as models of the 
disease [175,176]. The vaccine against polio virus typifies the successful 
use of animals in category 4 in table 1, as bioreactors, and the failure of 
animal models in categories 1 and 2, as predictive models for disease 
and drug response. Of more concern, however, is the fact that NHP 
models of polio misled researchers in various ways. For example, 
despite evidence from humans that the poliovirus entered through the 
gut, researchers pursued the nasal portal and neurotropism hypothesis 
based on results from NHPs [21,175,177]. Shedlock et al. state:

However, at the time it was unknown that the rhesus macaque, 
unlike the cynomolgus macaque (Macacafascicularis), is one of the 
rare monkeys in which poliovirus does not replicate in the digestive 
tract and subsequently does not cause an orally acquired infection. 
Unfortunately, Flexner’s conclusions that vaccines may be impossible 
to develop owing to the absence of a blood replication stage for 
poliovirus and that vaccine candidates should be grown only in neural 
cell lines, ideas that were widely embraced by the poliovirus research 
field, delayed the development of an effective poliovirus vaccine by as 
many as 40 years. Thus, this interpretation from the rhesus macaque 
model system shows that scientific assumptions of the importance 
of a particular primate infection model, based on the manifestation 
of similar disease symptoms and in the absence of known human 
correlates, may be ultimately misleading [21].

The same research led scientists to believe there was only one strain 
of the virus whereas there are actually three. The nasal portal notion 
also led to interventions such as the application of picric acid to the 
nasal mucosa, which resulted in loss of olfaction in some patients. 
Human-based research was responsible for major breakthroughs in 
the quest for a vaccine and human-based research did not mislead 
researchers. For example, poliovirus had been found in the gut by 1912 
[175]. A vaccine for polio was developed based on the in vitro work of 
Ender, Weller, and Robbins.

Another source for direction is the vaccine against varicella zoster 
virus (VZV). VZV is similar to HIV in that humans are the only species 
adversely affected by the virus. The varicella vaccine was developed 
without an animal model, but the researchers did use animals as 
heuristic devices as outlined in category 7 in table 1 and for cell cultures 
(category 4). Eventually the vaccine was tested for efficacy and safety in 
human clinical trials without going through animal trials [132,178]. An 
animal model of VZV, using NHPs and simian varicella virus (SVV), 
was subsequently developed but it did not contribute the development 
or testing of the VZV vaccine. SVV and SIV share characteristics with 
the human disease [179].

Modeling Evolved Living Complex Systems
Medical research should be based on, and conform to, knowledge 

from all pertinent fields of science, a characteristic of science called 
consilience. I believe medical researchers working on a vaccine 
against HIV have violated this critical principle. As stated earlier, the 
real problem with using animals in general, and NHPs in particular, 
as predictive models for HIV vaccine research lies deeper than 
dissimilarities in CD4 receptors and virus homology; although these 
differences are important. I will now elaborate on this concept.

All members of the Kingdom Animalia are examples of living 
adaptive complex systems and each has a unique evolutionary 
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trajectory [152,180,181]. Very small variations between two otherwise 
very similar complex systems can result in opposite outcomes to the 
same perturbation and evolution uses many such small variations to 
make new species. Herein lays the problem for using animal models to 
predict human outcomes for perturbations such as drugs and diseases. 
Evolution has proceeded by altering genes, molecules, and processes 
while simultaneously conserving some of the general features of the 
organisms [182,183]. Moreover, the same outcome can be achieved by 
very different processes. For example, the human eye and the eye of 
cephalopods appear, to the first approximation, identical. But these two 
eyes are examples of convergent evolution hence the wiring and even 
the anatomical features are very different [183]. This has implications 
for what can be learned about the human eye from studying the 
cephalopod eye. While the cephalopod eye can certainly be used as a 
heuristic, it is unlikely to have a high PPV for human response to drugs 
and other interventions for the eye. However, not every important 
difference among species is secondary to convergent evolution. The eye 
of the rabbit, another mammal, responded very differently than the eye 
of humans to early attempts to correct myopia resulting in loss of vision 
in some patients [184-190]. I will now describe the characteristics of a 
complex system and note how evolution affects these properties and 
what this implies for inter-species extrapolation.

Reductionism has taken us far in our understanding of living 
systems but there is a point at which a living system must be analyzed 
as a whole. There are some characteristics of a complex living system 
that cannot be discovered by examining its constituents, regardless of 
how thorough such an examination might be [191]. Complex systems 
are composed of many components and some of these are simple 
systems—systems that can be completely described by the sum of 
their parts and that are subject to linear cause and effect relationships. 
However, for complex systems, the whole is greater than the sum of 
its parts. One reason for this is that complex systems demonstrate 
emergent phenomena—properties that only become apparent when 
the system is studied as a whole [192]. Reductionism cannot be used 
to discover emergent properties. For example, the emergent property 
of ice that allows it to float on water cannot be predicted based on 
complete knowledge of the properties of the atoms hydrogen and 
oxygen or the analysis of a single molecule of H2O. Likewise, the fact 
that isomers have different chemical properties cannot be predicted 
by reductionism. Relevant to our discussion, gene regulation can be 
considered an emergent property and different species have evolved, 
at least in part, by changes in gene regulation. Also relevant to this 
discussion, the specificity of an antibody and the immunogenicity of an 
antigen are emergent properties [193,194].

Complex systems are dependent upon initial conditions. Small 
differences between two otherwise identical systems can be acted upon 
by the same perturbation but yield dramatically different outcomes. 
Moreover, these small differences can cause other changes in the 
system over time, which leads to even more differences between the two 
systems. This is what has happened with evolution. Species that share a 
common ancestor species, for example chimpanzees and humans, have 
undergone very small changes over time and thus are separate species. 
These species are composed of different genes and individuals within 
the species of different alleles. These differences in genes, proteins, 
gene-gene interactions and protein-gene interactions can result in 
different outcomes to the same perturbation. Differently regulated 
genes and gene networks similarly lead to vastly different outcomes 
to perturbations. The expression of genes varies considerably among 
species and even among individuals and these results in correspondingly 
divergent outcomes. Very small differences in the genetic makeup of 

monozygotic twins, perhaps secondary to epigenetics—an example of 
the complex system interacting with its environment—can translate to 
one twin suffering from a disease like multiple sclerosis while the other 
does not [107-111].

Initial conditions differ because evolution has used changes 
in genes, different proteins, different regulatory mechanisms and 
changes in the same regulatory mechanisms, different background and 
modifier genes, and mutations such as copy number variants and single 
nucleotide polymorphisms to build new species. Lorenz rounded off a 
number from six to three significant digits and this resulted in opposite 
outcomes for the two weather simulations. This is the mathematical 
equivalent of monozygotic twins experiencing opposite outcomes to the 
same perturbation. Even if we only considered the above-mentioned 
gene-based differences between NHPs and humans, those differences 
in initial conditions would be so great that one should not expect NHP 
models to predict human responses in vaccine development. 

Robustness and redundancy are also characteristics of complex 
systems [195,196]. Robustness, meaning resistance to change, which 
exists at least in part because of the redundancy of components, for 
example gene pleiotropy and alternative splicing, which allows a protein 
to be produced despite the usually active gene not being present. 
Because the system is robust, a perturbation may cause no noticeable 
effect. However, because complex systems display the property of 
nonlinearity, the same small perturbation may wreak havoc on a 
similar living complex system. An example would be that some strains 
of rodents can have a gene knocked out with little consequence while a 
similar strain will not survive [197,198]. The presence of feedback loops 
also influences response to perturbations.

Different levels of organization exist in a complex system. The 
components of complex systems can be grouped in modules [199] that 
occupy these different levels of organization. However, components or 
modules that are wholes on one level may be parts on another [200]. 
The modules interact, for example gene networks interact with proteins, 
but the same interaction may result in different outcomes because of 
modifier genes, gene regulation, or epigenetic factors. Components and 
modules are not like pistons that can be interchanged between engines 
of the same variety. Mayr states that: “Owing to the interaction of the 
parts, a description of the isolated parts fails to convey the properties of 
the system as a whole. It is the organization of these parts that controls 
the entire system” [201]. This is one reason genetically modified 
animals have been unable to predict human response to drugs and 
disease [202-208]. An appreciation of the genetic differences among 
individual human complex systems has resulted in the field and concept 
of personalized medicine [209-211]. Given the differences among 
individuals of the same species to perturbations such as drugs and 
disease, one must question the claim that inter-species extrapolation of 
outcomes that involve higher levels of organization is justified.

Applying what is known from the Theory of Evolution and Chaos 
and Complexity Theory, I believe that we have a broad conceptual 
theory that explains why inter-species extrapolation of outcomes is 
problematic when such outcomes are not reducible to, or explained by, 
a level of organization where the system can be described in terms of a 
simple system.

The Ideal Model
The associate editor of the British Medical Journal, Alison Tonks 

stated in 2007: “When it comes to testing HIV vaccines, only humans 
will do” [212]. Nobel laureate Sydney Brenner was quoted in Nature 
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as quipping: “We don't have to look for model organisms anymore 
because we are the model organism” [213]. MacLennan and Amos 
anticipated this in 1990, declaring: “There is no doubt that the best test 
species for Man is man. This is based on the fact that it is not possible to 
directly extrapolate animal data to Man, due to interspecies variation in 
anatomy, physiology and biochemistry” [214]. Echoing Horrobin [215], 
Van Regenmortel affirms: “It remains true that human disease is best 
studied in human subjects” [180]. (Also see [216] ).

In the final analysis, if one wants to learn about human disease 
then he must study humans and HIV allows many such opportunities. 
Approximately 0.5% of all people infected with HIV do not succumb 
to the virus and approximately 3% are long-term non-progressors 
(LTNPs) [217]. This is a valuable population for learning more about 
the pathophysiology of HIV. In 2007, Hütter apparently cured AIDS 
with a bone marrow transplant that contained the ∆32 mutation in the 
gene coding for the CCR5 receptor [218,219]. Physicians desperately 
need a way to insert genes into patients. The antigenic structure of HIV-
1 has been described in detail and yet there is no vaccine. The belief that 
structural information will lead to a vaccine has proven unfounded. It 
should be recalled that science does not understand the mechanisms 
of many very successful interventions, drugs, and vaccines currently 
in use. Van Regenmortel has emphasized the importance of empirical-
based vaccine development and has advocated that immunogens should 
be empirically tested in small clinical trials [220-223]. Van Regenmortel 
states that the current emphasis on rational drug design: 

Denigrates the empirical approach in science and is highly 
misleading since modern science actually blossomed after the 17th 
century when empirical observations replaced the earlier reliance 
on scholastic and rational analysis for studying natural phenomena. 
The subsequent immense accumulation of scientific discoveries in 
the experimental sciences did not arise from deductive thinking and 
purposeful design but from the unpredictable outcomes of controlled 
experimental observations that mostly followed a trial and error 
approach [222].

Funding from the US government for AIDS research went from 
approximately $200 million in 1985 to billions in 2006 [224]. Much of 
this went to NHP models of HIV. If this money had gone to human-
based research the situation today might be different. Moreover, even if 
scientists develop a vaccine for HIV that tests well on NHPs and proves 
effective in humans, this will not be because the model was predictive 
but secondary to sheer brute force of trying many different vaccines. 
Even with such a success, the positive predictive value for the NHP 
model would still be dismal. Current medical research standards revolve 
around the Declaration of Helsinki and Nuremberg Code both of which 
demand animal testing before an intervention is tried in humans. While 
that idea was based on the best science of the mid 20th century, science 
has advanced much since that time.

Conclusion
The human body and immune system are examples of complex 

systems that vary over time. The immune system you have today 
is not identical to the one you were born with. Likewise, the human 
body in general also changes with time. These changes result in the 
manifestation of diseases that one would not have been susceptible 
to decades ago as well as in different responses to the same drug. For 
example, the same patient may require different anesthetic management 
because of changes resulting from aging or concomitant diseases. Thus, 
we see intra-individual differences. The next level of consideration 
would be intra-species, for example, the differences between men and 

women, or among ethnic groups, or between monozygotic twins in 
the form of different responses to drugs and disease. Here we see even 
more variation in response to perturbations such as drugs and disease. 
In reality, the differences in response to drugs are so profound that 
otherwise useful drugs are removed from the market because of adverse 
reactions in a very small percentage of the population. The allowable 
margin of error in medical science is so small that even intra-species 
prediction has not been completely successful. Finally, we come to the 
inter-species level of comparison where we have empirical evidence 
that interspecies differences are simply too great to expect even species 
as closely related to humans as NHPs are, to predict human responses 
to perturbations such as vaccines. 

All of the above is explained by the same set of scientific facts. 
All members of Animalia are living evolved complex systems. This 
means that the individual in question, regardless of species, is subject 
to the mechanisms of evolution and the results of the evolutionary 
process are subject to rules of complex systems. No two living complex 
systems have the same initial conditions and this alone allows us to 
predict dramatic differences in outcomes to perturbations. Other 
characteristics of complex systems such as the whole being greater 
than the sum of its parts, emergence, nonlinearity, and different levels 
of organization further jeopardize our ability to make predictions 
by extrapolating from one complex system to another. Complexity 
theory and evolutionary theory allow us to state with certainty that 
while one species may share traits with another, the first species will 
never be able to fulfill the criteria for being a predictive model for the 
second at levels of organization where disease and drugs act. I again 
note that occasional shared responses do not qualify a model as being 
predictive. Science, as well as serious scholarship, requires that words 
and concepts be used with utmost precision and not be changed merely 
to suit particular circumstances. No doubt, many NHP models have 
shared specific responses with humans to various drugs and diseases. 
However, medical science requires a positive predictive value so high 
that inter-species extrapolation simply cannot meet this requirement. 
NHP models of vaccine development will never be predictive and have 
a history of being misleading.

Our current use of animal models in HIV/AIDS vaccine 
development is similar to playing the lottery. Playing the lottery may 
result in wealth but winning is secondary to luck and is not science. 
We have relied on what is essentially random chance in developing 
an HIV/AIDS vaccine. Comparative studies will continue to inform 
about the differences among species and the evolution of traits, but they 
will not allow us to predict the effectiveness of a vaccine. It is time to 
acknowledge that the best science currently available demands a new 
approach. 
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