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Abstract
About 95% of multi-exonic genes express more than one mRNA and downstream proteins by alternative splicing 

(AS) through the inclusion or exclusion of specific exons. Although AS provides a significant advantage in human 
evolution by increasing proteomic diversity, deregulation of AS can result in various pathologic conditions. The 
androgen receptor (AR), encoded by AR gene, is a steroid receptor transcription factor which mediates the cellular 
functions of androgen. The AR-mediated androgen actions play important and dual roles in the human reproduction 
development and function. Dysregulation of AR will result in human infertility. Multiple AR alternative splicing variants 
have been identified in different pathologies conditions, including androgen insensitivity syndrome, which will cause 
male infertility. More recently, our group has identified two AR splice variants expressed in granulosa cells from patients 
with polycystic ovary syndrome, which is one of the most common causes of female infertility. All of the aforementioned 
indicate that androgen receptor alternative splicing may be an important pathogenic mechanism in human infertility. 
The purpose of this review is to summarize the various alternatively spliced AR variants that have been discovered, 
with a focus on their role and origin in the pathologies of the human infertility diseases, including polycystic ovary 
syndrome and androgen insensitivity syndrome. 
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Introduction
Alternative splicing (AS) is a process by which multiple different 

mRNAs and downstream proteins can be generated from one gene 
through the inclusion or exclusion of specific exons [1]. This process 
occurs in 95% of all multi-exonic genes [2] and provides a significant 
advantage in evolution by increasing proteomic diversity [3]. However, 
deregulation of this process may lead to inappropriate spliced mRNA, 
impaired proteins, and eventually to diseases. Indeed, disturbances of 
AS are frequently observed in different types of pathologic conditions, 
such as cancers [4], neurological disorders [5], and endocrine system 
diseases [6].

The androgen receptor (AR), encoded by AR gene, is a steroid 
receptor transcription factor that mediates the cellular functions of 
testosterone (T) and dihydrotestosterone (DHT). The AR gene is 
located at Xq12 and composed of 8 exons. As with other members of 
the nuclear receptor superfamily, the AR is characterized by a modular 
structure including four functional domains: an N-terminal domain 
(NTD), a DNA-binding domain (DBD), a hinge region, and a COOH-
terminal domain (CTD) [7,8] (Figure 1). The N-terminal domain, 
encoded by AR exon 1, is relatively long and poorly conserved displaying 
the most sequence variability by virtue of polymorphic (CAG)n and 
(GGN)n repeat units encoding polyglutamine and polyglycine tracts, 
respectively [9-11]. The AR NTD contains the major transactivation 
function of the AR, termed activation function 1 (AF-1). AF-1 harbors 
two trans-activating regions, transcriptional activation unit-1 (TAU-

1) and 5 (TAU-5), which is indispensable for AR activation [12]. The
DNA-binding domain, the most conserved region in the nuclear 
receptor family, contains two zinc fingers encoded by exon 2 and 
exon 3, respectively. The first zinc finger in the AR DBD determines 
the specificity of DNA recognition, which makes contact with major 
groove residues in an androgen-response element (ARE) half-site 
[13]. The second zinc finger is a dimerization interface that mediates 
binding with a neighboring AR molecule engaged with an adjacent 
ARE half-site [13]. The short flexible hinge region, encoded by exon 4, 
regulates DNA binding, nuclear translocation, and transactivation of 
the androgen receptor [14]. The AR COOH-terminal domain (CTD), 
encoded by exon 4-8, harbors the AR ligand-binding domain (LBD) 
and transcriptional activation function 2 (AF2) co-regulator binding 
interface [15-17]. The ligand-free AR is mainly located in the cytoplasm. 
The molecular chaperone complex, including Hsp90, other molecular 
chaperones, and high-molecular-weight immunophilins, is critical to 
maintain the ligand-free AR protein in a stable, inactive, intermediate 
configuration that has a high affinity for androgenic ligands. Androgen 
binding induces a 3-dimension structure change, including the Hsp90 
dissociate from AR, and the transformed AR undergoes dimerization, 
phosphorylation, and translocation to the nucleus, which is mediated 
by the nuclear localization (NLS) in the hinge region [18,19]. In the 
nuclear, the AR then recognized the tissue-specific AREs located 
in the promoter or enhancer region of AR target genes to enable the 
recruitment of an array of co-regulators and the general transcription 
machinery, thereby triggering the transcription of androgen-dependent 
genes.
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The AR-mediated androgen actions play key roles in the development 
and maintenance of male and female phenotype and reproduction 
function [20,21]. Given the complicated structure and the important 
function of each AR domain, it is not surprised that AR alternative 
splicing would affect the AR cellular signal and result in pathologic 
conditions. Numerous alternative spliced AR isoforms have been 
identified in different pathologic conditions including prostate cancer, 
Kennedy disease, androgen insensitivity syndrome (AIS) and so on [22-
24]. AIS is characterized by a variety of phenotypes ranging from male 
infertility to completely normal female external genitalia [23,25]. More 
recently, our group have identified two AR splice variants expressed in 
granulosa cells (GCs) from patients with polycystic ovary syndrome 
(PCOS), which is one of the most common causes of female infertility 
[26,27] The altered AR splicing patterns are strongly associated with 
hyperandrogenism and abnormal folliculogenesis in PCOS [26]. All of 
the aforementioned indicate that androgen receptor alternative splicing 
may be an important pathogenic mechanism in human infertility. In 
this review, we will summarize the various alternatively spliced AR 
variants that have been discovered, with a focus on their role and origin 
in the pathologies of the human infertility diseases, including PCOS 
and AIS.

Dual Roles of Androgen Receptor in Human Fertility
AR plays important roles in male spermatogenesis and fertility and 

has been well reviewed previously [28]. While in female reproduction, 
it remains to be illustrated. For decades, it has been believed that 
androgens and AR in women are associated with poor reproductive 
health and are dispensable or harmful in follicular development and 
ovulation induction [29-31]. In hypophysectomized immature female 
rats, single androgen injection could result in decreased ovarian weight, 
as androgen induced the development of follicular atresia and reduced 
the number of healthy follicles of all types [32]. Androgens could also 
block the antiatretogenic effect induced by estrogen, enhance follicle 
apoptotic DNA fragmentation, and stimulated cell apoptosis [33], 
probably via repressing Ca2+ oscillations in oocytes [34]. Moreover, 

androgen excess could prevent the oocyte from resuming meiotic 
activity [35]. Tesarik et al. demonstrated that androstenedione could 
inhibit estradiol-induced Ca2+ response of oocytes, which posed 
detrimental effects on oocyte maturation and developmental potential 
[34,36]. After in vitro DHT treatment, more follicular cells were 
arrested at gap I (GI) phase and few proceeded to DNA synthesis 
phase by decreasing the cyclin D2 expression [37]. More importantly, 
follicular androgen levels were negatively associated with oocyte 
maturity in human samples [38]. In addition, excess androgen impairs 
oocyte developmental competence. Prenatally exposure to androgens 
reduced the percentage of zygotes developing into blastocysts [39]. The 
most typical evidence came from PCOS. Most PCOS women (60-80%) 
suffer from hyperandrogenism [27] and ovary is the main source of the 
excessive circulating androgens. PCOS patients always encountered 
the high rate of oocyte immaturity and poor fertilization rate in spite 
of more oocytes retrieved during IVF [40]. Pregnancy was associated 
with the higher follicular fluid estradiol/ testosterone (E2/T) ratio and 
follicles with the decreased follicular fluid E2/T ratio or high T levels 
tended to come across implantation failure or cleavage failure in vitro 
[38,40-42]. After anti-androgenic therapy, the ovarian morphology of 
polycystic ovary for PCOS women was significantly ameliorated and 
ovulation was restored [43].

However, with the introduction of the Ar knockout (ARKO, Ar 
-/-) female mouse models and various in vitro studies, it is now widely 
accepted that androgens and AR also play irreplaceable roles in normal 
follicle development and female fertility. Androgen-AR signaling can 
affect follicular development by promoting pre-antral follicle growth 
and development into antral follicles while simultaneously preventing 
follicular atresia [44] .The ARKO mouse models, which mainly 
presented as loss of integrated AR protein or function, gave the most 
powerful evidence for the role of androgen and AR in normal ovarian 
physiology and function [45-47]. Although the ARKO female mice had 
normal ovarian and oviductal morphology, they showed considerable 
sub fertile with lower numbers of antral follicles, fewer corpora lutea, 

Figure 1: Structural organization of the AR gene and protein. The N-terminal transactivation domain (NTD), the first and second zinc fingers of DNA-binding domain 
(DBD), the hinge region and the COOH-terminal domain (CTD) of the AR protein were shown in green, dark blue, pink, light blue and orange, respectively. The exon 
numbers were shown in boxes and the colors of the exons were the same as the domain they encoded. TAU-1, Transcriptional Activation Unit-1; TAU-5, Transcriptional 
Activation Unit-1; LBD, Ligand-Binding Domain; AF2, Activation Function 2.
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and significantly higher rates of GCs apopotosis. And these mice 
finally presented as defective folliculogenesis and the development 
of premature ovarian failure. Further studies in GC-specific ARKO 
(GC-ARKO) mice and oocyte-specific ARKO (oocyte-ARKO) mice 
showed that the reproductive phenotypes of the GC-ARKO mice 
was the same as the global ARKO mice [48,49], whereas the oocyte-
ARKO had normal reproductive phenotype [48], indicating that the 
local androgen signals within GCs were critical regulators to normal 
follicular development and fertility in female mice. Different androgens, 
including T, androstenedione (A), and DHT, could stimulate ovarian 
follicle development in vitro [50-52]. Since some androgens (T and A), 
could be aromatized into corresponding estrogens (estradiol, estrone), 
it causes confusion to determine the precise molecular mechanisms 
causing the effect. Ovarian follicles of mouse cultured by androgen 
antibodied or AR antagonists presented arrested follicular growth 
during pre-antral phase, decreased proficiency of pre-antral to pre-
ovulatory follicles and reduced meiotic maturation rate [50,51]. These 
results sheded light on the direct stimulatory effect and essential role 
of AR in follicular maturation. Sen et al. [53] unveiled new molecular 
mechanisms of androgen-AR actions in follicular physiology. 
Androgens could enhance the expression of an antiapoptotic 
microRNA-125b (miR-125b), thereby contributing to AR-mediated 
follicular survival by pro-apoptotic protein expression suppression and 
follicular atresia inhibition. Meanwhile, androgens could up-regulate 
follicle-stimulating hormone receptor (FSHR) levels in a transcription-
independent way, thus sensitizing pre-antral follicles towards FSH 
actions and involving androgen-mediated follicle growth [53].

In general, the balance exists between essentiality of androgens 
in follicular development and their negative effects in androgen 
excess conditions, regulates women’s reproduction. Therefore, we 
strongly suggest the preventive strategy to rectify hyperandrogenism 
or deficiency of androgen/AR signaling to establish a beneficial 
environment for oocyte development and subsequent process.

AR Alternative Splicing in Polycystic Ovarian Syndrome
As mentioned above, polycystic ovary syndrome (PCOS), 

manifested with hormonal imbalance, is one of the most common 
endocrine disorders in women of reproductive age. PCOS affects nearly 
6-10% women worldwide in accordance with 1990 NIH criteria [54-
57] and the occurrence will dual or perhaps triple when using the 2003 
Rotterdam Consensus (ESHRE/ASRM criteria), which is the most 
prevalent diagnostic criteria all over the world [58,59]. According to 
Rotterdam Consensus, women with the presence of two of the three 
criteria: oligo- or anovulation, signs of clinical hyperandrogenism, 
and/or biochemical signs of hyperandrogenism and polycystic ovaries 
on ultrasonography after exclusion of specific identifiable disorders 
(congenital adrenal hyperplasia, androgen-secreting tumors, and 
Cushing’s syndrome) could be diagnosed as PCOS.

There have been attempts over 40 years to try and work out the 
etiology of the condition. The high degree of familial aggregation of 
PCOS suggests that genetic factor plays an important role in its etiology 
[60,61]. Increasing evidences indicate that epigenetic alterations, 
including aberrant DNA methylation, and environmental factors could 
also contribute to the development of PCOS [62,63]. Underlying the 
condition of PCOS is the belief that hyperandrogenism is fundamental 
to the pathophysiology and presentation of the condition [62,64]. Using 
mice model with exon 3 deleted mutant AR, the classical genomic AR 
action is verified to be critical for normal ovarian function. Haploin 
sufficiency for an inactivated AR may contribute to a premature 
reduction in female fecundity [65]. In human studies, the association 

of shorter CAG repeats of AR with PCOS suggests that inherited 
alteration in androgen sensitivity may contribute to PCOS [66]. 
Chinese individuals carrying the rs6152A AR allele had significantly 
higher susceptibility to polycystic ovary syndrome than those that were 
GG homozygotes [67]. All of these indicate that alterations in the AR 
singling pathway play an important role in PCOS.

Recently, our group have identified two AR splice variants in 
GCs from patients with PCOS [68]. As shown in figure 2A, these AR 
alternative splicing variants comprised an insertion of a 69-bp fragment 
of intron 2 (ins) and exon skipping of exon 3 (del), both of which have 
been identified in individuals with AIS or prostate cancer previously 
[23]. The AR splice variants were identified in ~62% of the enrolled 
PCOS women, and none of the non-PCOS women expressed either 
of the variants. The numbers of nucleotides on both exon 3 and the 
insertion fragment of intron 2 were a multiple of 3, thus alteration in 
both ins and del were in-frame and significantly affected the second 
finger of DBD of AR. The prediction of protein 3D structure of AR 
variants implied that ins and del changed the length of alpha-helix 
in the zinc finger domain. Inspection of clinical background of above 
patients suggested that AR splice variants are strongly correlated with 
hyperandrogenism and abnormal folliculogenesis. 

Further chromatin immunoprecipitation sequencing demonstrated 
that genomic-wide AR recruitment was remarkably reduced in 
GCs expressings or del. More interestingly, the binding sites of the 
two variants were not enriched for ARE motifs, and they had their 
characteristic genomic recruitment patterns and enriched motifs that 
the wild-type AR did not have. Consequently, the gene expression 
patterns were also significantly altered in GCs expressing ins or del. 
Combined with luciferase assays, the AR splice variants had attenuated 
nuclear shuttling and binding ability to the ARE of AR targeted genes. 
Specifically, we found that AR recruitment of the ins or del to the 
ARE site in the promoter of CYP19A1 (encoding aromatase, the rate 
limiting enzyme for the conversion of androgens into estrogens) was 
reduced compared to the wild-type AR, resulting in less transcription 
of CYP19A1, deficient aromatase expression and impaired androgen 
conversion to estrogens, thus contributing to hyperandrogenism (Figure 
2B). Meanwhile, the AR splice variants, especially the ins, appeared to 
promote the expression of CYP17A1 (encoding 17 α-hydroxylase which 
catalyzes A biosynthesis) more than the wild-type AR, thus resulting 
elevated A levels (Figure 2B). This was in accordance with higher 
serum and follicular levels of androstenedione in patients expressing 
the mutant variants. We are trying to propose that these effects in the 
ovary might favor more androgen production and therefore contribute 
to the phenotype of patients with PCOS.

The origin of these AR alternative splicing variant (ASVs) were 
still needed to be studied. Sequencing of the intron-exon junctions and 
approximately 100 bp of the flanking introns was used to detect DNA 
changes in the patients with the AR variants, as well as more than 100 
bp upstream sequence of the 69-bp insertion fragment. Unfortunately, 
no mutations were identified in the conserved regions. Nevertheless, 
one PCOS patient with ins was heterozygous for one single nucleotide 
in the 69-bp intron fragment of genomic DNA. The variant band was 
only produced from one of the two alleles of the patient, while the 
origin of the WT band is still unknown. SNP is reported to influences 
the presence or absence of splicing regulator, which are important 
in alternative splicing [69]. As rs6152G/A polymorphism in exon 1 
is associated with susceptibility to PCOS in Chinese women [67], 
we screened this SNP in peripheral lymphocytes for all the patients. 
However, all the patients in both group carried the same G/G genotype. 
Epigenetic modifications, such as DNA differential methylation at 
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Figure 2: AR alternative splice variants (ASVs) and its roles in polycystic ovary syndrome. (A) Schematic diagram of AR ASVs and their predicted translation proteins. 
The ivs2 (red) represents the 69-bp insertion in intron 2 in the mRNA and its translation in the protein. (B) Schematic diagram of the roles of AR alternative splicing 
variants in granulosa cells (GCs) in the context of hyperandrogenism and abnormal follicular development. The AR ins or del reduced the CYP19A1 expression 
resulting in impaired androgen (T, testosterone; A, androstenedione) conversion to estrogens (E1, estrone; E2, estradiol) and increased the CYP17A1 expression 
resulting elevated A levels, thus contributing to hyperandrogenism. Green (downward) and Red (upward) triangles denote decreases and increases, respectively. The 
dihydrotestosterone (DHT) induced genome-wide recruitment pattern of AR ASVs (ins/del) were reduced comparing to the wild type (WT) AR. The color of AR domains 
shown in this schematic diagram was the same as in Figure1.
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exon-intron boundaries, which altered the binding ability to splicing-
regulatory proteins, also have a role in alternatively splicing regulation 
[70]. We analyzed the methylation status of individual DNA strands 
of exon 3 and its flanking region of AR including 11 CpG sites for 
individuals with different AR splicing patterns by bisulfite genomic 
sequencing PCR. Differential methylation of two CpG sites were 
observed at intron 2 and exon 3 junction in PCOS individuals with 
ins, suggesting the possibility that the ins isoform may be the result 
of altered DNA methylation. Nevertheless, it is still promising that 
epigenetic modifications in transacting factor machinery could result 
in AR alternative splicing in PCOS women.

Overall, we identified AR splice variants from women with PCOS 
for the first time, and found the mutant AR also had gained functions 
that different from the wild-type AR. The findings considerably change 
our understanding of the role of mRNA splicing, a major component of 
epigenetic modifications, in the pathogenesis of PCOS.

AR Alternative Splicing in Androgen Insensitivity 
Syndrome

Androgen insensitivity syndrome (AIS, OMIM 300068/312300) 
is an X-linked recessive mendelian disease caused by mutations in 
the androgen receptor (AR) gene, though also mutations in the AR 
interaction genes have been suggested [71,72]. Affected patients with 
AIS usually have a male 46, XY karyotype and undescended testes which 
produce age-related androgen levels but present with female external 
genitalia due to defects of androgen action in end-organ [73]. The 
phenotypic spectrum ranges from phenotypic females to an infertile 
males. Depending on the type and localization of AR mutations, AIS is 
clinically sub-classified into three groups: complete AIS (CAIS), partial 
AIS (PAIS), and mild type (MAIS) [73-75].

CAIS is the typical form of AIS characterized by a completely female 
appearance of the external genitalia but internal female genitalia are 
absent. The CAIS patients present primary amenorrhea in an adolescent 
female, and inguinal hernia or labial swelling containing testes in 
infancy or childhood [71]. The estimated incidence of CAIS is between 
1/20,400 and 1/99,100 genetic males based upon proven molecular 
diagnosis [76]. Distinct from CAIS, PAIS is characterized by varying 
degrees of masculinisation of the external genitalia with normal testis 
development and partial responsiveness to age-appropriate levels of 
androgens [73]; while the MAIS usually have typical male genitalia but 
present gynaecomastia at puberty or male factor infertility at adult [73].

The Androgen Receptor Gene Mutations Database (ARDB) (http://
androgendb.mcgill.ca) now contains over 500 different AR mutations 
causing AIS [77]. The ligand binding domain (LBD) is the mutation 
hotspot containing about 20% of all mutations, although the N-terminal 
transactivation domain is the largest AR domain [78,79]. About two 
thirds of these mutations are inherited in an X-linked pattern; the 
remainders are either germline or somatic de novo mutations [72]. The 
most frequent AR pathogenic mutation are point mutations leading 
to an amino acid substitutions in the protein structure. Loss-of-
function mutations of the AR gene due to exons deletions or premature 
termination codon (PTC) generating mutations usually lead to CAIS, 
while splicing mutations can result in diverse phenotypes that are 
generally hard to predict. Notably, most splice-junction mutations 
identified to date are associated with CAIS/PAIS phenotype, although 
mutations in AR can lead to other diseases [80]. To date, 20 splice 
mutations accounting for AIS have been documented in the AR gene 
(Table 1) [77,81].

AR Alternative Splicing at the Splice Donor Site
Ris-Stalpers et al. [82] firstly reported the AR c.2173+1G>T 

Phenotype AR splicing mutation1,2 Exon / Intron Reference
AR mutation in splicing donor site
CAIS c.1616+2_1616+3insT exon 1 / intron 1 Trifiro et al. [95]
CAIS c.1616+5G>C exon 1 / intron 1 Philibert et al. [96]
CAIS c.1768+1G>A exon 2 / intron 2 Hellwinkel et al. [97]; Hiort et al. [98]
CAIS c.1885+1G>A exon 3 / intron 3 Ahmed et al. [70]
CAIS c.2173+1G>T exon 4 / intron 4 Ris-Stalpers et al. [81]
CAIS c.2318+1G>A exon 5 / intron 5 Vasu et al. [77]
CAIS c.2449+3A>T exon 6 / intron 6 Trifiro et al. [95]; Pinsky et al. [99] 
CAIS c.2449+5G>C exon 6 / intron 6 Chávez et al. [82]
PAIS c.2449+5G>T exon 6 / intron 6 Sammarco et al. [83]
CAIS c.2607+1G>A exon 7 / intron 7 Lim et al. [100]; Kohler et al. [101]; Yong et al. [102]
CAIS c.2607+1G>T exon 7 / intron 7 Choi et al. [103]
AR mutation in splicing acceptor site
CAIS c.1769-1G>A intron 2 / exon 3 Jaaskelainen et al. [78]
CAIS c.1769-2A>C intron 2 / exon 3 Audi et al. [104]
CAIS c.1769-3C>G intron 2 / exon 3 Audi et al. [104]; Gannage-Yared et al. [105]
PAIS c.1769-11T>A intron 2 / exon 3 Bruggenwirth et al. [86]
CAIS c.1886-1G>T intron 3 / exon 4 Avila et al. [106]
PAIS c.1886-60G>A intron 3 / exon 4 Melo et al. [107]
CAIS c.2319-1G>T intron 5 / exon 6 Zhang et al. [108]
CAIS c.2450-44G>A intron 6 / exon 7 Audi et al. [104]
AR splicing mutation in coding region
PAIS c.2667C>T exon 8 Hellwinkel et al. [90]; Chávez et al. [82]

1 The nucleotide numbering system is based on AR reference sequence NM_000044.2.
2 Mutation descriptions are using the HGVS standard nomenclature.
Table 1: AR splicing mutations related to AIS phenotype include in the Androgen Receptor Gene Mutations Database (ARDB) and the Human Gene Mutation Database 
(HGMD).
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mutation in the splice donor site of intron 4 in a CAIS patient and 
describe the consequences in detail. This mutation was indicated to 
induce aberrant RNA splicing at the exon 4 / intron 4 boundary by 
use of a cryptic splice donor site in exon 4, which lead to an in-frame 
deletion of 123 nucleotides from the mRNA and deletion of 41 amino 
acid (p.684_724del) in the steroid-binding domain of the AR protein. 
The mutated receptor was unable to bind androgens and did not activate 
transcription of an androgen-regulated reporter gene construct [82].

Similarly, Chávez et al. [83] described a de novo AR splicing donor 
site mutation (c.2449+5G>C) at exon 6 / intron 6 boundary associated 
with a CAIS phenotype with total absence of androgen binding. The 
c.2449+5G>C mutation could prevent the normal splicing of intron 6 
in the mature transcript. As a consequence, a PTC within the unsliced 
intron 6 could give rise to a truncated protein lacking part of the AR 
LBD. Interestingly, a different c.2449+5G>T mutation at the same 
position had also been reported in a PAIS XY girl [84]. The c.2449+5G>T 
mutation lead to intron 6 retention in most of the AR mRNAs; as a 
result, most of the expressed protein lacks part of the C-terminal LBD, 
and a low level of full-length AR is also observed. The presence of full-
length AR suggests that the primary transcript can be partially spliced 
correctly even in the presence of the c.2449+5G>T mutation, probably 
explaining the PAIS phenotype of the patient.

AR Alternative Splicing at the Splice Acceptor Site
Even though most of the AR splicing mutations occurred in the 

splicing donor sites [78], mutations in splicing acceptor sites that lead 
to CAIS/PAIS had also been reported. Jaaskelainen et al. [79] performed 
AR mutation analysis and cDNA sequencing in CAIS patients and 
identified a mutation occurred in the intron 2 acceptor splice site 
(c.1769-1G>A). The mutation was shown to lead to an insertion of 
69 nucleotides (c.1768_1769ins1769-69_1769-1) between exon 2 and 
exon 3, exactly the same as the AR insert variant identified in PCOS 
[68] and prostatic cancer [85,86]. This phenomenon can be explained 
by the activation of cryptic splice site located 71/70-bp upstream of 
exon 3 [87]. The 69 nucleotides insertion in mRNA was predicted to in-
frame and would lead to a substitution p.Gly590Glu combined with an 
insertion of 23 amino acids. Further androgen binding assay suggested 
the C-terminal LBD of the AR protein maintains ligand binding ability. 
However, the 23 amino acids insertion located between the two zinc 
fingers of the AR DNA binding domain (DBD) can impair the binding 
of the mutated AR with the androgen response element of target genes 
[87,88].

The 69 nucleotides insert transcript had also been reported in 
an unusual type of intronic mutation (c.1769-11T>A) in a PAIS 
pedigree comprised 3 patients [87]. The c.1769-11T>A mutation 
located in the pyrimidine-rich consensus sequence upstream of 
the splicing acceptor site at the intron 2/exon 3 boundary. cDNA 
analysis revealed aberrant splicing involved the 69 nucleotides insert 
(c.1768_1769ins1769-69_1769-1) between exon 2 and exon 3. In 
addition, a low level of the other aberrant transcript with exon 3 
skipping and a very small amount of wild-type transcript were detected. 
These different types of transcripts might contribute to the patients 
PAIS phenotype.

AR Alternative Splicing Caused By Coding Region 
Mutation

Point mutations in the coding regions are commonly studied for 
their pathological functions through altered amino acid sequences. 
However, approximately 50% of all point mutations responsible for 
genetic diseases result in aberrant pre-mRNA splicing [89,90]. An 

presumably synonymous mutation (c.2667C>T; p.Ser889Ser) in 
exon 8 of the AR gene had been reported in PAIS patients [83,91]. 
The mutation led to a shorten transcript by intraexonic splicing, 
which merges a downstream 3’-UTR-region to codon 887, removing 
the internal sequence [91]. Consequently, the translation product 
consists of 8 missense amino acids from codon 888 followed by a PTC 
(p.Val888Ilefs*9). As expected, the androgen-binding property and the 
androgen-induced transcriptional activity were defective.

Conclusion and Perspective
In the condition that the  AR  gene includes some cryptic exons 

and long intron regions, it can be anticipated that more AR alteration 
splicing variants will be identified in different pathologic conditions 
as well as in different cells and tissues. A key question related to the 
AR alternative splicing variants is the mechanisms by which they 
control this process and how these splicing variants lead to diseases. 
Up to date, the origins of these AR alternative splicing variants were 
quite controversial. At least four potential mechanisms underlying 
generation of the AR alternative splicing forms were proposed, 
including alternative translation start codons, proteolysis cleavage, 
premature stop codon resulted from mutation, and alternative 
transcription start site [92,93]. However, the naturally occurred AR 
alternative splicing isoform, AR45, which expressed in various kinds 
of normal tissues including heart, muscle, uterus, prostate, and breast, 
indicates that there may be normal regulation systems attribute to AR 
alternative splicing. This hypothesis is also supported by recent studies 
that truncated AR isoform, AR-V7 which consisted of AR exons 1/2/3/
CE3, can also been found in normal prostate tissues, demonstrating the 
splicing can occur naturally and non-pathologically. The alternative 
splicing variants identified in AIS indicated that the changes in the DNA 
sequence may be an important mechanisms related to AR alternative 
splicing. Indeed, some studies found that the copy numbers of the 
cryptic exon regions in the AR gene were increased in various prostate 
cancer cell lines [94,95]. However, no genomic mutation in the AR gene 
were identified in PCOS individuals harboring AS ins or del variants, 
although the same splicing variants were also found in AIS caused by 
a T/A mutation 11 bp upstream of exon 3 [87]. Moreover, our result 
suggested that altered DNA methylation may play an important role in 
splicing regulation [26,70]. The rapid development of molecular genetic 
testing technology, such as next generation sequencing, methylation 
sequencing and copy number variation detection in the whole genome 
level, will greatly facilitate the mechanism study of alternative splicing 
and new diagnostic and therapeutic approaches may be proposed based 
on the detailed characterization of this process.
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