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Introduction
It is of paramount importance to find alternative energy type 

so as to replenish the decreasing fossil energy. Biofuel is currently 
recognized as one of the promising options to replace traditional fossil 
fuel [1]. Cellulosic biofuel, which generates biofuel from a wide array 
of feedstock, has attracted a lot of attention mainly because the sources 
are inexpensive and plentiful while its production is environmentally 
benign [2]. However, the technology that converts cellulose to 
bioethanol is at a stage that is far from commercialization. At present, 
only 40% energy in breweries can be converted to ethanol [3]. 
Therefore, improvement in cellulosic bioethanol technology is critical 
and urgent. In terms of the configurations during enzyme hydrolysis 
and sugar fermentation, traditional bioethanol processes contain 
Simultaneous Saccharification and Fermentation (SSF) and Separate 
Hydrolysis and Fermentation (SHF) [4]. Although SSF was proved to 
give a 13% higher overall ethanol yield than SHF [4], the high cost of 
enzymes used in cellulosic hydrolysis makes bioethanol uncompetitive 
to the traditional fossil fuel. Consolidated BioProcessing (CBP), which 
features cellulase production, cellulose hydrolysis and fermentation in 
one step, is viewed as the most promising way to convert cellulose to 
bioethanol at a minimum cost [5].

Microorganisms that can be applied in CBP are not yet available. 
Currently, the combination of a cellulolytic strain of Clostridium 
species and a saccharolytic strain of Thermoanaerobacter species which 
can produce cellulosic ethanol at high temperature (around 60°C) 
without the consumption of oxygen, provides an efficient means to 
rapidly convert cellulose to ethanol by CBP technology [5,6]. A number 
of thermophilic ethanolgenic anaerobes have been isolated from all 
over the world in recent years [7-9]. Those organisms exhibit some 
attractive properties such as: viable substrate utilization, high ethanol 
productivity, anaerobiosis and tolerance to high temperature (around 
60°C) [10-12]. Despite the importance of thermophilic bacteria of the 
genus Thermoanaerobacter spp. in bioenergy production, the ethanol 
production abilities of these bacteria and the intracellular mechanisms 

that stimulate or inhibit ethanol yields were rarely investigated in full 
detail except for the microorganism T. ethanolicus JW200 [13,14]. 
However, it was illustrated that T. ethanolicus JW200 produced 
ethanol as the major product only at substrate concentrations below 
1.0% [15], which prevents its universal industrialization. In contrast, 
Thermoanaerobacter sp. X514, which was discovered as a metal-
reducing thermophilic anaerobe [16] can ferment pentose and 
hexose to produce ethanol simultaneously. Research work on X514 
is quite sparse with only a few references available as in [17-19]. In 
[19], 13C labeled tracer experiments were applied to study the central 
metabolism of X514. These studies focused on obtaining only partial 
flux ratios for the central metabolic pathway of X514. A thorough 
metabolic flux analysis of X514 is, therefore, necessary so as to provide 
detailed information about the intracellular pathways of X514. The case 
where multiple substrates are utilized simultaneously by X514 needs 
addressing especially since the central metabolic flux directions and 
magnitudes delineate the intracellular reaction activities and convey 
fundamental information about the overall metabolic system.

Metabolic Flux Analysis (MFA) has long been viewed as a common 
approach in metabolic systems analysis of microorganisms [20-
22]. Software for MFA, for example, MetaFluxNet [23] and FiatFlux 
[24], are also freely available to researchers. However, standard MFA 
approaches, which act by formulating a user-defined cost function 
based upon a few constraints, are often questioned due to their prior 
assumption about the optimization target of the metabolic system of 
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Abstract
Thermoanaerobacter sp. X514, capable of fermenting most hexose and pentose to produce ethanol, is of critical 

importance in industrial bioethanol production. This paper provides a detailed investigation of the intracellular metabolic 
flux flowing activities of X514 under different conditions, including sole glucose substrate condition, sole xylose substrate 
condition and mixed glucose and xylose substrates condition by means of Gibbs sampling algorithm and stoichiometric 
metabolic flux balances. Statistical analysis of the results show that all the flux distributions exhibit Gaussian or truncated 
Gaussian distributions under the assumption that noise of the system is Gaussian distribution. Pentose phosphate 
pathway becomes more active when xylose is the sole substrate whereas glycolysis pool is more active under sole 
glucose substrate condition. Major changes of the fluxes activities occur in the connection flux between glycolysis pool 
and pentose phosphate metabolite pool, indicating the balances between the need for NADPH, the requirement of ATP 
as well as the necessity of pyruvate under different substrate conditions. Generation of pyruvate reaches its maximum 
when sole glucose is fed into the system, indicating the preference of the system on glucose consumption. The whole 
metabolic flux distributions illustrate vivid information about the central metabolic map of X514. 
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any microorganism. In this paper, without any specified cost function, 
one special form of Markov Chain Monte Carlo (MCMC) algorithm, 
Gibbs sampling [25], is applied to the metabolic flux quantification of 
X514. Though MCMC has been applied in metabolic flux estimation 
based upon 13C fractional enrichment data [26], none of similar 
approaches has been applied in MFA without extra carbon labeling 
constraints. In this paper, without resorting to any optimization 
assumption about the metabolic system of X514 and by utilizing 
prior knowledge of the metabolic network and measured data, the 
paper reveals that Gibbs sampling is able to provide intracellular 
flux distributions with least constraints about the system. The results 
show that the flux distributions of X514 exhibit Gaussian or truncated 
Gaussian formats under different substrate conditions and constraints, 
which proves that utilizing a single optimized estimation to represent 
the corresponding flux without considering its sample distributions 
might be misleading. The connection flux between glycolysis pool and 
pentose phosphate metabolite pool and the pyruvate-generating fluxes 
experience major change under different substrate conditions, pointing 
out future metabolic engineering direction of X514. 

The paper is organized as follows: the experiment setup and 
measurement are described in Section 2. Section 3 presents the Gibbs 

sampling algorithm. Section 4 illustrates the outcomes of the presented 
algorithm. Section 5 provides discussions and future prospects of the 
work.

Materials and Methods 
Strains and media

X514 (ATCC BAA-938) was received from Institute for 
Environmental Genomics, University of Oklahoma, United States. 
Central metabolic map of X514 is shown in Figure 1. X514 was incubated 
under a N2 (99.99%) headspace in a flask in the mineral medium 
which is a modified version of the one used for Thermoanaerobacter 
pseudoethanolicus ATCC 33223 by Wiegel [27] at 60°C. The mineral 
medium contains (per litre of distilled water) 4.2 g Na2HPO4∙12H2O, 
1.5 g KH2 PO4 , 1.0 g NH4Cl, 0.2 g MgCl2∙6H2O, 10.0 ml Wolfe’s mineral 
solution [28] and 1.0 ml 0.1% (m/v) resazurin. The mineral medium 
was autoclaved for 20 minutes at 115°C. Reducing agents which were 
composed of 5 g/l Na2S2O4 and 3 g/l NaHCO3 were injected into the 
medium by a syringe after the basal medium was sterilized and cooled 
to room temperature. In sole substrate condition, 2.0 g/l of glucose or 
xylose was injected into the mineral medium, whereas in the multiple 
substrate condition, 1.0 g/l glucose and 1.0 g/l xylose were injected into 
the mineral medium. All chemicals were purchased from Amresoco 
(USA), USB (USA), Sigma (USA) or Sinopharm (China) with high 
purity [29].

Analytical methods

X514 was sampled firstly at 12 hours, then the samples were taken 
every 8 hours until 68 hours and the last sample was taken at 84 hours. 
The Optical Density (OD) was measured by Cary 50 spectrophotometer 
(Varian, USA) at the wavelength of 600 nm and calibrated to Cell Dry 
Weight (CDW). The relationship between OD and CDW is illustrated 
in Figure 2 (plot F). Concentrations of the substrates, glucose and 
xylose, and the two main products, acetate and lactate, were measured 
by ionic chromatography ics-3000 (Dionex, USA). Concentrations 
of ethanol were measured by Megazyme Enzyme Kit (Megazyme, 
Ireland). All experiments were performed in triplicate cultures.

Extracellular flux quantification

Assuming that the cell has exponential growth with a constant 
growth rate µ, according to the mass balance condition, the cell mass  
X , the substrate concentration sC  and the product concentration pC  

at time t satisfy the following equations [30]:
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where sv  and pv  are substrate consumption rate and product 
formation rate, respectively. From equation (1), it can then be derived 
that:

( ) (0)exp( )=X t X tµ                   (2)

where (0)X  is initial cell mass. Replacing ( )X t  in equation (1) by 
equation (2) and integrating,
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Figure 1: Central metabolic pathway map of X514, where the biomass com-
position in [29] is used here for brevity. Abbreviations: G6P: Glucose 6-phos-
phate; F6P: Fructose 6-phosphate; GAP: Glyceraldehyde phosphate; 3PG:3-
Phosphoglycerate; 6PG: 6-Phosphogluconate; P5P: Pentose Phosphate; 
S7P: Sedoheptulose-7-phosphate; E4P: Erythrose-4-phosphate; PEP: Phos-
phoenol pyruvate; PYR: Pyruvate; MAL: Malate; OAA: Oxaloacetate; CIT: Ci-
trate; ICIT: Isocitrate; AKG: α-ketoglutarate; AcCoA: Acetyl-CoA.
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where sc  and pc  are constants. The extracellular fluxes sv  and pv can 

then be estimated by linear regression plots of ( )sC t , ( )X t  and ( )pC t , 
( )X t , respectively.

Gibbs sampling algorithm for metabolic flux distribution 
analysis

Based on the assumption that the metabolic system is on a quasi-
steady state, the following relationship holds [31]

=Sv d                        (3)

where ×∈ m nS R  is the stoichiometric matrix, ∈ nv R are fluxes, 
including intracellular and extracellular fluxes, ∈ md R  is a column 
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Figure 2: The measured concentrations of glucose (A), xylose (B), ethanol (C), acetate (D) and lactate (E) under various substrate conditions and the 
linear regression between OD600 and CDW (F).
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vector whose elements are the flux quantities when the corresponding 
rows in S  involve extracellular fluxes, or zero otherwise. m is the number 
of metabolites in the metabolic system studied and n is the number of 
fluxes involved in these reactions between different metabolites.

Considering the noise associated with the measured quantities and 
the possibility of unknown pathways existing in the studied metabolic 
system, equation (3) can be modified to include uncertain terms as,

+ =Sv w d                       (4)

where the noise w is assumed to be Gaussian distribution with mean 0 
and variance ×Σ∈ m mR , i.e. w~N(0, Σ). According to Bayes theorem, 
the posterior distribution of v , ( )vπ  is then,

( ) ( | ) ( | ) ( )= ∝v p v d p d v prior vπ                         (5)

and the likelihood distribution ( | )p d v  can be derived from equation 
(4):
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The prior distribution of v , ( )prior v , involves the upper and 
lower constraints of these quantities and expert knowledge about 
specified fluxes, for example, the bidirectionality or unidirectionality 
of a reaction, which can be formulated by the expression ≥Uv f . Here 

×∈ l nU R  is a matrix specified values of 1 or -1 when the corresponding 
flux has lower or upper constraints, and 0, otherwise. l is the number 
of constraints and f is the vector containing all the corresponding 
constraints. ( )prior v  can then be expressed as,

(v) (Uv f )= Φ −prior                    (7)   

where  ( )Φ ⋅  is the Heaviside function taking the value of 1 when ≥Uv f
, and vanishing otherwise. Incorporating prior distribution in equation 
(7) and the likelihood distribution in equation (6) into equation (5), the 
posterior distribution of   can then be formulated as,
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Due to the fact that it is difficult to sample from ( )vπ  directly, 
Gibbs sampling is adopted here to generate statistical samples from 

( )vπ . Gibbs sampling works by generating samples from the full 
conditional distribution of each component iv  in v , and accepts 
these samples unconditionally [32]. Taking the stoichiometric matrix 

[ ]− += i i iS S S S , where −iS  is the matrix or vector composed of the 1st 

to ( 1)− thi  column of the matrix S, Si is the ith  column of S, Si+ is the 

matrix or vector with ( 1)− thi  column to the last column of the matrix S, 

respectively. And the vector [ ]− += T
i i iv v v v , where  −iv , iv  and +iv   

represent the 1st to ( 1)− thi , ith and ( 1)− thi  to the last item of the vector 
v, respectively, so that,
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and  ( )iprior v  is the constraint information of the ith flux, iv . Conditional 

distribution of  iv  is then a (truncated) Gaussian distribution with 

mean iµ  and variance Σi . The Gibbs sampling algorithm used to 
generate a Markov Chain for the flux v is described in Table 1, where 
the maximum iteration is set as 10,000 by trials.

In order to test the convergence of the generated Markov Chains, 
three chains are generated by Gibbs sampling algorithm with random 
initial fluxes, simultaneously. Convergence of the chains with the burn-
in period removed is examined by comparing the variances between 
chains, bφ , and the variances within each chain, wφ  [33]. Assuming 

that the variance for the ith chain with j samples is ijφ , then the average 

of the variances within each chain iφ  and the average of the variances 

between all the chains φ  are, 
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As the simulation converges, Q should be decreasing and be close 
to 1. In the paper, an empirical threshold of 1.5 is taken, as a measure 
of the convergence. So that when the estimated Q is lower than 1.5, it is 
deemed that the chains have converged.

Results
Measured concentrations of the substrates and the products for sole 

glucose condition, sole xylose condition and mixed glucose and xylose 
condition are shown in Figure 2. By exponential fitting of the growth 
curve of X514, and linear regression between the concentrations of 
substrates and CDW, as well as the concentrations of products and 
CDW, extracellular fluxes are estimated and shown in Table 2. It is 

MaxIter = 10,000;
Initialize the flux v(0) with random value generator;
for k = 1:MaxIter
v(k) = v(k -1);
for l = 1:n

Calculate lµ  and Σl  according to equation (10);
Generate the sample θ from the Gaussian distribution

( , )Σl lN µ within the constraint ( )Φ ⋅ ;

Update ( )lv k  with the sample θ, ( )lv k ;
end
end

Table 1: Basic procedure for Gibbs sampling algorithm.
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Substrate (mmol/g) Glucose Xylose Mixed 
vglucose 6.43 0 3.96
vxylose 0 5.01 2.44
vethanol 5.42 4.41 5.6
vlactate 2.42 2.56 2.2
vacetate 1.45 1.15 1.64

Table 2: Estimated fluxes for the substrates and products under glucose, xylose 
and mixed substrates conditions.

then clear that the consumption rates for glucose and xylose under 
sole substrate condition are both much faster than their rates in the 
mixed substrate condition, whereas the generation rates of the three 
major products are pretty much the same in all the three cases, and the 
productions rates of lactate are always faster than that of acetate.

Gibbs sampling is applied to estimate the flux distributions of X514. 
The source code is implemented in Matlab (MathWorks). Considering 
the measurement noise nature and existence of unknown pathways in 
the metabolic system, the system variance matrix Σ is assumed to be 
a diagonal matrix with unique value 1 on the diagonal. The selection 
of a diagonal matrix as the variance matrix indicates that interactive 
disturbances between metabolites are ignored and each metabolite is 
freely active in the reaction pool. And the specified value for system 
variance represents the magnitude of the disturbance of unknown 
metabolic pathways to metabolic reactions. All fluxes are assumed 
unidirectional except the fluxes in the TCA cycle, pentose phosphate 
metabolite pool, and the flux G6P→F6P. G6P→6PG and 6PG→P5P+CO2 
are assumed to be unidirectional under all cases, thanks to the fact 
that NADPH, most of which has to be generated from the reaction, is 
required during the whole cell life cycle. The flux G6P→F6P is assumed 
in reversed direction under sole xylose substrate condition, due to the 
requirement of NADPH generated in its neighbor reaction G6P→6PG. 
Under mixed substrates condition, the same reaction is assumed 
flowing from G6P→F6P, based upon the fact that glucose consumption 
is normally in priority position in mixed glucose and xylose substrates 
condition. Maximum constraints for the fluxes are set as 50 or 0 and the 
lower constraints for the fluxes are set as 0 or -50 depending on their 
unidirectionality or bidirectionality characteristics. From paper [19], 
it is proved that under glucose substrate condition, the flux split ratio 
between G6P→6PG is less than 3%, the flux for this reaction is then set 
as 3% of the original glucose uptake rate under sole glucose substrate 
condition. 

With available extracellular flux data shown in Table 2, distributions 
of the intracellular fluxes and extracellular fluxes are estimated and 
illustrated in Figure 3 and 4, respectively. Convergence of Gibbs 
sampling algorithm is tested by running three chains simultaneously 
with random starting values. The parameter Q (Materials and 
Methods) is calculated and compared to prespecified threshold, 1.5, 
during the simulation to ensure convergences of these chains. Mean of 
the samples of flux v2 of the three chains in 10,000 runs under glucose 
substrate condition is taken as an example and illustrated in Figure 5. 
It is clear that the three chains have eventually converged to the same 
value. 

In order to justify the intracellular flux estimation results obtained 
by using Gibbs sampling approach, common Flux Balance Analysis 
(FBA) method is applied to quantify the intracellular fluxes of X514 
with the same constraints and the objective of maximizing biomass 
synthesis. The Matlab program linprog is used to get the optimization 
results. Comparisons of the estimation results from FBA and the mean 
estimation results from Gibbs sampling of intracellular fluxes under 

different substrate conditions are shown in Figure 6. It is obvious that 
the two results match closely. However, FBA method alone has to rely on 
predefined objective function and can only provide single estimations 
of the intracellular fluxes, whereas Gibbs sampling approach is able to 
provide the distributions of all intracellular fluxes without accounting 
on any assumptions of system preferences.

From the Gibbs sampling results, it is clear that all the fluxes 
exhibit Gaussian or truncated Gaussian distribution formats, where the 
truncations obviously originate from the prior constraints information 
imposed on these fluxes. Thorough comparison of the flux distributions 
and their statistical information under various substrate conditions 
indicate that the flux G6P→F6P experiences critical changes under 
these conditions. Mean of the reaction flux reaches its maximum under 
glucose substrate condition, whereas under mixed substrate condition, 
its mean value is in-between that of the other two conditions, indicating 
the variation of the active degree of the glycolysis pool under different 
substrate conditions. The mean values of the reactions G6P→6PG 
and 6PG→P5P+CO2, which are the major link reactions between the 
glycolysis pool and pentose phosphate pathway, increase gradually 
from the glucose substrate condition to xylose substrate condition and 
mixed substrates condition, implying the requirement for NADPH 
becomes much more intense along with the import of xylose into the 
metabolic system. Generation of pyruvate from glycolysis pathways is 
at its maximum when glucose is adopted as the sole substrate, whereas 
this value is gradually decreasing under the mixed substrate condition 
and sole xylose substrate condition, implying the system’s priority on 
glucose consumption. The pentose phosphate metabolite pool is much 
more active when xylose is used as the sole substrate. The flux leading to 
TCA cycle, i.e. PYR→MAL, is quite small under all the three conditions. 
The reactions in the TCA cycle are much stable and the changes are 
negligible compared to these reactions in the other two metabolic 
pools. With the aim of maximizing ethanol yield, sole glucose substrate 
seems still the best candidate for bioethanol generation compared to 
sole xylose substrate condition and mixed glucose and xylose substrates 
condition (Table 3).

The importance of prior constraints on metabolic flux distributions 
is illustrated in Figure 7, where the posterior flux distribution of the 
flux G6P→6PG under sole glucose substrate condition with or without 
the unidirectional prior constraint on it is compared. It is clear that 
the prior constraint information significantly affect the mean and the 
variance of the flux. Compared to standard MFA which can only provide 
an optimized estimation of intracellular metabolic fluxes based upon 
a user-defined objective function, MFA by means of Gibbs sampling 
can incorporate the prior constraints and generate the posterior 
statistical formats of these fluxes, which are more comprehensive and 
straightforward.    

Discussion
Simple estimation of intracellular fluxes by traditional metabolic flux 

analysis approaches is often insufficient to provide critical information 
about a metabolic system. Contrary to standard MFA, which has to 
rely on system constraints and user-defined cost function to obtain an 
optimum solution of intracellular fluxes, in this paper, Gibbs sampling 
is applied to metabolic flux quantification. Without resorting to any 
objective function, the distributions of the intracellular fluxes are 
generated by means of deliberately constructed Markov Chains. Not 
only do the distributions provide means and variances of intracellular 
fluxes, but they also illustrate statistical formats of the estimations. 
The Gaussian or truncated Gaussian formats of these intracellular flux 
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Figure 3: Intracellular flux distributions of X514 under different substrates, where the horizontal labels represent different substrate condition. The black vertical 
lines are estimated mean of the intracellular flux distributions and the title of each plot represents the corresponding reaction.
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Figure 4: Extracellular flux distributions of X514 under different substrates, where the horizontal labels represent different substrate condition. The black verti-
cal lines are estimated mean of the intracellular flux distributions and the title of each plot represents the corresponding reaction.

distributions address the importance of taking sample distributions 
into account during metabolic system analysis, as is the missing part in 
standard MFA. Analysis of the intracellular flux distributions of X514 
illustrate that the connection flux between glycolysis pool and pentose 
phosphate metabolite pool as well as the pyruvate-generating fluxes are 
critical fluxes experiencing major changes during ethanol fermentation 
under different substrate condition. However, similar information will 

be difficult to obtain from standard MFA. Future metabolic engineering 
work in X514 will need to focus on these pathways. 

However, one has to note that the distribution formats of Gibbs 
sampling are sensitive to the constraints of enzyme activities. indicating 
the importance of prior biological knowledge in metabolic flux analysis. 
Therefore, the future work will have to be twofold, one is to apply Gibbs 
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Figure 5: Time evolution of the mean of the samples of flux v2 under glu-
cose substrate condition within three Markov chains where the lower plot is 
a closer view of the first 500 runs of the upper plot.
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Flux Glucose Xylose Mixed
G6P→F6P 5.99±1.23 -0.52±0.10 0.20±2.15
F6P→GAP + GAP 6.42±1.43 4.08±1.29 5.18±1.42
GAP→3PG 12.77±2.79 10.57±2.64 12.34±2.82
3PG→PEP 12.44±2.72 10.18±2.57 12.01±2.75
PEP→PYR 12.35±2.57 10.48±2.44 11.60±2.56
G6P→6PG 0.19±0.03 1.02±0.84 2.38±1.61
6PG→P5P +CO2 0.22±0.94 1.19±1.17 1.89±1.99
P5P + E4P→F6P + GAP 0.15±0.87 2.33±0.83 1.62±0.94
P5P + P5P→S7P + GAP 0.16±0.78 2.26±0.81 1.75±0.91
S7P + GAP→F6P + E4P 0.22±0.61 2.06±0.74 1.54±0.84
PYR + CO2→MAL 0.20±1.90 0.18±1.65 0.08±1.75
MAL→OAA 0.63±1.24 0.88±1.19 0.80±1.22
OAA + AcCoA→CIT/ICIT 0.96±1.12 0.76±1.11 1.08±1.13
CIT/ICIT→AKG 0.63±0.90 0.48±0.90 0.36±0.91
PYR→AcCoA + CO2 9.21±1.90 7.64±1.87 8.64±1.91

Table 3: Mean and standard deviation of the estimated intracellular fluxes.

sampling algorithm together with available expert experiences about 
enzyme constraints to analyze metabolic fluxes and then use the results 
to perform metabolic engineering work; another one is to use the 

metabolic engineering feedback information to provide more accurate 
enzyme constraints and apply these constraints together with Gibbs 
sampling to further understand the studied system.
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