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Abstract
Recently, great attention has been devoted to the graphene because of its unique properties, such as high 

charge carrier mobility even at a high charge carrier concentration at room temperature, the existence of mass-
less Dirac fermions, Quantum Hall effect at room temperature, gas sensing at the single molecule level and gate 
controlled transport (electron or hole) properties. Gas concentration effect on electrical conductivity of graphene 
by Green function method has been modeled however sensor analytical modeling needs to be done. In this paper 
injected carriers by Prostate Specific Antigen (PSA) concentration are simulated and carrier controlling parameters 
(F, pH) are suggested. Injected carriers from PSA to the graphene surface are monitored and their effect on the 
capacitance is modeled. Finally comparison with experimental data which illustrates good agreement between them 
is considered.

Keywords: Biosensor model; PSA detection; Bilayer graphene
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Introduction 
Graphene is a single layer of sp2-bonded carbon atoms which 

arranged in a two-dimensional honeycomb lattice [1-3]. Recently 
numerous excellent properties of graphene such as gas sensing at the 
single molecule level and long spin relaxation length up to micrometer 
scale at room temperature direct researchers to the graphene material 
application [4-9]. In order to prepare single or multi-layer graphene 
films some methods such as thermal decomposition of commercial 
Silicon Carbide (SiC) substrates in vacuum, Micromechanical Cleavage 
(MCP) or chemical exfoliation from bulk graphite powders have been 
used [10-14]. Graphene has been applied in biological systems, such 
as detection of DNA and metal ion, protein and pathogen, design of 
cell/bacterial nanodevice and drug delivery carrier [15-18]. Graphene-
modified electrode would facilitate electron transfer and provide a non-
cytotoxic, larger surface for biomolecules immobilization because of 
its amazing electron transport property and high surface area [19,20]. 
Graphene-based sensors have the potential to detect several types of 
molecules and ions by itself as well as by logical, physical and chemical 
modification [21,22]. Cancer marker has been used as a great medical 
instrument in the diagnosis, monitoring and disease prediction [23,24]. 
General methods such as surface plasma resonance, microcantilevers 
and specific enzyme linked immunosorbent assay have been used to 
detect cancer marker [25-27]. Really PSA is a protein which produced 
by regular prostate cells. This enzyme plays an important role in the 
fertility and the dissolution of the seminal fluid coagulum [28,29]. The 
clinical utility of protein biomarker requires the ability to measure very 
low concentration proteins to diagnose health and disease [30]. The 
early diagnosis of many diseases such as, cancer and HIV is vital [31-
33].

Since many of methods have some limitation such as ultra low 
detection, large detection ranges, extremely expensive and complex 
to realize. It is essential to provide effective approaches to design 
novel biosensors with nanomaterials, such as carbon nanotube 
and silicon nanowire with superior performance [24,31,34,35]. For 
example, through the binding of these biomolecules to the surface 
of nanostructure and based on electrical altering, carbon based 
nanomaterials with high sensitivity and selectivity applied to detect 

small amounts of target biomolecules [22,35]. Therefore, CNTs and 
graphene based FETs biosensors have attracted much attention for 
detection of biomarker protein with high sensitivity [24,31,36]. Because 
of the limitations of CNTs, such as variations in electrical properties of 
CNT-based devices and the limited surface area of CNTs and important 
characteristics of graphene used in FET based biosensors is becoming 
more and more attractive [16-24,31,35,37]. Nevertheless, there aren't 
any reports on the improvement of graphene FET-based biosensors and 
their potential as biosensors has not been completely explored [24,37]. 
Consequently, it is essential to develop nanoscopic graphene based 
biosensors that is important criterion for biosensors because of small in 
size, simple in the device structure, allow label-free detection and real-
time monitoring of biomarkers [24,35,37,38].

As shown in figure 1 detection method of the biosensor is 
demonstrated schematically. Based on the assumed detection method 
bilayer graphene on Polyethylene Terephthalate (PET) substrate as 
a sensor has been suggested. In addition low-cost, flexible and high 
sensitive cancer marker for real detection of PSA has been synthesized 
[35,39,40]. Also conductivity variation by gas molecule adsorption on 
graphene has been reported [41].

Model

The quantum capacitance characteristic of a BG in nanoscale is 
applied to evaluate the detectable PSA on graphene based biosensor. 
Capacitance formed between the channel and gate as most important 
characteristics of FET device is employed in the modeling of PSA 
sensor [42-45]. From classical approach, capacitance determined by 
physical dimensions and the dielectric constant which is between the 
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electrodes [46,47]. The conductance of graphene as a function of carrier 
density and mobility experimentally have been reported which means 
changes in density and/or charge carriers by adsorption of molecules 
or ions in graphene will affect the conductance [35]. In the proposed 
model PSA adsorption as a source of attached carriers is assumed. As 
shown in figure 1 two Au electrodes of the sensor can be suggested as 
the source and drain and Dc voltage (V) is applied to them. Also carrier 
concentration can be modeled by the carrier concentration of BG (n) 
plus the carrier concentration (n') injected from PSA.

 ( ')Q e n n∂ = ∂ + 				                  (1)

Where ∂Q is the change in charge per unit length, n is the intrinsic 
carrier concentration and n' is the inject carriers by PSA.

Bilayer graphene as a channel material has been explored [44]. 
Two different stacking configurations (AA and AB) are obtained for 
(BGs) with armchair edge. The AA-stacked which is metallic and the 
AB-stacked whereas having a band gap of 0.02 eV, is a semiconductor 
that is in our focus. In AB structure, atoms on top layer of BG called 
(A2, B2) and bottom layer are (A1, B1) with hexagonal carbon lattice 
in figure 2. Near to the K point the electronic dispersion of BG can be 
written as [44,45]:

2 2( ) ( / 2)E k V k kα β≈ − +  		   	               (2)

Where 4 2 2 2/ , ( / ) ,F t FV V t Vβ υ α υ⊥ ⊥= =  is bias voltage and Fermi 
velocity is  3 / 2F c ctaυ −= . In-plan hopping t is about equivalent to 
3.1 (eV), t ⊥   is an interlayer hopping (the experimental value for bulk 
graphite is approximately equal to 0.39 eV). Density of state (DOS) 
as basic parameters on BG shows available energy states. It is notable 
that electrical property of materials from metal to semiconducting is 
changing by the gradient of DOS near the Dirac point. 
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Carrier concentration in a band can be achieved by integrating the 
distribution function over energy band.
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=   is normalized Fermi energy. In order to 

model the effect of PSA adsorption by graphene we have monitored 
capacitance variation as: 
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It has been demonstrated that the conductance of biosensor 
depends on the concentration of PSA and different local pH values. 
Carrier concentration as a function of PSA concentration and different 
local pH values is considered, which are presented in the form of PSA 
and PH factors (f,p). The carriers injected from the PSA and localized 
pH value into the bilayer graphene is added to the conventional carrier 
concentration as:

  '
PSA Hn fF pP= + 				                 (6)

So the capacitance based on the proposed model of BG carriers and 
adsorbing carriers (PSA) by the surface of the biosensor is modified as:
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Where ∂F is the PSA concentration, variation and ∂PH is different 
in local pH values, therefore the current voltage characteristic can be 
modified by proposing capacitance model as:
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As shown in figure 3 current-voltage characteristic of graphene 
based PSA biosensor by the quantum capacitance effect is plotted. Based 
on the experimental data it is explored that Sensor I-V characteristic 
can be controlled by PSA concentration (as an antibodies parameter), 
therefore the concentration coefficient by iteration method is estimated 
as:

 1 2( )f f Ln F f= + 				                 (9)

Where f1=1.84 10-2 and f2= 0.3991

As shown in figures 3 and 4, after incubating bio sensor in different 
concentrations of PSA and labeled by HRP the normalized conductance 
of graphene not only raises with the increasing of PSA concentration 
but also conductance of the bilayer graphene changes with the different 
local pH values. Thus the pH effect on the carrier concentration in the 
same manner with PSA concentration by iteration method is modeled 
as:

  

V

A

Au
PET
BGN

PSA
PSA Capture

Antibody

Figure 1: Schematic illustration of bilayer graphene cancer sensor on a 
flexible PET substrate.

A1

A2

B1

B2

t┴2

t┴1

Figure 2: Schematic of AB bilayer graphene lattice structure.
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  2
1 2 3H Hp p P p P p= − + 				                  (10)

Where p1=170.31, p2=15.063 and p3=5.3251. Also the suggested 
PSA detection modelling can be employed for almost any target antigen 
with a known antibody.
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As shown in figure 5 based on the presented model it is notable that 
by raising the concentration (as an example for pH value is 6) model is 
closer to the experimental data (black line). In the same manner we can 
compare other experimental data's as well.

Current-voltage characteristic altering by carrier concentration 
and local pH values, also based on the supposed model sensor I-V 
characteristic which is controlled by PSA concentration parameter and 
PH parameter.

Conclusion
Graphene based material because of its amazing electron transport 
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Figure 3: Comparison of current than voltage based on quantum capacitance modeling and experimental data for pH=5 and pH=6 that show a 
promising agreement between theoretical models and experimental data.

100

10-1

10-2

10-3

100

10-1

10-2

10-3
0                   0.2                 0.4                  0.6                  0.8                   1                   1.2 0                   0.2                 0.4                 0.6                 0.8                   1                   1.2

Voltage(V) Voltage(V)

C
ur

re
nt

(m
A

)

C
ur

re
nt

(m
A

)

Model
Experimental    (PH7) Model

Experimental     (PH8)

Figure 4: Comparison of current than voltage based on quantum capacitance modeling and experimental data for PH=7 and PH=8 that show a 
promising agreement between theoretical model and experimental.
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Figure 5: Comparison of current than voltage based on quantum 
capacitance modeling and experimental data for different PH.
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property and high surface area has been employed in biological 
applications. Green function method in the gas sensor modeling has 
been used although pH physical based sensor modeling needs to be 
explored. In this research current voltage characteristic of a BG in 
terms of capacitance model is applied to evaluate the detectable PSA 
on the graphene based biosensors. PSA adsorption and local pH 
value effects on the carrier concentration are monitored and injected 
carriers as a function of control parameters (f,p) are presented. Finally, 
good agreement between proposed model and experimental data is 
reported. We have concluded that sensor characteristics altered by PSA 
concentration and local pH values, by means of which the proposed 
model sensor can be controlled.
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