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Analytical method using gamma functions for 
determining areas of power elliptical shapes for use in 
geometrical textile models

Abstract
Textile models are often assumed to have homogenous and well defined cross-sections. For these models, the use of a power elliptical cross-sectional shape has been 
found to be beneficial as different shapes can be created, e.g. lenticular, elliptical or rectangular, with a single function. The cross-sectional area of a power ellipse is usually 
determined numerically as the analytical determination of the cross-sectional area is not straightforward. This short communication presents an analytical solution for this 
shape.
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Textile reinforcements used in fiber reinforced composites are usually based 
on yarns which are bundles of a large number of individual filaments. These 
reinforcements are often modeled on the meso-(yarn) scale which assumes a 
homogeneous structure of the fiber bundles. For numerical models, the yarn 
shapes are usually assumed to be elliptical, lenticular or rectangular [1–4]. 
The super-ellipse (Fig. 1A) also known as Lamé curve is defined as: x a  n þ 
y b n ¼ 1 with a; b; n > 0 ð1Þ with the major and minor ellipse axes, a and b 
[5, 6]. A special form of this is the power-ellipse [7] for which the exponent, n, 
on the width term (x) is kept constant and defined as: x a 2 þ y b  2 n ¼ 1 ð2Þ 
Unlike for the super-ellipse which results, for example, in star shapes for n > 
2, the advantage of this expression is that for the entire range of exponents 
n > 0 realistic yarn cross-sectional shapes can be generated (Fig. 1B). For n 
= 1, the yarn shape describes an ellipse, for n > 1 a lenticular shape and for 
n < 1 a rectangle w

For a precise and fast determination of the yarn volume fraction, it is desirable 
to determine the cross-sectional area of a yarn shape analytically which is 
straightforward for e.g. ellipses. However, determining the area of a power 
ellipse is more challenging. To derive the cross-section of an arbitrary 
area which can be drawn with a continuous, non-overlapping line, Green’s 
Theorem [8] of line integration can be used. For a practical application of 
this theorem, a number of equi spaced points around the cross-section can 
be sampled and the trapezoidal rule [9] applied. This numerical technique 
approximates the area by assuming that it consists of a finite number of 
trapezoids. Its accuracy depends on the number of points sampled. In this 
work, an analytical expression to determine the area of a power ellipse is 
derived which uses the gamma function, C. This function is similar to the 
factorial for an integer, n, but shifted by 1; hence C (n) = (n 1)! The main 
benefit of the gamma function compared to the factorial is that it is defined 
for any real number.

Derivation of the analytical power-ellipse area

 The analytical expression of the area of a power ellipse, S, can be performed 

in a similar way as for a super-ellipse [5, 6]. A power ellipse, as used for 
example in TexGen [2], can be expressed as [10] (Figures 1 and 2).

 X ¼ a sin h ð3Þ y ¼ b cosn h ð4Þ

This parametric representation needs to be integrated. As the equations are 
oscillating, only a quarter of the power ellipse needs to be analyzed. The 
integration is therefore in the form: S 4 ¼ Z a 0 ydx ð5Þ Replacing dx in this 
equation with the first derivative of x in Eq. (3) to h: dx ¼ a cos hdh ð6Þ and 
placing Esq. (4) and (6) in (5) gives: S 4 ¼ Z p 2 0 b cosn h a cos hdh ð7Þ This 
expression can be reduced to: S 4 ¼ ab Z p 2 0 cosnþ1 hdh ð8Þ The integral 
of Eq. (8) can now be evaluated considering the following trigonometric 
expression [5,11]: Z p 2 0 sina h cosb hdh ¼ 1 2 B a þ 1 2 ; b þ 1 2 for a; b > 
1 ð9Þ where B represents the beta function. Using this for the integral in Eq. 
(8) multiplied with an additional term of sin0 h ¼ 1 to comply with the format 
in Eq. (9) gives: Z p 2 0 sin0 h cosnþ1 hdh ¼ 1 2 B 0 þ 1 2 ; n þ 1 þ 1 2 ð10Þ 
The beta function can be expressed in terms of the gamma function, C, [12] 
which leads to 1 2 B 1 2 ; n þ 2 2 ¼ 1 2 C 1 2  C nþ2 2   C 1 2 þ nþ2 2  ð11Þ

Considering that C 1 2   ¼ ffiffiffi p p and replacing Eq. (11) for the integral in 
Eq. (8) and rearranging the equation results in the analytical form of the area 
of a power-ellipse: S ¼ 2ab ffiffiffi p p C 1 2 ðn þ 2Þ   C 1 2 ðn þ 3Þ  

Accuracy and time 

Mathematically speaking, Eq. (12) gives the exact area of the power ellipse. 
However, this is given in terms of the Gamma function, which is the integral 
of a transcendental expression, and does not have a closed form expression, 
except when its argument is integer valued, in which case the Gamma function 
becomes the well-known factorial function. In spite of this, approximations 
such as those provided by Lanczos [13] and Spouge [14] provide efficient 
algorithms to estimate the Gamma function to arbitrary precision. Both of 
these approximations, themselves corrections of the Sterling algorithm, are 
formed by truncating a convergent series expansion of the Gamma function 
in terms of elementary functions at the appropriate order. The efficiency of 
the Lanczos approximation is demonstrated by the rapid convergence of the 
approach: including only 13 terms in the series expansion gives an error O 
(1016) [15] when working at fixed precision. In contrast to the explicit formula 
provided by Eq. (12), the trapezium rule provides an approximation whose 
error scales the square of the interval size (assuming a uniform step). For a 
fixed error of e, the Lanczos and Spouge algorithms require O (log (e)) steps, 
whilst the trapezium rule requires O (1/sqrt (e)) points. There exist more 
efficient algorithms for numerical integration, such as Gaussian quadrature, 
but these will still be inefficient compared to these approximations to the 
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Gamma function. The relevant algorhythms are readily available, for example 
as part of Mat lab’s built-in functions [16] and the GNU Scientific Library [17]. 
Using the derived equation Eq. (12) compared to the use of the Trapezoidal 
rule [9], the solution accuracy is no longer dependent

Of the number of points used. In addition, the area of a power ellipse can 
be derived significantly faster. Compared to the Trapezoidal rule with 1000 
equispaced points sampled around the circumference of a power ellipse 
using the Get Area function in TexGen [1], the speed is 3faster using the 
analytical solution in Eq. (12) as a Python implementation of Lanczos’ 
approximation [13] on a standard desktop computer. This increased speed 
can be beneficial when analyzing, for example, the volume fraction in 
geometric textile models (Fig. 2)

Concluding remarks

An analytical form of the area of a power ellipse has been derived. 
Implementing this in, for example, geometrical textile pre-processors will 
allow yarn volume fractions to be determined in a fast and more accurate way 
compared to using numerical approximations such as the Trapezoidal rule. 
In addition, the analytical expression of the area will make implementation of 
power elliptical shapes more readily accessible to developers of geometric 
textile models. The need for more complicated approximations, e.g. numerical 
estimates of areas (and volumes), which may also require determination of 
equispaced points at the cross-sectional circumference, is overcome
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