
 Open AccessISSN: 2161-0991

Journal of 
Transplantation Technologies & Research 

Research Article
Volume 11:1, 2021

Analytical and Clinical Validation of a Novel Blood-
Based Biomarker of Liver Transplant Rejection

Abstract
Background: We have discovered and validated a microarray-based test that analyzes blood gene expression profiles (GEP) as an indicator of immune status in liver 
transplant recipients with stable liver function.

Methods: Analytical performance studies to characterize stability of RNA in blood during collection and shipment, analytical sensitivity (input RNA concentration), 
analytical specificity (interfering substances) and assay performance (clinical validity, and intra-assay, inter-assay, inter- laboratory reproducibility).

Results: Total RNA extracted from whole blood specimens collected in PAXgene Blood RNA tubes was stable up to 3 days at room temperature (stable RNA yield). 
Under routine ambient shipping conditions, storage and shipping temperatures did not affect results. However, specimen shipments exposed to temperatures >400°C 
or to ambient temperatures for >3 days were unacceptable for processing. Analytical sensitivity studies demonstrated tolerance to variation in RNA input (50 to 400 
ng per 3’ IVT (in vitro transcript] labeling reaction). Specificity studies using genomic Jurkat DNA spiked into 3 ’IVT reactions at 10-20% demonstrated negligible assay 
interference. The test was reproducible across operators, runs, reagent lots, and laboratories. External validation demonstrated that the TruGraf Liver blood test 
accurately classified patients in 84% of 155 samples.

Conclusions: The previously published biomarker is the first non-invasive test to be demonstrated to have clinical utility in assessing immune status of LT recipients 
with stable liver function and shows promise as a reasonable and necessary tool supporting personalizing immunosuppressive therapy.
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Introduction

The survival benefits of organ transplants are well documented [1]. 
Improvements in immunosuppression and other aspects of ancillary care 
have led to significant improvement in outcomes. At the present time, 
despite considerable research efforts, there are only a few proven tests 
aimed at measuring or monitoring the adequacy of immunosuppression, the 
failure of which may result in over-immunosuppression and opportunistic 
infections and kidney dysfunction, or under-immunosuppression and acute 
rejection (AR) [2].

The TruGraf® blood test for kidney transplant recipients (Transplant 
Genomics Inc., Mansfield, MA) is a commercially available test provided 
exclusively through the Clinical Laboratory Improvement Amendments 
(CLIA) certified laboratory at Transplant Genomics Inc. (Freemont, CA). This 
test relies on a specific gene expression signature in the peripheral blood to 
enable proactive non-invasive serial testing of kidney transplant recipients 
with stable renal function. The gene expression profile (GEP) was first 
reported in 2014 [3] and then subsequently modified to distinguish healthy 
transplant (TX = Transplant excellent) from non-TX, specifically sub-clinical 
acute rejection (subAR) [4-6].

We have developed a similar GEP in liver transplant (LT) recipients that 
can potentially distinguish healthy transplant (TX) from acute rejection (AR) 
[7], such that modifications to lower or increase immunosuppressive therapy 
could be guided by the test. This could personalize the treatment of LT 
recipients to improve outcomes. However, before the test (TruGraf Liver) 
is further developed and moved into commercial use, additional validation 

with external samples beyond the clinical trial is needed. In this study, we 
analyzed additional samples using the locked gene expression profile to 
demonstrate its effectiveness in assessing the clinical phenotype (AR or 
TX) (Summary Table 1). Overall, we performed analytical validation for a 
microarray assay that analyzes blood gene expression profiles (GEP) as 
an indicator of immune status in liver transplant recipients with stable liver 
function.

Materials and Methods

The multiple steps necessary for a TruGraf® blood test have been 
previously published and validated (First MR, 2017). A brief overview 
of the process includes obtaining blood samples from patients in nucleic 
acid stabilizing tubes, and subsequently taking the RNA through a series 
of steps for extracting, amplifying and hybridization to the DNA microarray 
plate. Microarray plates are then washed, stained and scanned in order to 
determine intensity of hybridization of patient RNA to predesigned specific 
oligonucleotide probes. A proprietary classification algorithm is then used 
to analyze the pattern of hybridization while being compared to a reference 
dataset that ultimately generates a qualitative result of “TX” or “AR”. 
These results of a TruGraf® Liver blood test may be used by clinicians 
and physicians in combination with other relevant clinical information, to 
determine whether or not a liver transplant recipient is avoiding adverse 
graft function from either under- and over- immunosuppression regiments.

RNA extraction, amplification and hybridization

As previously described, total RNA was collected from PAXgene Blood RNA 
(IVD) tubes (Qiagen, Valencia, CA) (First MR, 2017). RNA extraction was 
performed from PAXgene tubes that were processed using PAXgene Blood 
microRNA (miRNA) reagents on the QIAcube instrument (Qiagen, Valencia, 
CA). Total RNA concentrations and yield were determined using the 
Nanodrop 8000 (Thermo Fisher Scientific, Carlsbad, CA) and samples were 
subjected to a globin-reducing step using the Ambion GLOBIN clear Human 
kit (Thermo Fisher Scientific, Carlsbad, CA). Concentrations of globin-
reduced RNA were determined via the Nanodrop 8000 and further subjected 
to the Bioanalyzer RNA Nano system to assess quality and to generate an 



J Transplant Technol Res, Volume 11:1, 2021Holman J, et al.

Page 2 of 9

Study Sample Source Design Summary Data Evaluated
Analytical Sensitivity – LOD HeLa/WAC Control RNA LOD testing was performed on a 

dilution series (4 dilutions of 3’ IVT 
labeling reaction input concentrations 

and 4 Hybridization reaction input 
concentrations) of HeLa and WACcontrol 

RNAsamples.
Sample data analysis was performed 
on the Affymetrix Expression Console 

software.

In-process QC - NanoDrop and RIN values
Hyb QC Results – includes RLE values and signal 

boxplots, background levels. Labeling and Hyb control 
acceptability, GAPDH signal Intensity, GAPDH 3’-5’ 

ratios, Pearson correlations.
LOD – 4 sample input concentrations for both IVT 

labeling and hybridization reactions

Analytical Specificity Interference HeLa/WAC Control RNA RNA from Hela/WAC control supplied with 
the 3’ IVT was spiked with Jurkat gDNA 
and processed through array Hyb on the 

GeneTitan.
Sample data analysis was performed 
on the Affymetrix Expression Console 

software.

In-process QC - NanoDrop and RIN values
Hyb QC Results – includes RLE values and signal 

boxplots, background levels. Labeling and Hyb control 
acceptability, GAPDH signal Intensity, GAPDH 3’-5’ 

ratios, Pearson correlations.
Array CEL file data was analyzed on theAffymetrix 

Expression ConsoleSoftware.
Resulting information about probeset intensity variation 
was used to evaluate effects of gDNA contaminationon 

RNA specimenhybridization.
Accuracy (vs biopsy results) PAXgene Blood RNA 

from kidney transplant 
subjects

A total of 221 Transplant Subjects in 
2 cohorts (129 NU and 92 CTOT14 

samples). PAXgene RNA Blood 
tubes from samples across reporting 
rangewere received at the TGI CLIA 

Lab for processing through the complete 
Affymetrix GeneTitanworkflow.

Sample data analysis was performed 
on the Affymetrix Expression Console 

software.

In-process QC - NanoDrop and RIN values
Hyb QC Results – includes RLE values and signal 

boxplots, background levels. Labeling and Hyb control 
acceptability, GAPDH signal Intensity, GAPDH 3’-5’ 

ratios, Pearson correlations.
Array CEL file data was analyzed on the Affymetrix 

Expression Console software to generate Hyb QCdata 
and on the TruGraf® Liver Classifier algorithm to 

generate IQ/IAscores.

Preanalytical Factors PAXgene Blood RNA 
derived from non-
transplant subjects 

(sufficient blood was 
collected to allow for 

replicates for samples to 
be run).

Normal subject blood specimens in 
PAXgene tubes were obtained by the TGI 

CLIA Lab. Specimens were subjected 
to varying preanalytic conditions and 

extracted. Downstream GLOBINclear, 3’ 
IVT and array hybridization processing 

were performed on a single run.

In-process QC - NanoDrop and RIN values
Hyb QC Results – includes RLE values and signal 

boxplots, background levels. Labeling and Hyb control 
acceptability, GAPDH signal Intensity, GAPDH 3’-5’ 

ratios, Pearson correlations.
Array CEL file data was analyzed on the Affymetrix 

Expression Console Software.
Reproducibility – Inta- assay PAXgene Blood RNA 

derived from non-
transplant subjects 

(sufficient blood was 
collected to allow for 

replicates for samples to 
be run).

Normal subject blood specimens in 
PAXgene tubes were obtained by the TGI 
CLIA Lab. Multiple replicates of 4 patient 
samples were processed on a single run.

In-process QC - NanoDrop and RIN values
Hyb QC Results – includes RLE values and signal 

boxplots, background levels. Labeling and Hyb control 
acceptability, GAPDH signal Intensity, GAPDH 3’-5’ 

ratios, Pearson correlations.
Array CEL file data was analyzed using RMA data 

from the Affymetrix Expression Console to generate 
hybridization metrics. Descriptive statistics were 

evaluated for reproducibility and precision.
Reproducibility – Intermediate 
Precision

PAXgene Blood RNA 
derived from non-
transplant subjects 

(sufficient blood was 
collected to allow for 

replicates for samples to 
be run).

Normal subject blood specimens in 
PAXgene tubes were obtained by the TGI 
CLIA Lab. Replicates of 4 patient samples 

were run in duplicate on each of 8 separate runs.
New reagent lots were rotated into the 

run schedule while holding the remaining 
reagent lots constant so that reagent effects 
could be pinpointed to the new reagent lot.

At least 2 different lots of GeneTitan 
HGU133+ GLOBINclear reagents,Qiagen 
PAXgene RNA (IVD), and 3’ IVT Plusand 
Hyb/Wash/Stain reagents were usedfor

this cohort.

In-process QC - NanoDrop and RIN values Hyb QC 
Results – includes RLE values and signal
boxplots, background levels. Labeling and Hyb control 

acceptability, GAPDH signal Intensity, GAPDH 3’-5’ 
ratios, Pearson correlations.

Array CEL file data was analyzed using RMA data 
from the Affymetrix Expression Console to generate 

hybridization metrics. Descriptive statistics were 
evaluated for reproducibility and precision.

TruGraf® Liver Classifier 
Bioinformatics

Raw data files (.CEL) Internal validation performed on ~129 data 
files from the original discovery data set.

External/Independent Validation - ~92 
data files processed independent of the 

discovery set

Array CEL files were analyzed using the TruGraf® Liver 
Classifier

Table 1. Summary of analytical validation studies.
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RNA integrity number (RIN). Thresholds were set of RNA yield and quality 
in order to be used for downstream processing. In vitro transcription and 
labeling reactions (3’ IVT) on globin- reduced RNA (input of 200ng) were 
performed on the Affymetrix 3’ IVT (in vitro transcript) PLUS labeling 
system (Affymetrix, Santa Clara, CA). After IVT, samples were fragmented 
and a final pre-hybridization RNA quality check was performed on labeled 
cRNA in addition to a check on the fragmented final cRNA product. Using 
an input 7.5 µg input of biotin-labeled cDNA, we prepared a hybridization 
cocktail for use in array hybridization. All hybridization, washing, staining 
and array scanning steps were performed on Affymetrix HG-U133+ arrays 
using the standard GeneTitan Gene Expression array workflow (Affymetrix, 
Santa Clara, CA). A whole assay control (WAC) RNA from a subject with 
a known TruGraf® Liver response processed from RNA extraction to Gene 
Titan processing was used in addition to a HeLa control RNA sample, no-
template control and Affymetrix External RNA controls (Poly A RNA, B2 
Oligo and 20X hybridization controls) as in-process controls for both RNA 
labeling and hybridization reactions. Raw expression data files in the form 
of CEL files (an ASCII text file used for Affymetrix software) was generated 
by the Gene Titan and checked for quality control metrics using Affymetrix 
Expression Console (build 1.4.1.46, Affymetrix). Predefined specifications 
for yield, array data quality and control sample classifier results were used 
as acceptance criteria prior to sample data being analyzed by the TruGraf® 
Liver classifier.

The TruGraf® Liver Classifier

The TruGraf® Liver classifier uses coefficient of variance to identify the 
top 5,000 variables probes from the discover NU dataset. Using a random-
forest based algorithm with 10,000 trees, feature selection was performed, 
while using an out-of-bag error as minimization criterion and carry-out 
variable elimination from random-forest by successively eliminating the 
least important variables [8]. The most informative genes were identified 
using random- forests and Gini importance providing a relative ranking of 
classifier features from which a final model was selected to distinguish AR 
from TX. A performance threshold was selected favoring NPV over PPV 
(above the threshold = AR), and the model and threshold were locked for 
validation of the CTOT-14 cohort, an independent sample set that was not 
used in training.

Blood samples from patients with biopsy-confirmed TX or AR were used to 
perform the analysis.

Preanalytic Conditions

Due to the nucleic acid stabilizing components of the PAXgene tubes, 
samples can be shipped overnight at ambient temperatures without 
compromising the RNA quality. We therefore wanted to examine the effects 
of different shipping scenarios during the validation to establish acceptable 
specimen criteria. WAC control PAXgene blood specimens and numerous 
PAXgene tubes were collected at the same time from the same donor, and 
individual tubes were subject to varying Preanalytic conditions prior to RNA 
extraction (Table 2).

Downstream GLOBIN clear and 3’ IVT processing were performed on a 
single run, while in- process QC metrics (Concentration, OD 260/280 ratio, 
RIN value and BA electropherogram data as applicable) in addition to Hyb 
QC metrics were obtained to determine the effects of Preanalytic sample 

handling. Resultant .CEL file raw data was subsequently analyzed with the 
TruGraf® Liver Classifier algorithm.

As expected, samples held at 40°C for 36 hours yielded RNA too degraded 
to analyze (Table 3). Of the remaining samples in this cohort, all samples 
met in-process QC metrics and were hybridized. Hybridization QC data was 
generated from analysis of raw .CEL file data with GeneChip® Expression 
Console.

BA analysis of GLOBIN-reduced RNA from each of the specimens shows 
noticeable degradation of samples held beyond 72 hours post collection at 
ambient temperature, and beyond 96 hours at 2-8°C. These results were 
used to establish rejection criteria as samples held at ambient temperature 
for >72 hours, or specimens subjected to elevated temperatures (>40°C) 
prior to RNA extraction yield degraded or poor quality RNA unsuitable for 
downstream applications. Figure 1 shows the Actin and GAPDH ratio metrics 
for samples subjected to elevated preanalytic temperatures or samples 
held at ambient temperatures for the indicated times. Along with GAPDH 
ratio for data, we also determined the relative logarithmic expression (RLE) 
values as a relative measure of the deviation of a single array signal when 
compared to a group average (Figure 2). This is routinely used to assess 
variation within microarray studies.

Analytical sensitivity: RNA input

Limit of detection or LOD studies were performed utilizing dilutions of 
HeLa Control RNA (included with the GeneChip® 3’ IVT Plus reagents) as 
well as WAC Control RNA and a liver transplant subject. LOD testing was 
performed on a dilution series (5 dilutions of 3’ IVT Labeling reaction input 
concentrations and 3-4 Hybridization reaction input concentrations) of HeLa 
& WAC Control RNA samples. Data analysis for this cohort was performed 
on the GeneChip® Expression Console software. CEL files were also 
analyzed with the TruGraf® Liver Classifier (v1.1.0) to obtain result data.

In-process and hybridization QC Metrics were reviewed for all samples in 
this cohort. All samples met in-process QC criteria (criteria, criteria) and 
Hyb QC criteria (GAPDH Ratio <4; Poly A Labeling Control intensities; 
HYB Control intensities, All probes RLE Mean). A trend was seen in the 
hybridization QC metrics (Tables 4a & 4b, Figures 3 and 4). While the HeLa 
Control showed consistent intensity data for the RLE Mean, Nonspecific 

Sample ID PreAnalytic Condition Condition Duration
6908 PAX tube held @ 400C 36 hours
6909 PAX tube held @ 2-80C 48 hours
6910 PAX tube held @ ambient temp 48 hours
6911 PAX tube held @ ambient temp 72 hours
6912 PAX tube held @ 2-80C 72 hours
6913 PAX tube held @ ambient temp 96 hours
6914 PAX tube held @ 2-80C 96 hours
6915 PAX tube held @ 2-80C 144 hours

Table 2. Preanalytic Conditions.

Sample ID / Condition TruGraf® Liver Result TruGraf® Liver Score
6908 / 400C 36 hr n/a - degraded n/a - degraded

6909 / Fridge 48 hr AR 0.572
6910 / RT 48 hr TX 0.339
6911 / RT 72 hr TX 0.418

6912 / Fridge 72 hr AR 0.515
6913 / RT 96 hr TX 0.234

6914 / Fridge 96 hr TX 0.431
6915 /Fridge 144 hr TX 0.376

Table 3. TruGraf® Liver Results – Preanalytic conditions.

PAX 48 hr PAX 48 hr PAX 72 hr PAX 72 hr PAX 96 hr PAX 96 hr PAX 96 hr PAX 96 hr PAX 
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Figure 1. Actin and GAPDH 3'/5' Ratios for samples with at different storage 
conditions.
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However, additional experiments were designed to determine what, if any, 
effect genomic DNA might have as a potential interfering substance. 

Therefore, RNA from HeLa & WAC Controls were spiked with Jurkat 
genomic DNA (Life Technologies Cat # SD1111) and processed thru array 
Hyb on the GeneTitan (Table 5, Figures 5 & 6). A 2nd set of 5 samples with 
elevated bilirubin levels was also processed through the TruGraf® workflow 
to assess the effect of hyperbilirubinemia on assay performance (Table 6, 
Figures 7, 8). In-Process QC data was obtained (RNA concentration, OD 
260/280 ratio, RIN value and BA electropherogram data for intermediate 
steps) and compared to current processing results. 

Resultant gene expression data from .CEL files had QC metric data analysis 
performed on the GeneChip® Expression Console software. Raw CEL 
file data analysis was completed on the TruGraf® Liver Classifier under 
validation in order to determine effects on classifier results. 

In-process QC metric results were unremarkable for samples tested as part 

Binding and Poly A Lys Control, the 2 patient – derived samples in this 
cohort demonstrated outlier intensity data for the lowest dilution of the LOD 
series (25 ng IVT reaction input). This IVT input concentration demonstrates 
labeling reaction inconsistencies not seen for the samples with 50-500 ng 
IVT reaction input, consistent with Manufacturer data. This data re-validates 
the TruGraf® sample processing workflow that utilizes a 200 ng IVT reaction 
RNA input.

Analytical specificity: genomic DNA

As previously reported, the Affymetrix Gene Expression analysis workflow 
has many distinct steps designed for purification and elimination of 
interfering molecules. The RNA extraction process removes DNA and 
heme particles during the purification; during globin clearing, the globin 
RNA is removed and a final purification step during 3’ IVT labeling removes 
unlabeled and excess reagents, ultimately yielding a purified labeled cRNA. 

Figure 2. Boxplots of Normalized Signal Intensities for PAXgene tubes at 
different storage conditions.

Figure 3. TruGraf® Liver score by IVT input.

Figure 4. TruGraf® Liver score by Hybridization reaction input.

RLE
mean

Nonspecific 
binding

PolyA - Lys PolyA - Dap HYB –
bio B

HYB –
bio C

HYB –
bio D

HYB -
Cre

GAPDH 3’-5’
Ratio

HeLa Control -% CV 0.41% 2.4% 33.6% 39.4% 16.2% 17.5% 12.5% 7.2% 3.1%
Liver Transplant Pt - % CV 18.9% 5.1% 41.8% 27.4% 29.5% 29.0% 17.6% 8.2% 9.9%

WAC Control -% CV 17.7% 2.9% 45.7% 28.0% 55.1% 43.1% 22.6% 12.7% 7.5%

Table 4a. Hybridization QC results – LODSamples.

Sample ID RLE Mean Nonspecific 
Binding

Poly A Lys (low) 
Control

HeLa – 25 ng 0.42 90 453
HeLa – 50 ng 0.42 95 418

HeLa – 100 ng 0.42 91 310
HeLa – 200 ng 0.42 87 212

Liver TX – 25 ng 0.19 105 1265
Liver TX – 50 ng 0.13 89 759

Liver TX – 100 ng 0.12 96 628
Liver TX – 200 ng 0.12 91 387
Liver TX – 500 ng 0.12 88 379

WAC – 25 ng 0.16 101 1331
WAC – 50 ng 0.14 96 757

WAC – 100 ng 0.09 97 473
WAC – 200 ng 0.13 91 275
WAC – 500 ng 0.15 93 336

Table 4b. Hybridization QC results – LODSamples.
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of the genomic DNA cohort (Figures 5 and 6). GAPDH 3’:5’ ratios were < 2, 
and lower signal intensities for the PolyA Labeling Controls (as compared 
to results from “non-spiked” samples) were noted for all samples processed 
in this cohort. 

Review of probeset signal intensities generated by .CEL file normalization 
and processing illustrated that signal intensities decrease subtly as the 
concentration of Jurkat gDNA increases as a percentage of total RNA. 

While there did not appear to be an effect on the TruGraf® score for the 
HeLa Control samples spiked with Jurkat gDNA, and the expected “AR” 
classification was achieved with the HeLa Control; there was an impact 
seen within the WAC control at the highest percentages of Jurkat gDNA. 

Sample (% Jurkat) TruGraf Liver 
Result

TruGraf Liver Score

HeLa-Jurkat (10%) - A AR 0.7792
HeLa-Jurkat (10%) - B AR 0.7597
HeLa-Jurkat (20%) - A AR 0.7761
HeLa-Jurkat (20%) - B AR 0.7430
HeLa-Jurkat (30%) - A AR 0.7546
HeLa-Jurkat (30%) - B AR 0.7705
WAC-Jurkat (10%) - A AR 0.8216
WAC-Jurkat (10%) - B AR 0.8088
WAC-Jurkat (20%) - A AR 0.7891
WAC-Jurkat (20%) - B AR 0.8236
WAC-Jurkat (30%) - A AR 0.7102
WAC-Jurkat (30%) - B AR 0.7394

Table 5. TruGraf Liver score from Jurkat gDNA spiked samples.

Figure 5. Boxplots of Normalized Signal intensities for HeLa/WAC samples 
with spiked Jurkat gDNA.

Actin3'/5' Ratio GAPDH 3'/5'Ratio 

Figure 6. Actin and GAPDH 3'/5' Ratios for HeLa/WAC samples with spiked 
Jurkat gDNA.

Figure 7. Boxplots of Normalized Signal intensities for HVC+ Patients with 
high bilirubin.
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Figure 8. Actin and GAPDH 3’/5’ Ratios for HVC+ Patients with high bilirubin.

Table 6. Hyperbilirubinemic Sample QC metrics.
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As the percentage of Jurkat gDNA increased the TruGraf® Liver score 
decreased slightly, particularly with the 30% Jurkat gDNA replicates, though 
still reliably produced the same TruGraf® phenotype. 

Additionally, possible sample contamination from hyperbilirubinemia was 
also tested (Figures 7 and 8). We used a set of five HCV+ / hyperbilirubinemic 
samples and processed the samples through the TruGraf workflow in order 
to assess the impact of hyperbilirubinemia on TruGraf® results. These 
samples passed all in-process QC metrics and their Hybridization QC metric 
results were all within limit as well. Array probeset intensities were found 
to be similar to “routine” samples. TruGraf® Classifier analysis of these 
5 samples yielded ‘AR’ results for all samples, with unremarkable scores 
(range = 0.66 to 0.81). These subjects were not given a phenotype as they 
all had a Hepatitis C diagnosis and were excluded from biomarker studies.

Accuracy and reportable range

Independent clinical validation of the performance of the TruGraf® Liver 
assay was performed on a total of 221 Transplant Subjects in 2 cohorts (129 
NU and 92 CTOT14 samples), with 66 samples biopsy identified as ADNR 
and therefore excluded from this analysis (Table 7). PAXgene RNA Blood 
tubes from samples across reporting range were received at the TGI CLIA 
Lab for processing through the complete Affymetrix GeneTitan workflow. 
This Cohort included representative samples of TX and AR as determined 
by paired biopsy sample histology. Samples were randomized to one of 
several arrays in order to minimize processing bias. Molecular phenotype 
was compared to original histology results. Data analysis was performed on 
the GeneChip Expression Console software to generate Hyb QC data and 
on the TruGraf® Liver Classifier algorithm. Cumulative results are shown 
in Table 7 and Figure 9. Accuracy of the TruGraf® Liver blood test was 
84% (95% CI, ± 0.01%), specificity at 87%, sensitivity at 64% and positive 
predictive and negative predictive values at 61% and 88%, respectively. 
Our NPV and specificity indicate that a “true TX” will be correctly identified 
as such in a high proportion of the intended clinical patient population using 
TruGraf® Liver testing. 

Assay Reproducibility

CEL file data for samples tested on the precision cohorts were analyzed 
using the Affymetrix Gene Console software, and PLIER (probe logarithmic 
intensity error) analysis was performed to generate QC metric data. 
Technical performance of sample processing was accessed by using data 
for the internal and external RNA controls. Descriptive statistics for external 
RNA controls were used to assess precision for hybridization (Hyb, 20X 
Hyb controls) and labeling (PolyA IVT controls) while distribution stats for 

average GAPDH signal intensity along with the GAPDH 3’ to 5’ ratio were 
used as internal sample metrics (Table 8). 

All samples used in Intra-run precision experiments were processed with 
the same reagent lot numbers throughout the workflow (Figures 10 & 11). 
Furthermore, the samples were hybridized on the same Affymetrix HG-U133 
Plus array plate creating a group of samples to use in acquiring baseline 
statistics on within run variability (Tables 9, 10 and 11 a,b). 

TruGraf® classifier development and validation

The TruGraf classifier algorithm (version 0.6) is a proprietary software 
package developed for use in the TGI automated bioinformatics pipeline. 
The TruGraf classifier is based upon previously published data (7). The 
current algorithm version has been locked, validated and implemented in 
TGI’s CLIA laboratory workflow in the R statistical computing environment 
(version 3.1.2). The input for the software is an individual .CEL file 
generated by the Affymetrix GeneTitan instrument. Within the software, the 
data from the .CEL file is converted to a list of normalized gene expression 
values (signals) which correlates with the amount of RNA detected by each 
probeset on the Affymetrix GeneChip DNA microarray for the sample being 
analyzed. The values generated for a specific group of probesets present 
in the locked classifier are used by a locked Support Vector Machine (SVM) 
model (implemented from the e1071 R package version 1.6-6) which was 
trained on a discovery dataset (129 samples total) to generate a phenotypic 
classification / interpretation of Transplant excellence (TX) or AR for the 
sample. 

Bioinformatics Validation – Internal and External 
Validation

The top 5000 variables probes were selected based on coefficient of 
variance. Features selection was performed using a random-forest based 
algorithm with 10000 trees. The variable selection algorithm uses out of 
bag error as minimization criterion and carry out variable elimination from 
random forest, by successively eliminating the least important variables. 
The most informative genes were identified using random forests and 
Gini importance providing a relative ranking of the classifier features from 
which a final model was selected distinguishing AR vs. TX. A performance 
threshold was selected favoring NPV over PPV (above the threshold = 
AR), and the model and threshold were then locked for validation (CTOT-
14 cohort). The locked model and threshold were also used on pre–AR, 
pre–TX and pre–non-AR samples as well as post-AR. As each subject had 

Figure 9. Inferential Statistics.

Raw Data

True Phenotype N TruGraf ®TX TruGraf® AR
TX 95 78 17
AR 60 26 34

Total 155 104 51
Statistics (n = 155)

Accuracy 77%
Sensitivity 57%
Specificity 82%

PPV 47%
NPV 87%

Clinical Phenotype
TruGraf® Liver Result AR TX

AR 9 3
TX 10 15

Sensitivity / PPA 47.4%
Specificity / PNA 83.3%

Table 7. Accuracy Statistic.
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serial samples collected, a linear mixed effect model with random intercept 
was used to estimate the pre-biopsy (or virtual TX biopsy) slope for each 
phenotype to account for within patient correlation. Data first stratified by 
phenotypes and coefficients were estimated and compared via linear mixed 
effect model. We used bootstrap method (n=1000) to generate the 95% CI 
for estimation of the earliest day prior to diagnosis of detecting differences 
between groups. Another linear mixed effect model was fitted to compare 
the pre and post-AR slopes. Analysis was performed using R version 3.5.1 
(R Studio). 

Probes from the final locked models were then fed to Ingenuity Core 
Analysis (Qiagen, Inc., Hilden, Germany) that provides information about 
enriched pathways and allows comparison to literature data. Enriched 
pathways were selected based on Fisher’s exact test (p-value <0.05 
statistically significant) 

Discussion

The development of acute rejection after LT can significantly impact patient 
and graft survival. To date, there are no established non-invasive tests 
for serially detecting pre-clinical or clinical signs of rejection or healthy 
graft function. In a recent similar publication, we described the validity 
of kidney transplant biomarker (TruGraf) in detecting silent rejection on 
biopsy in patients with stable graft function (5). Similarly in LT, there is a 
great need for non-invasive serial monitoring of patients undergoing key 
immunosuppression modifications post-operatively (9-17). To address this, 
we have discovered and validated a blood biomarker profile diagnostic 
for AR that can be detected prior to AR. This paper serves as additional 
clinical validation in the Transplant Genomics Inc. laboratory. Prior studies 
have demonstrated genetic polymorphisms, blood/hepatic gene expression 
profiles, microRNAs, blood lymphocyte populations, chemokines and 

Table 8. Average coefficient of variation (CV) for external RNA controls.

Figure 10. Intermediate Precision Reagent Rotation Schedule.

Figure 11. TruGraf® Liver -specific probeset correlation.

[5]

[9-17]
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R2 Values - Patient 142
P142_5a P142_5b P142_6a P142_6b P142_6c P142_6d P142_6f P142_6g P142_6h P142_6i

P142_5b 0.995 n/a 0.995 0.976 0.985 0.983 0.980 0.980 0.979 0.981
R2 Values - Patient 303

P303_5a P303_5b P303_6a P303_6b P303_6c P303_6d P303_6f P303_6g P303_6h P303_6i
P303_5b 0.999 n/a 0.996 0.983 0.988 0.989 0.967 0.989 0.884 0.982

R2 Values - Patient 305
P305_5a P305_5b P305_6a P305_6b P305_6c P305_6d P305_6f P305_6g P305_6h P305_6i

P305_5b 0.998 n/a 0.994 0.985 0.985 0.985 0.987 -- 0.903 0.983
R2 Values - Patient 306

P306_5a P306_5b P306_6a P306_6b P306_6c P306_6d P306_6f P306_6g P306_6h P306_6i
P306_5b 0.998 n/a 0.995 0.971 0.980 0.975 0.980 0.975 0.979 0.981

Table 9. Summary of Intermediate Precision – whole array signal correlation R2.

Sample ID Cohort 6 RLE Mean
(CV%)

Cohort 6
GAPDH3’-5’ 
Ratio(CV%)

P_142 8.2% 12.9%
P_303 11.6% 8.7%
P_305 7.5% 7.6%
P_306 5.1% 7.0%

Table 10. Hybridization Metrics (% CV) for Intermediate Precision Sample 
Replicates.

Sample ID PM Mean
(CV%)

RLE Mean
(CV%)

GAPDH3’-5’
Ratio(CV%)

P_142 2.1% 2.7% 0.4%
P_303 2.3% 0.3% 1.7%
P_305 7.1% 1.0% 2.5%
P_306 3.2% 1.3% 1.3%

Table 11a. Hybridization Metrics (% CV) for Within-run Sample Replicates.

Subject R2 (“a’ replicate vs”b” replicate)
142 0.995
303 0.999
305 0.998
306 0.998

Table 11b. Summary of Intra-run Precision – whole array signal correlation 
regressions.

complement proteins associated with AR in the LT population (18-33). 
These were not performed in LT patients in standard management and 
mainly in specific studies involving immunosuppression withdrawal. Blood-
based tests validated in routine serial monitoring, such as our model, may 
be more useful and generalizable. This study has limitations that need to 
be addressed. In summary, the development of biomarkers in LT could 
transform the field, particularly with the focus on avoiding adverse events 
from both under- and over-immunosuppression. Our data represent an 
advance toward the development of clinically serviceable, blood-based 
GEP tests for use in liver transplantation, similar to other organs (3, 5, 34). 
We are rapidly moving toward conducting biomarker-based interventional 
studies to proactively detect and reduce deleterious LT complications. 
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