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Abstract
Achieving early detection at the onset of cancer is a major goal of cancer research. The early presence of aberrant 

DNA methylation makes the use of DNA methylation biomarkers an attractive candidate for early detection. Altered DNA 
methylation is ubiquitous in human cancers and specific methylation changes are often correlated with clinical features. 
DNA methylation biomarkers provide a range of opportunities for early detection, diagnosis, prognosis, therapeutic 
stratification and post-therapeutic monitoring. Furthermore, aging is one of the primary risk factors associated with 
cancer development. We conducted computational biology analyses of published High-grade serous ovarian cancer 
(HGSOC) epigenetic profiles using gene lists bearing human embryonic stem cell (hESC) characteristics. Through 
aging correlated features, epigenetic age-dependent marker panel on HGSOC was conducted. It is to be noted, the 
genes in the refined marker panel were found all included in the age-dependent features. The further experiment 
results showed not only the refined marker panel is able to represent the age-dependent features but performed 
better performance than the reported marker panel without associated with age parameter. Furthermore, the refined 
prognostic marker panel, including HOXA9, HSPA1A, and CALCA-associated with ovarian cancer and tumor growth, 
is strongly connected with literature support the potential for considering into clinical assay for patients’ stratification 
and future personalized medicine interventions.
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Introduction
Ovarian cancer is the most lethal form of gynecological cancers, 

due in part to lack of a reliable early detection method, and thus 
majority of the patients are diagnosed at an advanced stage of the 
disease. In the absence of an early ovarian cancer detection test, 
improved therapies for advanced disease are paramount to improving 
the survival for women with ovarian cancer. A better understanding 
of the molecular pathogenesis of ovarian cancer is currently required 
to identify biomarkers to enable early detection and novel therapeutic 
targets. Cancer recurrence is thought to reflect the survival of a small 
percentage of ovarian cancer stem cells (CSCs), which are relatively 
resistant to chemotherapy, can repopulate the tumor, and can spread 
to distal sites [1-3]. Previous studies have identified certain phenotypic 
and functional characteristics of CSCs that may distinguish such 
cells from other neoplastic cells [3,4]. These CSCs are thought to be 
resistant to current chemotherapeutic strategies due to their intrinsic 
stem-like properties and thus may be responsible for recurrent tumor 
growth. Ovarian CSCs may have stem cell-like gene expression 
signatures, possibly reflecting their relatively high capacity for self-
renewal and capacity to regenerate the entire tumor population [2,5]. 
Early detection of cancer, mainly at the onset of the disease, is a major 
goal of cancer research. The changes present in precancerous lesions 
[6] and some cancers [7] revealed that DNA methylation alterations 
play a key role in the early steps of human carcinogenesis. It has been 
a few decades now since Riggs, Holliday and Pugh proposed that DNA 
methylation was part of a system for controlling gene expression, 
and play an essential role in genome regulation, development and 
disease in mammalian cells [8,9]. Profiling of specific sites or panels 
of sites aberrantly methylated within tumor cells are currently being 
investigated as biomarkers for early prediction and prognostication, 
where cancer-associated methylation can be detected in tumor biopsy 
samples, cell-free serum, urine and peritoneal fluid [10-12]. Mikeska 
et al. also concluded that altered DNA methylation is ubiquitous in 
human cancers and specific methylation changes are often correlated 
with clinical features. DNA methylation biomarkers with some specific 

methylation changes provide a range of opportunities for early detection, 
diagnosis, prognosis therapeutic stratification and post-therapeutic 
monitoring [13]. Aging is one of the most important risk factors for the 
development neoplasia [14]. Epigenetic modifications of DNA, such as 
altered DNA methylation patterns, have long been postulated to play 
a role in aging and the associated increased incidence of neoplasia. 
There are now a substantial amount of evidences that aging does affect 
DNA methylation in specific loci, including cancer-related genes [15-
19] suggest that CpG island methylation may be one of the molecular
mechanisms which is involved in altering gene expression during the 
aging process. Age-related methylation of CpG islands in critical genes 
may also prove importance for the pathophysiology of other human 
diseases. Based on these observations, a hypothesis was proposed in 
the current work which stated that age may induce DNA methylation 
of human embryonic stem cell-like genes, and thereby predispose to 
cancer. Hence, in order to identify epigenetic age-dependent genes 
that may be associated with HGSOC, the genes in stem cell gene sets 
that were closely correlated with age were retrieved as features for 
subsequent marker panel analysis. We first retrieved age-dependent 
genes as features from human embryonic stem cells, and validated the 
age-dependent signatures and the refined age-dependent marker panel 
in all samples. Furthermore, the statistical significance of the features 
and the refined marker panel were examined through the previously 
developed R package, CGPredictor [20]. It is to be noted that, three of 
the eleven genes in the refined marker panel were strongly connected 
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with ovarian cancer and tumor growth, as reported in the literature. 
These results also indicated that our method reliably extracted age-
dependent markers with the potential to consider further clinical 
testing.

Materials and Methods
Study population

DNA methylation and gene expression profiling data were obtained 
from the TCGA website. The training dataset contained 282 tumor 
samples and eight solid normal tissues as controls samples. DNA 
methylation data was generated on the HumanMethylation27 BeadChip 
(Illumina, Inc.) to include 27,578 CpG dinucleotides spanning ~14,000 
genes. The probe information was available on the Illumina website, 
whereas the clinical information was downloaded from the TCGA Data 
Portal.

Generation of hESC related gene sets

According to previous reports [5,21] we compiled an hESC related 
gene panel, including ESC overexpressed genes [22], Nanog, Oct4 and 
Sox2 targets [23]. Polycomb targets in hESCs [24] and Myc targets 
[25,26] were also used for subsequent analyses. This hESC specific 
gene panel was found to be enriched with poorly differentiated tumors 
[5]. We limited our primary analysis to the common gene set between 
this hESC dataset and the Infinium platform -3,038 genes in total for 
subsequent analyses.

Statistical analysis

Kaplan-Meier analysis was used to generate survival curves and 
log-rank test was employed to determine univariate differences between 
phenotypes. Bootstrapping was used to evaluate the robustness: two 
phenotypes of patients, representing 47 and 25 patients the number 
of samples grouped in the O-CIMP negative and positive phenotype, 
respectively, were resampled from patients of training data with the 
original age-dependent features. F-score was used to measure the 
performance of each of the 1,000 resampling sets.

Results
Age-dependent genes was extracted as features

Because of the heterogeneity of HGSOC, there are at least two 
typical subgroups. Pearson Correlation Coefficient was performed 

in terms of methylation intensity to choose the two most-normal-
like HGSOC patients as surrogate 1 and the 2 most-normal-unlike 
HGSOC samples as surrogate [2]. We performed genome-wide DNA 
methylation profiling on HGSOC specific to human ES cell identity 
gene sets. The enrichment pattern of the used gene sets have been 
used successfully in the past to analyze an enrichment pattern with 
13 gene sets via gene expression and DNA methylation [5,21,27]. 
Accordingly, these gene sets were utilized for further feature extraction 
and unsupervised clustering. After implementing Pearson Correlation 
Coefficient, methylation intensity of the genes correlated with age 
was extracted (a minimum Pearson correlation threshold >0.1 was 
applied). The forty-four genes in features for subsequent clustering 
were extracted under genes in surrogate2 and control samples possess 
the great beta value difference with 0.45. The extracted age-dependent 
features were utilized for unsupervised clustering of k-means to assign 
tumors to subclasses, as shown in Figure 1.

The age-dependent marker panel is confident and is able to 
represent the feature genes

To compare O-CIMP-negative with O-CIMP-positive, 
hypomethylated and upregulated genes were extracted as age-
dependent marker panel. Interestingly, the genes in the marker panel 
were all found in the age-dependent features. Kaplan-Meier (KM) 
plots for both the clustered phenotypes by features, and the retrieved 
marker panel showed a more favorable outcome for O-CIMP-negative 
phenotype than the O-CIMP-positive (Figure 2a and 2b). Moreover, 
the age-dependent marker panel could distinguish between the two 
phenotypes with high performance similarly as done by the feature. 
These results indicated that the retrieved age-dependent marker panel 
could represent the age-dependent features. However, the performance 
of the current panel was distinctly more favorable than the previously 
reported marker panel for HGSOC, which was without associated with 
age, indicating that the performance of age-dependent marker panel 
(as shown in Figure 2c [8] performed better than the marker panel 
without age as a parameter. Furthermore, some genes in the marker 
panel were strongly connected to the previous reports related to poor 
survival of ovarian cancer and tumor growth. Collectively, we utilized 
faithful method to identify two distinct DNA methylation subgroups 
of HGSOC (Figure 3), which had great potential to mine biomarkers 
provided clinical test consideration and provided novel insight 
regarding the role of O-CIMP phenotypes [3].

Figure 1: DNA Methylation clusters.
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Figure 2: Similar performance as the features in KM plot.
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Validations of age-dependent features and marker panel 
signatures

We next asked if this extracted features and marker panel reflected 
a consistent pattern of increased methylation with age in the large 
patients set. We found that the methylation signatures of the feature 
genes correlated significantly with age from the whole sample (Figure 
4a and 4b). When scaled with respect to two extracted specific 
phenotypes with features, the age-dependent feature was strikingly 
different between age groups (Figure 4c). The results supported 
that the age-dependent feature is highly confident for clustering to 
distinct phenotypes. As for the age-dependent marker panel, the same 
experiment was implemented for validation. We also found that the 
marker panel correlated significantly with age with the whole sample 
(Figure 4d). When scaled with the intensity distribution of the two 
extreme phenotypes, the results showed the similar correlation within 
the same age group but strikingly different between different groups 
(Figure 4e). The results were consistent with the methylation intensity 
distribution of age-dependent features. Additionally, these results did 
show a consistent pattern of increased methylation with age in the 
HGSOC cancer patients. It was also indicated the phenotypes was 
distinctly by age-dependent marker panel, which were correlated 
with age. Together, these results did demonstrate the marker panel be 
able to perform the similar performance as the features in KM plot 
(shown in Figure 2) indicated the ability as well that age-dependent 
marker panel be representing the feature. Furthermore, the developed 
examining package, CGPredictor, was also utilized for further 
validation [2]. The designed bootstrap test was utilized to examine the 
associated significance between clustering genes and the phenotypes. 
Experimental result was obtained after 1000 iterations (p<0.001), which 
indicated the significant relationship between features and clustered 
results. Additionally, the other statistical examining mechanism, viz. 
the random selection test was utilized to examine the significance of the 
marker panel. The same number of genes was randomly selected as was 
originally extracted as biomarker candidates for HGSOC. The marker 
panel for HGSOC was also significant after 1000 iterations (p<0.001). 
The significance result showed that the gene sets in our age-dependent 
marker panel has not been selected randomly.

Discussions and Conclusions
Aging is the main risk factor associated with cancer development 

[30]. In this regard, early detection offers the opportunity for therapeutic 
intervention at an early stage of cancer development, and thus produces 
better outcome in the disease treatment. Obviously, there is a need for 
a preventive strategy that can utilize biomarkers in order to stratify 

patients into appropriate screening or surveillance programs for the 
early detection of cancer. Hence, reliable markers associated with a large 
proportion of tumors needs to be developed for their widespread use in 
the diagnosis and treatment of cancer. DNA methylation is an important 
regulator of gene transcription. Alterations in DNA methylation are 
common in a variety of tumors as well as in development. Then, the 
early presence of aberrant DNA methylation, even in precancerous 
lesions, makes the use of DNA methylation biomarkers an attractive 
possibility for early detection. An alternative DNA-based approach 
for early detection of ovarian cancer might be promising since DNA 
extracted from a patient’s plasma, serum or other body fluids could be 
easily amplified by PCR technology, and is therefore potentially more 
sensitive than the conventional tests. The majority of the commercially 
available DNA methylation biomarker-based assays for colorectal, lung, 
and brain are thus directed toward early detection. For example, one 
of the promising methylation biomarkers, SHOX2, was employed to 
distinguish between malignant lung cancer and benign lung diseases 
[31,32]. In colorectal cancer, the DNA methylation markers, both 
SEPT9 and VIM, are potential candidates for the early detection [33-
36,]. Moreover, Hegi et al. confirmed that MGMT methylation was not 
only a predictive biomarker to achieve survival of glioblastoma patients 
treated with temozolomide, but also triggered an increased interested 
in DNA methylation biomarkers [37]. The development of DNA 
methylation biomarkers through several bioinformatics and statistical 
mechanism would provide a strong influence on a biomarker’s accuracy 
and robustness. Promoter methylation can be seen as an alternative 
gene-inactivation mechanism to chromosomal loss and loss of 
functional mutations [38]. Both genetic (changes in DNA sequence, 
such as deletions/amplifications and mutations) and epigenetic 
changes can be defined as heritable changes in gene expression that 
occur without changes to the DNA sequence [39]. In contrast to DNA 
sequence changes, chromosomal loss and mutations are essentially 
irreversible. This change, though heritable, is reversible, making it a 
therapeutic target. The reversible nature of DNA methylation offers 
a therapeutic opportunity to globally restore the normal epigenome 
using demethylation agents [40]. Moreover, epigenetic alterations are 
age dependent, but genetic alterations are not [41]. In the present work, 
we conducted bioinformatics analysis integrating public epigenetic and 
transcriptomic data and gene lists bearing human Embryonic Stem 
Cell characteristics for HGSOC stratification. In this study, the DNA 
methylation profiles and associated clinical information were taken 
from a large population data set obtained from the TCGA website 
discarding those without clinical data and repeated samples were used 
for subsequent analyzing. O-CIMP-negative and O-CIMP-positive 
could be distinguished through the extracted age-dependent features 

Figure 3: DNA methylation subgroups of HGSO.
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Figure 4: Validations of Age-dependent Features and marker Panel Signatures.
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and the identified age-dependent marker panel (Table 1). The validating 
results demonstrated the age-dependent marker panel be able to 
perform the similar performance as the features in KM plot (shown in 
Figure 2.) indicated the ability as well that age-dependent marker panel 
be representing the feature. Through the log-rank test, the refined age-
dependent marker panel not only presented the similar performance as 
age-dependent feature, but also presented a more favorable performance 
than the reported marker panel without the age parameter. The 
statistical significance test through the developed R package [29], viz. 
CGPredictor, a statistical significance test was implement to examine 
the bootstrap resampling. The result showed the confidence of the 
extracted age-dependent features for the subsequent analysis. These 
results also indicated that the age-dependent features were reliable 
for the two phenotypes, and aging is an effective parameter for the 
distinction of HGSOC phenotypes as well. Moreover, the significance 
of the age-dependent marker panel in distinguishing the O-CIMP-
negative and -positive phenotypes were also examined by evaluating 
their log-rank test after 1,000 iterations with randomly selected forty 
four genes from the original gene set. Furthermore, some genes in the 
age-dependent marker panel have been previously reported to have 
a strong connection with ovarian cancer and tumor growth. Among 
the age-dependent marker panel, Ko and co-workers [42] showed that 
the expression of HOXA9 was associated with poor survival of patients 
with ovarian cancer and in mouse xenograft models. Their results 
indicated that HOXA9 expression promotes a microenvironment that is 
permissive for tumor growth. Inducible heat shock protein (HSPA1A), 
is highly expressed on the cell surface of tumor cells, but not on normal 
cells, and promotes tumor cell growth and survival. It also interacts with 
effector cells of the innate immune system and affects their activity. As 
for the promoter of CALCA, it was also informative for differentiating 
methylation between the early stages of ovarian disease and the healthy 
maintenance of control. Our results may have a potential implication 
for the association of biomarker candidates with ovarian cancer 
especially when conducting the effects associated with age on DNA 
methylation profiles. Taken together, these results indicated that the 
extracted age-dependent marker panel deserves consideration for 
further clinical testing to identify their potential usefulness in clinical 
molecular diagnosis and targeted treatment of patients with HGSOC. 
Our results may have the potential implications for cancer prevention, 
risk prediction, detection, prognosis, and therapy.
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