

Open Access

Analogue Computer Model of Progressive Myopia-Refraction Stability Response to Reading Glasses

Peter R. Greene^{*} and Antonio Medina

B.G.K.T. Consulting Ltd., Bioengineering, Huntington, NY, USA MultiVision Research, Milpitas, CA, USA

Brief Communication

A tendency of the eye to become myopic with long hours focusing at a near distance has been reported often [1-8]. Myopia development, as any refractive development, is described by a first order feedback system. A first order feedback system is defined by its transfer function F(s) = 1/(1+ks) [1,2]. This function anticipates an exponential development of refractive state and the effect of lenses. Near work is myopizing, as it is equivalent to wearing a negative lens.

Using a digital computer, first-order equations have been solved previously to describe and predict myopia progression [1,3]. An analogue circuit can simulate myopia progression vs. time R(t) because the response of the feedback system is the same as the capacitor voltage in a R-C (Resistor-Capacitor) circuit, as shown in Figure 1. When near work is involved a negative square-wave represents the daily accommodative demand as represented in the inset in Figure1[3]. The R-C circuit solves the problem without any computations.

The system exhibits an exponential progression of myopia [1,3].

$$R(t) = -5.00 - 3 \left[1 - exp(-t/\tau) \right]$$
(1)

where t is time, τ is the time constant and R is either refraction or voltage. This equation applies initially when the square wave is at -3, and then exponentials alternating with the square wave apply as described in [3].

This electrical circuit simulates myopia progression vs. time as the voltage at the capacitor, where Volts (V) represent Diopters (D), when we initialize the subject's myopia to -5 D and a negative square-wave representing the daily accommodative demand due to near work is applied. The switch selects the subject's myopia. We use -5 and -2 as a typical example.

Reading glasses will cancel the -3 diopter demand. Any type of reading glasses have the capability to optically shift a book or computer

Figure 1: This schematic shows a -5 diopter eye, with a +3 diopter (14 – inches).

screen from a typical reading distance of 1/3 meter (14-inches) to infinity, reducing accommodative demand on the visual system. Plusadd glasses, bifocals, and progressive addition lenses (PALs) have therefore the potential to stabilize-myopia [4-8]. The use of electrical circuits as models of myopia may enlighten the understanding of this condition and its progression among those literate in the engineering field.

Conflict of Interest Statement

The authors have no proprietary or financial conflicts of interest.

Acknowledgement

This work was partially funded by NIH NEI Grant EY 005013. Special thanks to Prof. McMahon, Harvard - M.I.T. H.S.T. Program, for many years of coaching with respect to differential equations, the AP-14 modular analogue computer, and translating these components to the bread-board.

References

- 1. Medina A, Fariza E (1993) Emmetropization as a first-order feedback system. Vision Res 33: 21-26.
- Medina A (2015) The progression of corrected myopia. Graefes Arch Clin Exp Ophthalmol 253: 1273-1277.
- 3. Greene PR, Brown OS, Medina AP, Graupner HB (1996) Emmetropia approach dynamics with diurnal dual-phase cycling. Vision Res 36: 2249-2251.
- Hung GK, Ciuffreda KJ (2000) Quantitative analysis of the effect of near lens addition on accommodation and myopigenesis. Curr Eye Res 20: 293-312.
- Greene PR, Grill ZW, Medina A (2016) Mathematical Models of College Myopia. Optik (Stuttg.) 127: 896-899.
- Guyton DL (1995) The Dilemma of Early Myopia: The Physician's Perspective. Health News publ NEJM.
- Gwiazda J, Hyman L, Hussein M, Everett D, Norton TT, et al (2003) A randomized clinical trial of progressive addition lenses versus single vision lenses on the progression of myopia in children. Invest Ophthalmol Vis Sci 44: 1492-1500.
- Medina A (2015) Detecting the effect of under-correcting myopia. Graefes Arch Clin Exp Ophthalmol 254: 409-10.

*Corresponding author: Peter R Greene, BGKT Consulting Ltd., Bioengineering, Huntington, NY, USA, Tel: +16319355666; E-mail: prgreeneBGKT@gmail.com

Received April 26, 2016; Accepted May 23, 2016; Published May 26, 2016

Citation: Greene PR (2016) Analogue Computer Model of Progressive Myopia – Refraction Stability Response to Reading Glasses. J Comput Sci Syst Biol 9: 104. doi:10.4172/jcsb.1000226

Copyright: © 2016 Greene PR. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.