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Since 1987, more than 30 candidate HIV-1 vaccines have advanced 
to human clinical trials, of which some were large-scale phase IIb and 
III trials [1-3]. Of all these trials, only the Thai Phase III RV144 trial, 
based on a recombinant canarypox-HIV vector prime and recombinant 
HIV-1 envelope gp120 subunit protein, showed modest protection 
against HIV-1 infection [4]. This result came as a surprise because 
the RV144 trial, which had initially been fiercely condemned as ill-
conceived and unjustified [5-7], instilled a new feeling of optimism 
into the field, because it suggested that developing a preventive HIV-1 
vaccine may after all be feasible. Three years later, it seems appropriate 
to devote a special issue of the Journal of AIDS and Clinical Research 
to review what progress has been made in the search for a preventive 
HIV-1 vaccine. 

The first contribution by Leopold Kong and Quentin Sattentau, 
entitled “Antigenicity and immunogenicity in HIV-1 antibody-based 
vaccine design”, reviews in considerable detail the many studies aimed 
at developing an HIV-1 preventive vaccine by rational, structure-based 
design. This strategy, also known as reverse vaccinology [8,9], attempts 
to generate a vaccine from the crystallographic structure of broadly 
neutralizing monoclonal antibodies (bnMabs) bound to epitopes of the 
HIV-1 envelope (Env) glycoprotein.

These studies were initiated because of the availability of a small 
number of Mabs that recognize five different antigenic sites of the Env 
protein, i.e. the conserved CD4-binding site [10], the CD4-induced 
antigenic site that becomes accessible after Env interacts with the CD4 
receptor [11], the semi-conserved V3 loop [12], the membrane-proximal 
external region of the gp41 protein [13] and the glycan antigenic site 
[14]. In subsequent years, many additional bnMabs directed to Env 
epitopes were isolated from HIV-1 infected persons [15-17] and had 
their structures elucidated by X-ray crystallography [18-22]. These 
bnMabs were then used as templates to reconstruct one of the epitopes 
that such Mabs are able to recognize using structure-based design 
technology. It was assumed that such reconstructed epitopes designed 
to fit bnMabs outside of the context of the Env antigen would possess the 
immunogenic capacity of inducing a neutralizing polyclonal antibody 
response in immunized hosts. When this was found not to be the case, 
attempts were made to improve the antigenic reactivity of the epitopes 
recognized by bnMabs using various strategies, such as adding flanking 
residues to the epitopes, constraining them in various conformations 
[23] and grafting them into various protein scaffolds [24-26].

Although some of these approaches increased the ability of the
engineered epitopes to bind the bnMabs, none of these epitopes were 
found to be effective immunogens able to induce bnAbs [27-29].

In their discussion of these results, Kong and Sattentau suggest that 
the failure of the engineered epitope mimics to elicit broadly neutralizing 
antibodies could be due to their insufficient immunodominance, to an 
inadequate mimicry of the tertiary and quaternary structure present 
in native Env or because the epitopes possessed a low affinity for the 
germline B cell receptors (BCRs) present in the immunized hosts. They 
also stressed the basic quantitative/qualitative divide that separates 
the chemical description of an antigen and its biological effect on 
immunity. Although antigenicity can be reduced to the chemical level 

of an interaction between an epitope and a paratope, such a reduction 
is not feasible for immunogenicity which is a biological property 
determined mainly by the context of the host being immunized, namely 
its Ig gene repertoire and numerous cellular and regulatory mechanisms 
extrinsic to the immunizing epitope [30]. These host factors cannot be 
controlled when one uses as immunogen, an HIV-1 epitope designed 
to fit a particular bnMab since antigenic reactivity is not necessarily 
accompanied by the immunogenic capacity to elicit the same type of 
neutralizing antibodies.

The second contribution by Jason Okulicz is entitled “Elite 
controllers and long-term nonprogressors: models in HIV vaccine 
development”. It reviews the characteristics of these two groups of HIV-
infected individuals and discusses the issues related to their potential 
use as models for HIV vaccine design. Elite controllers are a very small 
subset of HIV-infected persons who control plasma viral load in the 
absence of antiretroviral therapy (ART). Long-term nonprogressors 
(LTNP) are somewhat more common and showed a prolonged elevation 
in CD4+ cell counts in the absence of ART [31]. Both elite controllers 
and LTNPs exhibit a high degree of heterogeneity with respect to host 
genetics, immunologic characteristics, rates of HIV disease progression 
and clinical outcomes. Although each of these two phenotypes present 
characteristics which one would like a vaccine to induce, i.e. virologic 
suppression and elevated CD4+ cell counts for prolonged periods, we 
unfortunately do not know how to elicit such responses by vaccination [32].

The third contribution by Hioe et al. and her coworkers from 
the New-York Langone Medical Center is entitled: “Targeting a 
neutralizing epitope of HIV envelope gp120 by immune complex 
vaccine”. It has been known for many years that immunization with 
antigen-antibody complexes, instead of with antigen alone, can either 
up or down regulate the antibody response, although the precise 
mechanisms of these effects are poorly understood. Suppression of 
antibody responses may occur through the masking of epitopes 
or through the elimination of immune complexes by receptor-
mediated phagocytosis. Enhancement on the other hand could 
result from specific Fc receptor targeting or from antibody-induced 
conformational changes in the antigen that exposes previously 
hidden epitopes [33]. Vaccines based on immune complexes have 
been found for instance to enhance the immune response to hepatitis 
B antigens in humans [34] as well as to various viral infections 
in animals [35]. The Hioe group immunized mice wih immune 
complexes of HIV Env bound to human Mabs directed to the CD4-
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binding site and observed enhanced neutralization Ab titers to Env and 
to the V3 loop compared to titers obtained by immunization with Env 
alone [36-38]. However, the mice did not produce Abs to the CD4bs 
because that site was blocked by the Mabs used to form the complexes. 
Since human IgG1 Mabs were used to form the complexes whereas the 
immunization experiments were done in mice, it will be important to 
confirm these results by small scale phase I trials in humans for human 
IgG1 Fc does not have the same affinity for murine and for human Fc 
receptors. It was also found that immune complexes, formed when an 
Env mutant lacking a glycan at position 448 in the C4 region was bound 
to an anti-CD4bs Mab, were able to elicit higher levels of neutralizing 
anti-V3 Abs than immunization with wild type Env complexes. 

In their review the authors suggest that several mechanisms 
could be responsible for the enhanced immunogenicity of the 
immune complexes involving CD4bs Mabs, for instance an increased 
accessibility of the V3 epitopes, an increased resistance of gp120 against 
degradation by proteases or a modulation of CD4+ T cell responses 
to various Env epitopes. Experiments are currently in progress to 
determine whether a regimen consisting of DNA priming/protein boost 
with immune complexes could further improve the immunogenicity of 
HIV neutralization epitopes.

The fourth contribution by Ray Greek entitled: “Animal models 
and the development of an HIV vaccine” discusses the experimental 
evidence that animal models used for studying HIV vaccine responses 
are not suitable for predicting what the response will be in humans. 
This is a controversial issue because policy makers and funding bodies 
continue to demand that nonhuman primate (NHP) models should 
be used in HIV vaccine research as predictors of human responses 
in spite of the fact that there is now good evidence that these models 
have no predictive value [39-42]. Showing protection in NHPs is no 
longer accepted as a gatekeeper for advancing a vaccine product into 
human efficacy trials since a product that works in macaques may not 
work in humans while a product that shows no efficacy in NHPs could 
nevertheless work in humans. Unfortunately, strategies that do not 
work in NHPs are not tested in humans with the result that potentially 
efficacious vaccines may have been lost.

If NHPs are not predictive, results with less closely related species 
such as mice and rabbits are of course even less likely to predict human 
responses. The review provides an exhaustive list of 224 references 
to back its numerous claims. It is well-known, for instance, that 
chimpanzees do not develop AIDS when infected with HIV-1 and that 
the pathology and immune responses observed in monkeys infected 
with simian immunodeficiency virus (SIV) and simian-HIV virus 
(SHIV) differ from what is observed with HIV infection. Statistical 
procedures used to calculate the positive predictive value of a vaccine 
intervention are described and the values that are obtained clearly 
demonstrate that NHP models are not a predictive modality. The last 
section of the review analyzes the complexity of biological systems and 
organisms that share a fairly recent common ancestor (such as monkeys 
and humans) and explains why small differences in gene interactions 
and regulatory networks can result in vastly different outcomes to the 
same immune system perturbation. The take home message is that: 
“When it comes to testing HIV vaccines, only humans will do” [43] 
which implies that currently used inter-species extrapolations should 
be abandoned and replaced by small scale human trials to test the safety 
and efficacy of candidate vaccine immunogens.

The fifth contribution from Stefano Butto and his group at the 
Institute of Health in Rome is entitled: “Characterization of variable 
regions of the gp120 protein from HIV-1 subtype C virus variants 

obtained from individuals at different disease stages in Sub-Saharan 
Africa”. In this study, the authors tested the hypothesis that the selection 
of virus variants during the course of disease is caused by changes in the 
sequence characteristics of variable regions of the HIV Env protein. They 
examined HIV-1 clade C-infected individuals, naïve for antiretroviral 
therapy, at different disease stages, in order to characterize the V1 to 
V5 variable regions with respect to sequence length, glycosylation 
pattern and net electric charge. In the chronic stage of the disease, they 
observed in the V1, V2 and V4 loops, an increase in sequence length, 
amino acid variability and putative N-glycosylation sites but very little 
change in the V3 loop as reported previously for clade C [44]. These 
data suggest that the V1 and V4 loops are likely to be the main drivers 
of clade C HIV-1 virus evolution which agrees with the finding that the 
V4 loop is a major target of neutralization activity in clade C infections 
[45].

The last contribution by Rachel Lai and Jonathan Heeney, entitled: 
“Perspectives in HIV vaccine development: what we have learned and 
how we proceed forward” reviews the advances made in HIV vaccine 
development in the context of the overall failure so far to develop a 
protective vaccine. Both T cell-based and antibody-based vaccine 
strategies are discussed and the limitations of reverse vaccinology are 
underlined. It is indeed often overlooked that all anti-HIV-1 bnMabs 
are polyspecific and harbor numerous binding sites capable of binding 
viral epitopes different from the one identified when the structure of 
bnMab-HIV-1 complex was solved [29]. There is therefore no reason 
why the HIV-1 epitope identified by crystallography should be the 
one that triggered the immune response that gave rise to the bnMab. 
Furthermore, the antigenic capacity of an epitope to bind to an Ab does 
not necessarily entail that the epitope also possesses the immunogenic 
capacity to induce that Ab in an immunized host [29]. In addition, since 
somatic hypermutation of germline BCRs leading to antibody affinity 
maturation is required to obtain bnAbs [46,47], it seems unlikely 
that epitopes selected because they fit hypermutated bnMabs will be 
successful vaccine immunogens since the corresponding affinity-
matured BCRs are not present in naïve, vaccinated individuals.

Calls for a greater focus on basic and preclinical research in 
immunology are often made because of the belief that this will provide 
the knowledge needed to guide the design of an effective HIV-1 vaccine 
[3,48]. Basic research may indeed give us an understanding of how an 
immune response sometimes arises in certain HIV-1 infected persons 
but whether this knowledge will bring us closer to the applied research 
goal of developing an effective vaccine remains an open question. It may 
therefore be wise to continue with exploratory early phase human trials 
testing a variety of immunization strategies [40] rather than waiting 
until we more fully understand all the intricacies of various types of 
immune responses to HIV-1 infection.
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