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Abstract

We introduced an algorithm to solve a Non Linear Constrained Optimization (NLCO) problem in this paper. This algorithm follows Das’s idea of Newton'’s interior-
point method that uses a diagonal matrix of Coleman and Li for NLCO problems. A Trust-Region (T-R) mechanism is used to globalize the algorithm. This algorithm
follows Byrd and Omojokun’s idea of step decomposition. It is a successful idea to overcome the difficulty of having an infeasible quadratic T-R sub problem and

converts the quadratic T-R sub problem into two unconstrained T-R sub problems.

Aglobal convergence theory of the algorithm is studied under five standard assumptions. This algorithm is different and maybe simpler than similar ideas such that
the global convergence theory is not depending on the linear independence assumption on the gradients of the constraints.

Some numerical tests are stated to indicate that the algorithm performs effectively and efficiently in pursuance.
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Introduction

We described and analyzed an interior point algorithm in this paper to solve
the following NLCO problem,

minimize f (x) (1.1)

subject to g (x)=0,
asxsh,

where,
fRn>R,g:Rn—>Rmae {RU{-o}inbe{RU{+o}}in,m<n,a<b

Motivated by the impressive computational performance of the primal dual
interior-point method for linear programming, authors in using the Coleman-
Li scaling matrix, proposed a primal interior-point algorithm for solving non-
linear programming problems having a special structure [1].

In particular, their algorithm is designed for solving a special nonlinear pro-
gramming where the vector of primal variables x is naturally divided into a
vector of state variables and a vector of control variables. They proved sev-
eral global and local convergence results for their algorithm. In this paper,
we use the Coleman-Li scaling matrix to propose the interior-point Trust-
Region algorithm for solving nonlinear programming Problem (1.1). The
Coleman-Li scaling matrix was first introduced for unconstrained optimiza-
tion problem and used for equality constrained optimization problem [2].

Newton’s interior-point method which was suggested by and used with is
used in the proposed algorithm. It converges quadratically to a station-
ary point under reasonable assumptions but the starting point must be
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sufficiently closed to the stationary point in order to guarantee conver-
gence. That is, it may not converge at all if the starting point is far away
from the solution.

A Trust-Region (T-R) mechanism is a well-accepted mechanism in NLCO
problem to ensure the global convergence. One of the advantages of T-R
mechanism is that it does not require the objective function of the model
to be convex. Also, it does not seek the Hessian of the objective function
must positive definite. However, in traditional T-R mechanism, after solving
T-R sub problem, we need to use some criterion to check if the trial step is
acceptable. If not, the T-R sub problem must be resolved by a reduced T-R
radius. Similar ideas can be found. Our balance idea mainly differs from
these algorithms in the way of computing trial steps, the way of updating
the penalty parameter, the way of updating the Hessian matrix, and the
global convergence theory which is proved without the assumption of linear
independence on the gradients of the equality constraints. The mechanism
of our method seems simpler than these methods [3].

If the Trust-Region constraint is simply added to the sequential quadratic
sub problem of the equality constrained optimization problem, the resulting
Trust-Region sub problem may be infeasible, because there may be no
intersecting points between the Trust-Region constraint and the hyperplane
of the linearized constraints. Even if they intersect, there is no guarantee
that this will remain true if the Trust-Region radius is decreased.

Byrd-Omojokuns idea is a successful method to overcome the difficulty
of having an infeasible T-R sub problem. This method was suggested by,
and used. In this method, the trial step is decomposed into two orthogonal
components; the tangential component and the normal component. Each
component is computed by solving a Trust-Region sub problem. One of the
advantages of this method, the two sub problems is similar to the Trust-
Region sub problem for the unconstrained case. Under necessary assump-
tions, a global convergence theory for the proposed interior-point Trust-
Region algorithm is introduced [4].

Global convergence results of many T-R algorithms were proved under the
assumption of linear independence on the gradients of the equality con-
straints and other mild assumption. In this paper, our global convergence
theory is not depending on the assumption of linear independence on the
gradients of the equality constraints. So, our global convergence theory is
generic that it holds for many T-R algorithms which are used the augmented
Lagrangian as a merit function, Hessian estimates, and bounded Lagrange
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mu I.p |er.[ ] | . Y (x)V, £(x,4)=0 2.8)

In this trajectory, the suggested T-R algorithm always output a new point, g(x) -0

and avoids possibly two sub problems are solved many times, so that the ) (2.9)

performance of the algorithm is improved. A global convergence theory for Such that x. € F . Let Let Y(x) be a vector whose elements are defined by

the proposed algorithm is presented under mild conditions. In particular, 0 2

regularity condition of the constraints is not assumed. Moreover, numerical 0 ()= 6(y (x))

experiments display that the suggested algorithm performs effectively and v A L i

efficiently in pursuance [6].

The balance of this paper is organized as follows. In the next section, New-
ton’s interior-point method is introduced. We describe the design of the
algorithm in detail while the global convergence. We report preliminary nu-
merical results. Finally, some further remark is given [7].

We use ILIl to denote the Euclidean norm IL.II2. Subscript k refers to itera-
tion indices and superscript i is the ith component of a vector. For example,

Ji Ef(xk)sgk Eg(xk)va EY(xk)[k Ez(x/(s’lk)wv,jk vag(kaﬂ“k)’

and so on to denote the function value at a particular point [8].

Methodology

Newton’s interior-point idea for NLCO problems

In this section, we introduce and analyze Newton’s interior-point idea for
NLCO problems. Let

(x2)=f(x)+2'g(x), 2.)

be a Lagrangian function associated with Problem (1.1) without the bound-
ed constrain a < x < b. Let

L(x Ao )=0(x,2) = p" (x=a)=p" (b=x), (2.2)

be a Lagrangian function associated with Problem (1.1). The vectors A,
pa, and pb represent the Lagrange multiplier vectors associated with the
constraints g(x)=0, 0 < (x-a), and 0 < (b-x) respectively. Let F={x:a < x <
b} andint (F)={x :a < x < b}.

The first-order necessary conditions for the point x+ € F~ to be a local
minimizer of Problem (1.1) are the existence of multipliers Ax €ERm, pa €
Rn, and pb € Rn, such that (x, Ax, pa, pb ) satisfies

V(X A) =t — 1. =0,
g(x.)=0,

(uf )(i) (xf) - a(‘)) =0,
()" (6" —x0) =0,

The above four equations indicates (2.3) (2.4) (2.5) (2.6)
for all i corresponding to x(i) with finite bound and
V(% A4)=Vf (x)+Vg(x) A

Let Y (x) be a diagonal matrix whose diagonal elements are defined as
follows

if @) > o0 and (V.£(x4))" 20,
it b < +a0 and (V.£(x.2))" <0, (2.7)

This matrix was first introduced in for unconstrained optimization problem
and was used by for NLCO problems. Using the matrix Y (x), the conditions
(2.3)-(2.6) are equivalent to the following conditions
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1

(2.10)

Applying Newton’s method on the nonlinear system (2.8)-(2.9), then we
have
[YZ (x)Vie(x, )+ diag(V/,(x,ﬂ.))diag (y/(x))]Vx-# Y (x)Vg(x)VA==-Y(x)V ((x,2),
Itis easy to see that the step generated by the above system coincides with
the solution of the following quadratic programming sub problem

1 1
Minimize £(x, A)+(Y (x)V,L(x.4)) S+5S Bs (2.13)

T

Subject to &(x)+(¥ (x)Ve(x)) s=0,
Where
B=Y(x)H (x,ﬁ.)Y(x) + diag(fo(x,ﬂ))diag(l//(x))
such that H(x,A) represents the Hessian of the Lagrangian function (2.1) or
an approximation to it.

If T-R constraint is simply added to quadratic programming sub problem
(2.13), the resulting problem will take the form where 8k>0 is the radius
of the Trust-Region [8]. The above T-R subproblem may be infeasible be-
cause there may be no intersecting points between T-R constraint and the
hyperplane of the linearized constraints. Even if they intersect, there is no
guarantee that this will remain true if T-R radius is decreased.

To overcome the difficulty of having an infeasible T-R sub problem we will
use Byrd-Omojokuns method. In this method, the trial step is decomposed
into a normal step and a tangential step.

Description of (NIPTR) algorithm

We introduce the main algorithm in this section. We clarify the main frame-
work of the Newton’s Interior-Point Trust-Region (NIPTR) algorithm to solve
Problem (1.1) [9].

How to compute a step S,

For sub problem (2.13), we follow Byrd-Omojokuns mechanism to compute
the trial step Sk. In this mechanism, the step Sk is decomposed into the
normal step Sn and the tangential step St=ZkSt, where Zk is a matrix whose
columns form a basis for the null space of (Y,Vg) T.

To obtain the normal step, we solve the following T-R sub problem
Minimize /% +(YVg)" S"II’
subject to /IS"Il < 50,

for some 0 < ¢< 1. Our way of solving the above T-R sub problem is to
approximate its solution using the dogleg mechanism. More details about
dogleg mechanism [10].

How to test the step t°Y,s, and update §,
Choose O<y,<y,<1, 0<a,<1<a,, and dmin < 80 < Smax.
Reduce the Trust-Region radius by setting 6k=a'1lISKl.
accept the step: x,=x +1°Y,S,.

Set §,,,=max (5,, 5, ).

Set 5, =min{5__, max{5_, o’8 }}.

max’
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Global convergence analysis Y (x7) Vg (x) g (x7)=0,

To establish the global convergence theory for NIPTR algorithm, we need ~ Let {kj} be any subsequence of iteration sequence that satisfies FMB con-
the following assumptions. ditions that are not KKT conditions. For all k € {kj} the corresponding se-
. quence of smallest singular values of the matrices YkVgk is not bounded
A necessary assumption: away from zero.
Let {x,} be the sequence of points generated by NIPTR algorithm.

The following assumptions are necessary to prove the global convergence Results and Discussion
theory of NIPTR algorithm.

The algorithm NIPTR is performed on some of test problems listed for the
same starting points to show effectiveness of algorithm NIPTR. For com-
The functions f (x), g (x) C2 for all xQ. parison, we have included the corresponding results of NIPTR algorithm

. . against the corresponding numerical results. This is summarized in Table 1.
AL'(‘)Vf f (;()’YV; (), V12f x), gf(x),lvg (X)’dvdzg' (é) fori=1..., m, and (¥,Vg,) In this table, Niter refers to the number of iterations. For all problems, these
{(v,vg)T (Y,Vg)}-1 are uniformly bounded in Q. algorithms achieved the same optimal solution at the same starting points.

There is a convex set QRn and containing {x }.

The sequence {A,} is bounded. Table 1. Comparison of method with NIPTR algorithm.

The sequence of approximated Hessian matrices {H,} is bounded.

An instantaneous results of the above necessary assumptions is that there ~ Problem  Methodin  (NIPTR) ~ Problem  Methodin (NIPTR)

exists a constant 0<b1, such that, Z B < b1, Z BZ, < bl. Niter algorithm Niter algorithm
name name
Observe that the above assumptions do not comprise the assumption of Niter Niter
linear independence on the gradients of the scaled equality constraints, a 5006 7 3 hs042 3 3
commonly used assumption by many authors. So, we may have other kinds
of stationary points which are presented in the following definitions [11]. hs007 27 14 hs043 7 6
. . . hs008 5 4 hs044 6 4
Feasible mayer-bliss point
led bl s ( | f bl hs009 6 14 hs045 17 8
A point xF is called a Feasible Mayer-Bliss (FMB) point of Problem
(1.1), if there exist a Lagrange multiplier vector ARm and a constant vR hs010 n 9 hs047 16 5
not all zeros such that the point (x, v, A) satisfies the following conditions: hs011 6 7 hs048 2 4
V<Y (X*)Vf (X*)-I-Y (X*)Vg (X*) A*=0, hs012 7 5 hs049 15 9
g (x*)=0. hs013 15 10 hs050 8 9
- - . . - hs014 6 8 hs051 2 8
If v*=0, the FMB conditions are coincide with the following conditions ° *
Y (OVE (Y () ) =0 hs015 9 9 hs052 2 7
X X)+Y (x X)A*=
g hs016 1 10 hs053 4 4
g (X)=0, hs017 9 10 hs0ss 4 6
and in this case, these conditions are called a Karush-Kuhn-Tucker (KKT) hs018 9 8 hs056 6 4
conditions of Problem (1.1) and the point (x , 1, A* ) is called KKT point.
hs019 39 10 hs060 7 6
Infeasible mayer-bliss point hs020 4 5 hs061 6 8
A point x* € F is called an Infeasible Mayer-Bliss (IFMB) point of Problem hs021 5 5 hs062 6 6
(1.1), if there exist a Lagrange multiplier vector A* Rm and a constant v* R
not all zeros such that the point (x*, v*, A*) satisfies the following conditions: ~ "S022 6 6 hs063 1 7
hs023 7 6 hs064 14 10
VY (¢)VF (X)+Y (x*)Vg (x*) A*= 0 s s
y 0 hs024 8 9 hs065 9 7
X*) Vg(x*)g(x*)=
() Velx)gx) hs026 17 12 hs066 9 6
If v*= 0, then IFMB conditions are coincide with the following conditions hs027 16 5 hs067 13 6
Y (x)VE(x) +Y (x)Vg(x) A"=0 hs028 2 4 hs071 8 10
Y (x")Vg(x)g(x*) = 0, hs029 7 8 hs072 16 18
and in this case, conditions are called an infeasible KKT conditions and the hs031 4 3 hs073 7 7
point (x*, 1, A*) is v* called an infeasible KKT point. hs032 9 7 hs076 6 5
Let {kj} be any subsequence of iteration sequence that satisfies FMB condi- hs033 7 7 hs077 1 9
tions that are not KKT conditions. From Definition 4.1, we notice that, for
all k € {kj} the corresponding sequence of smallest singular values of the hs034 9 8 hs078 4 4
matrices YKVgk is not bounded away from zero. hs035 8 9 hs079 4 6
Throughout the rest of the paper, we use {Ykj Vg kj} to denote the hs036 6 7 hs080 7 /
sequence of smallest singular values of YkVgk for all k €{ki}. hs037 6 7 hs081 7 6
If v*=0, then IFMB conditions are coincide with the following conditions hs039 17 12 hs093 5 4
Y (x*) VE (x*)+Y (x*) V g (x ) A*=0, We use the logarithmic performance profiles which proposed by and our
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profiles are based on Niter. We observe that the NIPTR algorithm is quite
well compared with algorithm. The performance profile in terms of Niter is
given in Figure 1 and show a distinctive for the algorithm NIPTR over the
algorithm.

0.z 1

0 1 I L L L ) ) ) )
1] 2 4 6 8 10 12 14 16 18 20
performance: factor ©

Figure 1. Performance profile based on Niter of methods and NIPTR algorithm.

Note: (-e—) High performance, (-e~) Low performance.

Conclusion

We described the Newton’s interior-point Trust-Region NIPTR to solve
NLCO problem. In NIPTR algorithm, Newtons interior-point method is used
together with the diagonal matrix of Coleman and Li for NLCO problems.
A Trust-Region (T-R) globalization mechanism is added to our algorithm
to insure global convergence. A global convergence analysis for NIPTR
algorithm is presented under five assumptions and without the regularity
assumption, a commonly used assumption by many researchers.

Preliminary numerical experiment on the algorithm is presented. The per-
formance of the algorithm is reported. The numerical results show that our
approach is of value and merit further investigation. For future work, there
are many question should be answered.

Improving the proposed algorithm to be capable for treating large scale
bound constrained optimization problem with equality and inequality con-
straints and non differentiation case.

We have to implement the proposed algorithm on real life.
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