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An Interior-Point Method for Nonlinear Constrained 
Optimization Problem with Trust-Region Mechanism

Abstract
We introduced an algorithm to solve a Non Linear Constrained Optimization (NLCO) problem in this paper. This algorithm follows Das’s idea of Newton’s interior-
point method that uses a diagonal matrix of Coleman and Li for NLCO problems. A Trust-Region (T-R) mechanism is used to globalize the algorithm. This algorithm 
follows Byrd and Omojokun’s idea of step decomposition. It is a successful idea to overcome the difficulty of having an infeasible quadratic T-R sub problem and 
converts the quadratic T-R sub problem into two unconstrained T-R sub problems.

A global convergence theory of the algorithm is studied under five standard assumptions. This algorithm is different and maybe simpler than similar ideas such that 
the global convergence theory is not depending on the linear independence assumption on the gradients of the constraints.

Some numerical tests are stated to indicate that the algorithm performs effectively and efficiently in pursuance.
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Introduction

We described and analyzed an interior point algorithm in this paper to solve 
the following NLCO problem,

minimize f (x) (1.1)

subject to g (x)=0,

a ≤ x ≤ b,

where,
: , : , { { }} , { { }}n, m n,a bf n g n m a n bℜ →ℜ ℜ →ℜ ∈ ℜ∪ −∞ ∈ ℜ∪ +∞ < <

Motivated by the impressive computational performance of the primal dual 
interior-point method for linear programming, authors in using the Coleman-
Li scaling matrix, proposed a primal interior-point algorithm for solving non-
linear programming problems having a special structure [1].

In particular, their algorithm is designed for solving a special nonlinear pro-
gramming where the vector of primal variables x is naturally divided into a 
vector of state variables and a vector of control variables. They proved sev-
eral global and local convergence results for their algorithm. In this paper, 
we use the Coleman-Li scaling matrix to propose the interior-point Trust-
Region algorithm for solving nonlinear programming Problem (1.1). The 
Coleman-Li scaling matrix was first introduced for unconstrained optimiza-
tion problem and used for equality constrained optimization problem [2].

Newton’s interior-point method which was suggested by and used with is 
used in the proposed algorithm. It converges quadratically to a station-
ary point under reasonable assumptions but the starting point must be 

sufficiently closed to the stationary point in order to guarantee conver-
gence. That is, it may not converge at all if the starting point is far away 
from the solution.

A Trust-Region (T-R) mechanism is a well-accepted mechanism in NLCO 
problem to ensure the global convergence. One of the advantages of T-R 
mechanism is that it does not require the objective function of the model 
to be convex. Also, it does not seek the Hessian of the objective function 
must positive definite. However, in traditional T-R mechanism, after solving 
T-R sub problem, we need to use some criterion to check if the trial step is
acceptable. If not, the T-R sub problem must be resolved by a reduced T-R
radius. Similar ideas can be found.  Our balance idea mainly differs from
these algorithms in the way of computing trial steps, the way of updating
the penalty parameter, the way of updating the Hessian matrix, and the
global convergence theory which is proved without the assumption of linear
independence on the gradients of the equality constraints. The mechanism
of our method seems simpler than these methods [3].

If the Trust-Region constraint is simply added to the sequential quadratic 
sub problem of the equality constrained optimization problem, the resulting 
Trust-Region sub problem may be infeasible, because there may be no 
intersecting points between the Trust-Region constraint and the hyperplane 
of the linearized constraints. Even if they intersect, there is no guarantee 
that this will remain true if the Trust-Region radius is decreased. 

Byrd-Omojokuns idea is a successful method to overcome the difficulty 
of having an infeasible T-R sub problem. This method was suggested by, 
and used. In this method, the trial step is decomposed into two orthogonal 
components; the tangential component and the normal component. Each 
component is computed by solving a Trust-Region sub problem. One of the 
advantages of this method, the two sub problems is similar to the Trust-
Region sub problem for the unconstrained case. Under necessary assump-
tions, a global convergence theory for the proposed interior-point Trust-
Region algorithm is introduced [4].

Global convergence results of many T-R algorithms were proved under the 
assumption of linear independence on the gradients of the equality con-
straints and other mild assumption. In this paper, our global convergence 
theory is not depending on the assumption of linear independence on the 
gradients of the equality constraints. So, our global convergence theory is 
generic that it holds for many T-R algorithms which are used the augmented 
Lagrangian as a merit function, Hessian estimates, and bounded Lagrange 
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multiplier [5].

In this trajectory, the suggested T-R algorithm always output a new point, 
and avoids possibly two sub problems are solved many times, so that the 
performance of the algorithm is improved. A global convergence theory for 
the proposed algorithm is presented under mild conditions. In particular, 
regularity condition of the constraints is not assumed. Moreover, numerical 
experiments display that the suggested algorithm performs effectively and 
efficiently in pursuance [6].

The balance of this paper is organized as follows. In the next section, New-
ton’s interior-point method is introduced.  We describe the design of the 
algorithm in detail while the global convergence. We report preliminary nu-
merical results. Finally, some further remark is given [7].

We use ll.ll to denote the Euclidean norm ll.ll2. Subscript k refers to itera-
tion indices and superscript i is the ith component of a vector. For example,  

( ) ( ) ( ) ( ) ( ),g , , , ,k k k k k k k k k x k k kf f x g x Y Y x x x xλ λ≡ ≡ ≡ ≡ ∇ ≡ ∇    , 

and so on to denote the function value at a particular point [8].

Methodology

Newton’s interior-point idea for NLCO problems

In this section, we introduce and analyze Newton’s interior-point idea for 
NLCO problems. Let

( ) ( ) ( ), ,Tx f x g xλ λ= +                             (2.1)

be a Lagrangian function associated with Problem (1.1) without the bound-
ed constrain a ≤ x ≤ b. Let

( ) ( ) ( ) ( ), , , ,
T Ta b a bL x x x a b xλ µ µ λ µ µ= − − − −   (2.2)

be a Lagrangian function associated with Problem (1.1). The vectors λ, 
µa, and µb represent the Lagrange multiplier vectors associated with the 
constraints g(x)=0, 0 ≤ (x−a), and 0 ≤ (b−x) respectively.  Let F ̃̃̃={x:a ≤ x ≤ 
b}  and int (F)={x : a < x < b}.

The  first-order  necessary  conditions  for  the  point  x∗  ∈ F˜  to  be  a  local  
minimizer  of  Problem  (1.1) are the existence of multipliers λ∗ ∈Rm, µa ∈ 
Rn , and µb ∈ Rn , such that (x∗, λ∗, µa, µb ) satisfies 

( )
( )

( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

* * * *

*

* *

* *
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The above four equations indicates (2.3) (2.4) (2.5) (2.6)

for all i corresponding to x(i)  with finite bound and 

( ) ( ) ( )* * * * *,x x f x g xλ λ∇ = ∇ +∇

Let Y (x) be a diagonal matrix whose diagonal elements are defined as 
follows

( ) ( )

( ) ( )
( ) ( )( )
( ) ( )( )

:

,
:

,

i

i i
i

i i

y x

x a
y x

b x

= −

−
=

−

If ( )ia > ∞ and ( )( )( ), 0
i

x x λ∇ ≥ ,

If ( )ib < +∞ and ( )( )( ), 0
i

x x λ∇ < ,   (2.7)

This matrix was first introduced in for unconstrained optimization problem 
and was used by for NLCO problems. Using the matrix Y (x), the conditions 
(2.3)-(2.6) are equivalent to the following conditions

( ) ( )2 , 0xY x x λ∇ =                 (2.8)
( ) 0g x =                                       (2.9) 

Such that *x F∈


. Let Let ψ(x) be a vector whose elements are defined by

( ) ( )
( ) ( )( )

( )

2

,
i

i
i

y x
x

x
ψ

∂
=

∂       i=1,………………………….n.

That is 
( ) ( ) 1,i xψ =  if 

( )ia > ∞ and ( )( )( ), 0
i

x x λ∇ ≥ ,
( ) ( ) 1,i xψ = −  if 

( )ib < +∞ and ( )( )( ), 0
i

x x λ∇ < ,   
( ) ( ) 0,i xψ =                                          (2.10)

Applying Newton’s method on the nonlinear system (2.8)-(2.9), then we 
have

( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )2 2 2 2, , , ,x x xY x x diag x diag x x Y x g x Y x xλ λ ψ λ λ ∇ + ∇ ∇ + ∇ ∇ = − ∇   

It is easy to see that the step generated by the above system coincides with 
the solution of the following quadratic programming sub problem

Minimize ( ) ( ) ( )( )1 11, ,
2xx Y x V x S S Bsλ λ+ +                           (2.13)

Subject to ( ) ( ) ( )( ) 0,
T

g x Y x g x s+ ∇ =

Where
( ) ( ) ( ) ( )( ) ( )( ), ,xB Y x H x Y x diag x diag xλ λ ψ= + ∇ 

such that H(x,λ) represents the Hessian of the Lagrangian function (2.1) or 
an approximation to it.

If T-R constraint is simply added to quadratic programming sub problem 
(2.13), the resulting problem will take the form where δk>0 is the radius 
of the Trust-Region [8]. The above T-R subproblem may be infeasible be- 
cause there may be no intersecting points between T-R constraint and the 
hyperplane of the linearized constraints. Even if they intersect, there is no 
guarantee that this will remain true if T-R radius is decreased. 

To overcome the difficulty of having an infeasible T-R sub problem we will 
use Byrd-Omojokuns method. In this method, the trial step is decomposed 
into a normal step and a tangential step.

Description of (NIPTR) algorithm

We introduce the main algorithm in this section. We clarify the main frame-
work of the Newton’s Interior-Point Trust-Region (NIPTR) algorithm to solve 
Problem (1.1) [9].

How to compute a step S
k

For sub problem (2.13), we follow Byrd-Omojokuns mechanism to compute 
the trial step Sk.  In this mechanism, the step Sk is decomposed into the 
normal step Sn and the tangential step St=ZkSt, where Zk is a matrix whose 
columns form a basis for the null space of (Yk∇gk) T.

To obtain the normal step, we solve the following T-R sub problem

Minimize ( ) 2Tg nll Y g S ll+ ∇

subject to n
kllS ll ςδ≤

for some 0 < ϛ< 1. Our way of solving the above T-R sub problem is to 
approximate its solution using the dogleg mechanism. More details about 
dogleg mechanism [10].

How to test the step τθYksk and update δk

Choose 0<γ1<γ2<1, 0<α1<1<α2, and δmin ≤ δ0 ≤  δmax.

Reduce the Trust-Region radius by setting δk=α1llSkll.

accept the step: xk=xk+τθYkSk.

Set δk+1=max (δk, δmin).

Set δk+1=min {δmax, max {δmin, α2δk}}.
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Global convergence analysis

To establish the global convergence theory for NIPTR algorithm, we need 
the following assumptions.

A necessary assumption:

Let {xk} be the sequence of points generated by NIPTR algorithm. 

The following assumptions are necessary to prove the global convergence 
theory of NIPTR algorithm.

There is a convex set ΩRn and containing {xk}.

The functions f (x), g (x) C2 for all xΩ.

All of f (x), ∇f (x), ∇2f (x), g (x), ∇g (x), ∇2gi (x) for i=1..., m, and (Yk∇gk)
{(Yk∇gk)T (Yk∇gk)}−1 are uniformly bounded in Ω.

The sequence {λk} is bounded.

The sequence of approximated Hessian matrices {Hk} is bounded.

An instantaneous results of the above necessary assumptions is that there 
exists a constant 0<b1, such that, Zk Bk ≤ b1, Zk BkZk ≤  b1. 

Observe that the above assumptions do not comprise the assumption of 
linear independence on the gradients of the scaled equality constraints, a 
commonly used assumption by many authors. So, we may have other kinds 
of stationary points which are presented in the following definitions [11].

Feasible mayer-bliss point

A  point  xF  is  called  a  Feasible  Mayer-Bliss  (FMB)  point  of  Problem  
(1.1),  if  there  exist  a  Lagrange multiplier vector λRm and a constant νR 
not all zeros such that the point (x, ν, λ) satisfies the following conditions:

ν*Y (x*)∇f (x*)+Y  (x*)∇g (x*) λ*=0, 

g (x*)=0. 

If ν*=0, the FMB conditions are coincide with the following conditions

Y (x)∇f (x)+Y (x )∇g(x ) λ*=0

g (x*)=0, 

and in this case, these conditions are called a Karush-Kuhn-Tucker (KKT) 
conditions of Problem (1.1) and the point (x , 1, λ* ) is called KKT point.

Infeasible mayer-bliss point

A point x* ∈ F is called an Infeasible Mayer-Bliss (IFMB) point of Problem 
(1.1), if there exist a  Lagrange multiplier vector λ* Rm and a constant ν* R 
not all zeros such that the point (x*, ν*, λ*) satisfies the following conditions:

ν*Y (x*)∇f (x*)+Y (x*)∇g (x*) λ*= 0

Y (x*) ∇g(x*)g(x*)=0

If ν*= 0, then IFMB conditions are coincide with the following conditions

Y (x )∇f (x ) + Y (x )∇g(x ) λ*=0

Y (x*)∇g(x*)g(x*) = 0, 

and in this case, conditions are called an infeasible KKT conditions and the 
point (x*, 1, λ*) is ν* called an infeasible KKT point.

Let {kj} be any subsequence of iteration sequence that satisfies FMB condi-
tions that are not KKT conditions. From Definition 4.1, we notice that, for 
all k ∈ {kj} the corresponding sequence of smallest singular values of the 
matrices Yk∇gk is not bounded away from zero.

Throughout  the  rest  of  the  paper,  we  use  {Ykj ∇g kj}  to  denote  the  
sequence  of  smallest  singular values of Yk∇gk for all k ∈{kj}.

If ν*=0, then IFMB conditions are coincide with the following conditions

Y (x*) ∇f (x*)+Y (x*) ∇ g (x ) λ*=0, 

Y (x*) ∇g (x*) g (x*)=0, 

Let {kj} be any subsequence of iteration sequence that satisfies FMB con-
ditions that are not KKT conditions. For all k ∈ {kj} the corresponding se-
quence of smallest singular values of the matrices Yk∇gk is not bounded 
away from zero.

Results and Discussion

The algorithm NIPTR is performed on some of test problems listed for the 
same starting points to show effectiveness of algorithm NIPTR. For com-
parison, we have included the corresponding results of NIPTR algorithm 
against the corresponding numerical results.  This is summarized in Table 1. 
In this table, Niter refers to the number of iterations. For all problems, these 
algorithms achieved the same optimal solution at the same starting points.

Table 1. Comparison of method with NIPTR algorithm.

Problem

name

Method in 
Niter

(NIPTR) 
algorithm

Niter

Problem

name

Method in 
Niter

(NIPTR)
algorithm

Niter
hs006 7 3 hs042 3 3
hs007 27 14 hs043 7 6
hs008 5 4 hs044 6 4
hs009 6 14 hs045 17 8
hs010 11 9 hs047 16 5
hs011 6 7 hs048 2 4
hs012 7 5 hs049 15 9
hs013 15 10 hs050 8 9
hs014 6 8 hs051 2 8
hs015 9 9 hs052 2 7
hs016 11 10 hs053 4 4
hs017 9 10 hs055 4 6
hs018 9 8 hs056 6 4
hs019 39 10 hs060 7 6
hs020 4 5 hs061 6 8
hs021 5 5 hs062 6 6
hs022 6 6 hs063 17 7
hs023 7 6 hs064 14 10
hs024 8 9 hs065 9 7
hs026 17 12 hs066 9 6
hs027 16 5 hs067 13 6
hs028 2 4 hs071 8 10
hs029 7 8 hs072 16 18
hs031 4 3 hs073 7 7
hs032 9 7 hs076 6 5
hs033 7 7 hs077 11 9
hs034 9 8 hs078 4 4
hs035 8 9 hs079 4 6
hs036 6 7 hs080 7 7
hs037 6 7 hs081 7 6
hs039 17 12 hs093 5 4

We use the logarithmic performance profiles which proposed by and our 
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Conclusion

We described the Newton’s interior-point Trust-Region NIPTR to solve 
NLCO problem. In NIPTR algorithm, Newtons interior-point method is used 
together with the diagonal matrix of Coleman and Li for NLCO problems. 
A Trust-Region (T-R) globalization mechanism is added to our algorithm 
to insure global convergence. A global convergence analysis for NIPTR 
algorithm is presented under five assumptions and without the regularity 
assumption, a commonly used assumption by many researchers.

Preliminary numerical experiment on the algorithm is presented. The per-
formance of the algorithm is reported.  The numerical results show that our 
approach is of value and merit further investigation. For future work, there 
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