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Abstract 
In modern Industrial era the demand for electricity is increasing 
exponentially with each passing day. Distribution transformer is 
the most vital component for efficient and reliable distribution and 
utilization of electrical energy. With the increased demand in 
energy it has become essential for utilities to expand the capacity 
of their distribution networks significantly resulting in tremendous 
increase in demand of distribution transformers of various ratings. 
So the economic optimization by minimizing the mass of 
distribution transformer is of critical importance. This research 
paper focuses on the global minimization of the cost function of 3-
phase core type oil immersed distribution transformer. The 
methodology used in this research work is based on nonlinear 
constrained optimization of the cost function subjected to various 
nonlinear equality and inequality constraints. The non-linear 
mathematical model comprising of the cost function and a set of 
constraints has been implemented successfully by using 
Mathematica software which provides a very robust and reliable 
computational tool for constrained nonlinear optimization that 
ensures the solution of the problem to be the global minimum. 
Finally, based on the above mentioned optimization technique, a 
25 kVA 3-phase core type distribution transformer has been 
designed according to the latest specifications of PEPCO (Pakistan 
Electric and Power Company). It is found that the innovative 
optimization technique for transformer design that is developed 
during this research resulted in considerable cost reduction. 
 
Keywords: Distribution Transformer, Global Optimization, 

Mathematica  
 
1. Introduction 
To meet the increased demand of oil immersed 3-phase 
distribution transformers in an economic way the cost 
optimization of the transformer design by reducing the mass of 
active part has become of vital importance. 
In traditional transformer design techniques, designers had to rely 
on their experience and judgment to design the required 
transformer. Early research in transformer design attempted to 

reduce much of this judgment in favor of mathematical 
relationships [1].  
Several design procedures for low-frequency transformers have 
been developed in past research. Mathematical models were also 
derived for  computer- aided design techniques in an attempt to 
eliminate time consuming calculations associated with reiterative 
design procedures [2] - [4]. 
These previously developed design techniques were focused on 
maximizing the (VA) capacity of transformers or loss 
minimizations. Some techniques like unconstrained optimization, 
genetic algorithms and neural networks etc. also aimed to 
minimize the mass and consequently the cost of active part of the 
transformer but it does not ensures the global minimization of the 
cost function [5 - 11]. 
As far as global minimization of cost function of low frequency 
shell type dry transformer is concerned, adequate research work 
has been done which involves minimization of cost function by 
using geometric programming [12].  
The optimization done by geometric programming always give the 
global minimum value of the cost function but the difficulty is that 
in practice, majority of mathematical formulae that are used for 
transformer design are non-linear and cannot be converted into 
geometric format. 
Regarding the global design optimization of cost function for the 
active part (winding and core) of oil immersed 3-phase core type 
distribution transformer there is still a lot more room for further 
significant research. 
In this research work the nonlinear mathematical model of 3-phase 
core type transformer comprising of the cost function and a set of 
nonlinear constraints all expressed in terms of certain primary 
variables has been used for non-linear global optimization by 
using Mathematica software. The main advantage of nonlinear 
optimization over geometric programming is that almost all the 
formulae which are used in design procedure for 3-phase core type 
transformer can easily be expressed in non-linear form. Moreover, 
by using Mathimatica the time consumed for cost minimization by 
non-linear optimization has been significantly reduced to a few 
seconds. 
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2. Non-linear mathematical model of transformer for cost 
optimization 
Description of Basic Terms: 
A. Design Variables: 

The mathematical formulation (for global optimization of Core 
type 3-Phase Transformer) is done in terms of certain primary 
design variables, which are given as: 
B: Flux Density in Tesla 

Js: Current Density in LV winding (A/mm2) 
Rc: Core Radius in mm (For circular core) 
Rp : Mean Radius of HV winding in mm 
Rs : Mean Radius of LV winding in mm 
ts : Radial Build of LV winding in mm 
tp: Radial Build of LV winding in mm 
g : Gap between HV and LV winding in mm 
hs : Height of LV winding without color in mm 
Mc : Mass of core steel in mega grams (Mg)  

In above mentioned primary variables the height of primary 
winding “hp” has not been considered as primary variable since it 
is usually a fraction of height of secondary winding “hs”[13], 
therefore  mathematically  we can write; 

hp =α× hs                                                                  (1)  

Where normally α ≈0.95(A fraction to be specified by User) 
“H” is the window height in mm and “T” the window width in mm 
and “X_stack” is the maximum stack width ≈2Rc. These 
secondary variables can be expressed in terms of the other primary 
variables. 
From Fig.1 It is evident, 

H=hs+slacks                                                            (2) 

Where “slacks”, is a slack distance in the window which depends 
on the voltage or BIL of the winding and is a constant for the unit 
under consideration, As Shown in Fig.1 mathematically we can 
write: 

slacks=(UpperGap2Yoke+LowerGap2Yoke)+ 
(2×LV_collar) 

Where, 
UpperGap2Yoke: Distance of LV winding (with collar) from top 
yoke in “mm”  
LowerGap2Yoke: Distance of LV winding (with collar) from 
bottom yoke in “mm”  
Similarly from Fig.1 it is clear that: 

T=2(Rp+ tp/2+ g0- Rc)                                                      (3) 
B. Design input parameters: 
There are a number of input design parameters which are to be 
specified by the user. These parameters are also called 
performance parameters and are described below: 
kVA: Power rating of the 3-phase transformer to be designed 
Z: Per unit impedance of the 3-phase transformer  
FeLoss: Iron (or core) loss in kW specified by the user 
CuLoss: Copper loss in kW specified by the user 
C. Constants for design procedure: 
dn: density of copper in g/cm3, i.e. 8.9 g/cm3 
dfe: density of core steel(iron) in g/cm3 ,i.e.  
7.65 g/cm3 
rho: resistivity of copper in ohm-m/mm2, i.e.  
21×10-9 
RCuEnr: Rate of Copper in Rs/Kg for HV winding 
RCuIns: Rate of Copper in Rs/Kg for LV winding 

Stk: Core stacking Factor 
(Usually taken as 0.95 for safe design) 
pfc: Geometric filling factor of core (i.e. ratio of core area to the 
area of circum scribing circle) 
ecfs: Eddy current factor for LV winding (It is specified by user) 
ecfp: Eddy current factor for HV winding (It is specified by user) 
pfs: Fill factor of secondary winding, it is defined as the ratio of 
copper volume in LV winding to  the whole volume of the LV 
winding 
pfp: Fill factor of secondary winding, it is defined as the ratio of 
copper volume in HV winding to  the whole volume of the HV 
winding 
g0: Half of the clearance between the two phases in mm (User 
specified) 

D. Geometric Illustration of Design variables: 
In order to further elaborate some of the above listed design 
variables a clear geometry of core type transformer is provided in 
Fig. 1. It is evident that X_stack, H and T/2 are secondary design   
variables and can easily be expressed in terms of above listed 
primary variables. 
 

 
Fig.1. Geometry of core type transformer 

 
3. Formulation of nonlinear cost function in terms of primary 
variables 
The objective of the optimization of 3-phase transformer design is 
to minimize the total cost of active part which comprises of the 
cost of copper used in windings and the cost of the iron used in 
core. The cost of the copper in both windings and the cost of core 
will be calculated in million Rs (Rupees) and therefore the total 
cost will also be in million Rs (Rupees). The derivation of non-
linear cost function in terms of primary design variables for the 
active part of transformer is as under: 

Cost of copper in LV=Mass of copper in LV (Kg) ×RCuInR×10-6 
“10-6” is multiplied to convert the cost in million rupees. 
Now it is clear that: 

Mass of copper in LV (Kg)= (3×dn×pfs ×2×π×Rs×hs×ts×10-6) 
Therefore we can write: 
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Cost of copper in LV= (3×dn×pfs ×2×π×Rs×hs× 
ts×10-6) ×RCuInR×10-6 

 
Similarly: 

Cost of copper in HV= (3×dn×pfp×α×2× π ×Rp×hs×tp×10-6) 
×RCuEnR×10-6 

Where pfp and pfs are fill factors of HV and LV winding 
respectively and usually assumed as 0.5 in order to account for the 
adequate insulation and thermal ducts for cooling of both windings. 
Now, 

Cost of core=Mass of core in Kg×FeR×10-6 
Since Mc is in mega grams therefore: 

Mass of core in Kg = (Mc×106) ×10-3 
Hence we can write: 

Cost of core= Mc×FeR×10-3 
Now we denote the objective function by “Cost” which is the total 
cost of core and windings and is given as: 

Cost = ((3×dn×pfs ×2× π ×Rs×hs×ts×10-6) ×RCuInR + 
(3×dn×pfp×α×2×π×Rp×hs×tp×10-6)    ×RCuEnR) ×10-6+ 

Mc×FeR×10-3                                                                                                            (4) 

Eq. (4) gives the standard form of the cost function (in terms of 
primary design variables) that will be implemented in 
Mathematica. 
 
4. Non-linear constraints 
There are a number of different nonlinear equality and 
inequality constrains which are imposed on the cost function 
for its accurate global minimization such that the optimized 
transformer design not only satisfy all the customer 
specifications but also full fill the required performance 
measures. These constraints play an unavoidable role in 
nonlinear optimization to determine the global minimum 
value of the cost function of active part of transformer and 
the values of primary design variables at which the 
minimum value of cost function will occur. A detailed 
derivation in standard normalized form of such constraints 
in terms of primary variables has been carried out in [13].  
A detailed explanation of all these constraints is given as: 
 
4.1. Copper loss Constraint 
The total copper loss in the LV (or secondary) winding is denoted 
by “wsCu (in kW)” and mathematically we can write the 
simplified expression as given below: 

wsCu= rho× (1+ecfs) × (Js)2×Vs  

Where “rho” is the copper resistivity (in ohm-m/mm2) which is 
evaluated at the appropriate reference temperature, “ecfs” is the 
eddy current factor which is due to stray flux and depends on the 
type of wire or cable making up the winding. Vs (in mm3) is the 
copper volume in LV winding which can be expressed as 

Vs = (3×pfs×2×π×Rs×hs×ts) 

By putting the value of “Vs” in the expression for “wsCu” we get: 

wsCu= rho× (1+ecfs) × (Js) 2× (3×pfs×2×π×Rs×hs×ts)   (5) 

Similarly the total copper loss “wpCu (in kW)” can also be 
expressed by using the following simplified expression: 

wpCu= rho× (1+ecfp) ×(Jp)2×Vp  

Where Vp (in mm3) is the copper volume and is given as: 

Vp = (3×pfs×2×π×Rs×hs×ts) 

Therefore we can write: 

wpCu= rho× (1+ecfp) ×(Jp)2×(3×pfs×2×π×Rs×hs×ts)       (6) 

Because the ampere-turns of the primary and secondary are equal 
under balanced conditions the current density in HV “Jp (in 
A/mm2)” can be expressed in terms of “Js (in A/mm2)” as given 
below: 

Jp = (Js×pfs×ts)/ (α ×pfp×tp) 

By putting this value in (6) we get: 

wpCu= rho× (1+ecfp) ×((Js×pfs×ts)/ 
(α ×pfp×tp))2× (3×pfs×2×π×Rs×hs×ts)                           (7) 

Now “wCu (in kW)” is the total copper loss and is given as: 

wCu=rho(1+ecfs)×(Js)2×(3×pfs×2×π×Rs×hs×ts)+(1+ecfp)×((Js
×pfs×ts)/(α×pfp×tp))2×(3×pfs×2×π×Rs×hs×ts))                 (8)                  

Since the total copper loss of the transformer should less than the 
copper loss specified by the user, i.e. CuLoss therefore: 

wCu ≤ CuLoss 

Or, 
wCu/Culoss-1 ≤ 0                                                             (9) 

Here (9) is the standard form of copper loss constraint that will be 
implemented in Mathematica. If we denote the copper loss 
constraint as “ConsCu” then 

ConsCu= wCu/Culoss-1                                                  (10) 

And          ConsCu ≤ 0                                                           (11) 

4.2. Core loss Constraint 
For accurate calculation of core loss, the core data include mainly 
the magnetization curve and the core loss at different values of 
flux density and frequency. An expression for core loss (in 
Watts/Kg at 50 Hz) that works well from practical point of view 
for M4 grade cores [14] is given as: 

 
                                                                              (12) 

And    Core Loss (In kW) =  

Where  the core building factor that accounts for higher 
losses due to non-uniform flux in the corners of the core, due to 
building stresses, and other factors. The core loss of transformer 
should be less than or equal to FeLoss for desired performance, 
therefore: 

Core Loss≤ FeLoss 

Or         (  / FeLoss)-1≤0 

Or ConsWc ≤ 0                                                           (13) 

Where,   
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ConsWc= (  / FeLoss)-1                  (14) 
4.3. Power transfer Constraint 
The total power (in MVA) transferred per phase should be equal to 
“P”, where 

P (In MVA per Phase) =kVA/ (3×1000) 
The per phase power constraint “ConsPower” in its standard 
explicit form is given by the expression: 

                                                                 (15) 

Where  

And the per phase power transfer constraint is equality therefore:  
                                 (16) 
4.4. Impedance Constraint 
The per unit impedance of the between the primary and secondary 
windings of transformer should be less than the per unit 
impedance “Z” specified by the customer. As it is clear that per 
unit impedance of the transformer is comprised of per unit 
resistance and reactance of that transformer, therefore the 
impedance constraint is sub divided into two constraints, i.e. the 
resistance constraint and reactance constraint. 
We know that maximum per unit resistance “Rdc” of a 
transformer is given as: 

Rdc=wCu/kVA                                                              (17) 

Therefore it is evident that maximum reactance X_max will be: 

X_max= (Z2-Rdc2)1/2                                                                                (18) 

Now a mathematical expression for reactance constraint 
“ConsReactance” in terms of primary variables is derived in [8], 
but this expression utilizes the British system of units (i.e. inches 
etc.), by converting the expression in our standard units that are 
used throughout the mathematical modeling we get: 

ConsReactance= 

           (19) 

And     ConsReactance = 0                                                     (20) 
4.5. Constraint for mass of core 
Mc (Mass of core in Mega grams) is our primary variable but can 
be expressed in other primary variables, an equality constraint 
“ConsMc” in standard (normalized form) is given by the 
expression: 

 (21) 

And      (22) 

4.6. Miscellaneous Constraints 
We treated Rp as an independent variable since it appears in many 
formulas. However, it can be expressed in terms of other primary 
variables as evident from Fig.1: 

    (23) 
By converting (21) into standard form we get: 

      (24) 

As ConsRadius is an equality constraint therefore: 
      (25) 

An inequality constraint is imposed on the mean radius of the LV 
winding since it must not drop below a minimum value. From 
Fig.1 it is clear that: 

      (26) 

If we denote the inequality constraint given in (24) by “First” then 
it can be written in standard form as: 

       (27) 
And >0                                                                   

The HV-LV gap g must not fall below a minimum value given by 
voltage or BIL (Basic Insulation Level) considerations. Calling 
this minimum gap “gmin”, leads to the inequality 

      (28) 

In standard form (26) can be written as: 

             (29) 

And           (30) 
The flux density B is limited above by the saturation of iron or by 
a lower value determined by overvoltage or sound level 
considerations. Calling the maximum value Bmax leads to the 
inequality in standard form: 

       (31) 
If the constraint in (29) is denoted by “Third” then it can be 
written as: 

     (32) 
And      (33) 

The current density Js should be less than a certain maximum 
value Jmax there imposing an inequality constraint on current 
density in standard form we can write: 

     (34) 
We denote the inequality constraint given in (33) by “Fourth” and 
in standard form it is given as: 

     (35) 

And       (36) 
It is worth mentioning here that temperature rise constraint is not 
used because in case of oil immersed core type 3-phase 
distribution transformers the mathematical expression for winding 
thermal gradients are very complex and are rather difficult to 
express in terms of primary variables. Therefore to avoid this 
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difficulty without disturbing the accuracy of minimization of cost 
function, the transformer is optimized by assuming 0.5 fill factor 
in both windings. Since 0.5 fill factors adequately accounts for the 
space required for thermal cooling ducts in both windings, 
therefore once the optimized design of transformer with 0.5 fill 
factor is done the ducts in both windings are increased one by one 
until the temperature gradient of both windings fall below the 
maximum permissible limit. 
 
5. Global Optimization using mathematica 
Mathematica is computational software that is accompanied with a 
very powerful and reliable nonlinear global optimization tool 
“Minimize”. The “Minimize” function attempts to globally 
minimize any non-linear objective function subject to set of non-
linear constraints. Therefore Global optimization problems can be 
solved exactly by using “Minimize”. The default algorithm that is 
used by “Minimize” is “Nelder-Mead” which is based on direct 
search, but if “Nelder-Mead” does poorly, it switches to 
“differential evolution” [15]. 
The implementation of the cost function and constraints using 
Mathematica to find the global minimum value of the cost 
function is comprised of the sequence of the following steps: 

 First of all initialize the user specifications and design 
constants in Mathematica note book. 

 Write the expression for the cost function derived in (4) 
in the same Mathematica note book. 

 Implement the expressions for all the equality and 
inequality constraints given in  
(8),(14),(15),(19),(21),(24),(29),(32) and (35) 

 Use “Minimize”  to globally optimize the cost function 
with the following syntax: 

Minimize [{Cost, Rc>5&& B>1.5 && hs> 100 && g>8 && Rs> 
10 && Rp>10 && tp>5 && ts> 5 && Mc>0.01 && Js>1 && 
ConswCu<=0 && ConsWc<=0 && ConsPower==0 && 
ConsReactance==0 && ConsMc==0 && ConsRadius==0 && 
First>0 && Second>0&& Third>0 && 
Fourth>0},{Rs,ts,Rp,tp,hs,Mc,Js,B,Rc,g}] 

The output of above command will be the minimum value of the 
cost function subjected to the given constraints and the values of 
primary variables at which the minimum value of cost function 
occurs. 
 
6. Example design of core type distribution transformer 
The optimization methodology that has been developed in this 
research can be used for rating from 15kVA to 10MVA 3-phase 
core type transformer. However in order to check the validity of 
the approach presented in this paper a 3-phase oil immersed core 
type distribution transformer has been designed according to the 
latest specifications of PEPCO which are as under: 

Power Rating = 25 kVA 
CuLoss=0.512 kW 
FeLoss=0.099 kW 
Z=0.04 per unit 
Voltage Rating:11000/435 volts 
Temperature rise:40/50 0C 

BIL=95 kV 

The rates of LV, HV copper and core materials are as follow: 

RCuEnR=748 Rs./kg (HV copper) 
RCuInR=671 Rs./kg (LV Copper) 
FeR=252 Rs./kg 

The output from Mathematica is given in Table 1 as: 

Table 1. Output Results from Mathematica 

Description Value 
Cost (Million Rs.) 0.0566003 

Mean radius of LV (mm) 58.7925 
Radial build of LV (mm) 13.9787 
Mean radius of HV (mm) 82.278 
Radial build of HV (mm) 16.9922 

Height of LV (mm) 198.601 
Mass of core (Mega grams) 0.0838097 

Current density of LV (A/mm2) 2.21496 
Flux density (Tesla) 1.5 
Radius of core (mm) 49.8031 

Gap b/w LV & HV (mm) 8.0 
 
When the above specified 25 kVA core type transformer was 
designed using unconstrained optimization design techniques, the 
cost of active part was found to be 70,000 Rs. However, when the 
same transformer was designed according to the values of primary 
design variables given in table1 obtained from Mathematica, the 
cost was reduced to 56,000 Rs, which is about 21% less than the 
cost of design from the conventional method, this reduction in cost 
indicates a very significant achievement in economic optimization 
of active part of 3-phase core type distribution transformer. 
 
7. Conclusions 
Today the most important challenge for the transformer industry is 
the economic optimization of the distribution transformers to meet 
the increased demand. This paper presents an innovative and 
robust version of non-linear constrained optimization implemented 
by means of Mathematica that ensures significant cost reduction of 
active part of oil immersed 3-phase core type distribution 
transformer. It also has the advantage that it can incorporate any 
form of non-linear formulae that is required for accurate design of 
the 3-phase core type transformer. The accuracy, fastness and 
reliability of Mathematica are also another advantage. This is a 
very practical and futuristic technique that will really help the 
designers to design more economical transformers. 
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