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Introduction
A massive number of dynamical problems appeared in 

mathematical physics, engineering, biology, nuclear physics, mechanics, 
optics and chemistry can be often modelled by using nonlinear partial 
differential equations (NPDEs) [1-8]. Thus, it is necessary to construct 
the exact or numerical solutions of NPDEs. In recent decades, there has 
been an utterly immense interest in establishing theoretical techniques 
by which one can find the travelling wave solutions. On other words, 
obtaining the exact solutions of NPDEs has become one of the broadest 
scientific subjects. Some specialists discovered some methods such as 
the Jacobi elliptic function method [9,10], tanh-sech method [11,12], 
homogeneous balance method [13,14], exp-function method [15,16], 
Hirotaâ€™s bilinear transformation scheme [17], Riccati-Bernoulli 
sub-ODE method [18,19], sine-cosine method [20-22], F-expansion 
method [23,24], extended tanh-method [25], 

'

( )G
G

− expansion method 
[26,27] and many others. It should be observed that the mentioned 
methods are not applicable for some NPDEs.

In this paper, we aim to use the Jacobi elliptic function method 
to understand the travelling wave solutions for the following GKdV 
equation [28,29] from a theoretical standpoint:

( )32
0 1 = 0.

3t xxx x xx xxxxxx
G GG G G G Gµµ µ+ + + +  	               (1)

Where µ0, µ2 and µ2 are arbitrary constants which their values will 
modify the GKdV equation characteristics. Eq. (1) is investigated by 
some experts. For instance, the authors in a study [30] utilized the 
inverse scattering method to present the solution of Eq. (1) when µ0=-
10, µ1=-20 and µ2=30 Seadawy et al. [31] expressed the solutions and 
stability of Eq. (1) for µ0=-15, µ2=45 and µ1 was assumed to be constant. 
In particular, µ1 was taken by -15 and 75/2. Various cases of solutions 
were presented according to the values of µ1.When µ0=µ1 then Eq. (1) 
is formed as

( ) ( )32
1 = 0.

3t xx xxxxxx x
G GG G Gµµ+ + +  		                  (2)

For example, the standard SK equation is given by Eq. (2) when 
µ1=µ2=5. It was solved by using the exp-function method [32]. Ali [33] 
employed the generalized exp(-φ(ζ)) expansion method to extract the 

exact wave solutions of the standard SK equation. In a study [34], the 
invariant, symmetry and exact solutions of Eq. (2) for µ2=15 and µ2=45 
are developed by using Lie symmetry analysis method.

The extended Jacobian elliptic function expansion method [9,10] 
is described and utilized to extract the exact wave solutions of Eq. (1) 
and Eq. (2). It is the critical purpose of this analysis to show the validity 
and accuracy of the proposed technique in obtaining the solutions. The 
considered method played a prominent role in nonlinear evolution 
equations is a reliable, accurate, powerful and effective mathematical 
tool for finding the exact solutions of several NPDEs.

The outline of this article is given as follows. In Section 2, the 
proposed approach is deeply described and suggested some possible 
solutions. Section 3 is mainly devoted to analyse the GKdV equation 
and extract some relevant exact solutions. The travelling wave solutions 
are presented in various cases. Finally, Section 4 concludes this work 
and shows the essential results.

Analysis of the Extended Jacobian Elliptic Function 
Expansion Method

An extensive description of the extended Jacobian elliptic function 
expansion approach [9,10] is illustrated in this section. We present the 
proposed mathematical concept in some steps listed as follows.

• Consider a given NPDEs in x,t on the form

( , , , , ,....) = 0,t x tt xxL p p p p p  			                 (3)

and seek a solution on the form

= ( ), = ( ).p p k x ctζ ζ −  				                   (4)
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Here, k and c represent the wave number and wave speed, 
respectively.

• Using Eq. (4), Eq. (3) is simply converted to the following ODE:

( , , , ,.....) = 0,Q p p p pζ ζζ ζζζ  			                     (5)

Where Q is a polynomial in p(ζ), and 
2

2= , = ,dp d pp p
d dζ ζζζ ζ

 and 
so on.

• The considered scheme presents the solutions on the form

1
0

=1
( ) = ( ) ( ) ( ) , = 1,2,3,...,

N
k
j k j k j

k
p a f a f b g jζ ζ ζ ζ−  + + ∑            (6)

with

1 1

2 2

3 3

4 4

5 5

6 6

( ) = , ( ) = ,
( ) = , ( ) = ,
( ) = , ( ) = ,
( ) = , ( ) = ,
( ) = , ( ) = ,
( ) = , ( ) = ,

f sn g cn
f sn g dn
f ns g cs
f ns g ds
f sc g nc
f sd g nd

ζ ζ ζ ζ
ζ ζ ζ ζ
ζ ζ ζ ζ
ζ ζ ζ ζ
ζ ζ ζ ζ
ζ ζ ζ ζ

 			                   (7)

where the Jacobian elliptic sine, cosine and tan functions are denoted 
by snζ, cnζ, dnζ, respectively. The relationships of these functions are 
provided as follows:

1 1 1= , = , = , = ,cnns nc nd sc
sn cn dn sn

ζζ ζ ζ ζ
ζ ζ ζ ζ

= , = , = ,sn dn sncs ds sd
cn sn dn
ζ ζ ζζ ζ ζ
ζ ζ ζ

 		                 (8)

which obey the laws
2 2 2 2 2 2 2= 1, = 1, = 1 ,sn cn dn m sn ns csζ ζ ζ ζ ζ ζ+ + +
2 2 2 2 2 2 2 2= , 1 = , 1 = .ns m ds sc nc m sd ndζ ζ ζ ζ ζ+ + +                      (9)

Here, 0 ≤ m ≤ 1 is a modulus. It is to be noted that the relevant 
derivatives of the Jacobi elliptic functions are illustrated as follows:

2= , = , = ,sn cn dn cn sn dn dn m sn cnζ ζ ζ ζ ζ ζ ζ ζ ζ′ ′ ′− −              (10)

= , = , = ,ns ds cs ds cs ns cs ns dsζ ζ ζ ζ ζ ζ ζ ζ ζ′ ′ ′− − −                  (11)
2= , = , = , = .sc nc dc nc sc dc cd cd nd nd m sd cdζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ′ ′ ′ ′  (12)

• The value of N is evaluated by balancing the highest order linear 
term with nonlinear term as illustrated in the equations

1
0

0 1= , = ( ).
rk k

r
k k

d p d pD N k D p r N r N k
d dζ ζ

    
 + + +  
     

                 (13)

• Substituting N into Eq. (6) leads to periodic solutions. As m→1, 
the functions snζ, cnζ, and dnζ, are renamed by tanhζ, sechζ, sechζ, 
respectively. Therefore, the solutions take the forms:

1
0

=1
( ) = ( ) ( ) ( ) ,

N
j

j j
j

p a tanh a tanh b sechζ ζ ζ ζ−  + + ∑                      (14)

1
0

=1
( ) = ( ) ( ) ( ) ,

N
j

j j
j

p a coth a coth b cothζ ζ ζ ζ−  + + ∑                      (15)

1
0

=1
( ) = ( ) ( ) ( ) ,

N
j

j j
j

p a tan a tan b secζ ζ ζ ζ−  + + ∑                              (16)

1
0

=1
( ) = ( ) ( ) ( ) .

N
j

j j
j

p a cot a cot b cscζ ζ ζ ζ−  + + ∑                                 (17)

It has been confirmed that the extended Jacobian elliptic function 
expansion technique is more dependable and appropriate than the 
mentioned schemes in a study [35].

Results and Discussion
In this section, the exact travelling wave solutions of GKdV 

equation are discussed and obtained. Eq. (1) can be easily written as

( ) ( ) ( )2 32
1 = 0,

3t xx x xxxxxx x x
G GG G G Gµµ δ+ + + +  	                (18)

where 0 1= .
2

µ µδ −  The wave transformation

( , ) = ( ),      = ,G x t G x wtζ ζ −  			                  (19)

is used with Eq. (18), where w is the speed of the wave, to arise the 
following ODE:

( ) ( ) ( )2 32
1 = 0.

3
wG GG G G Gζ ζζ ζ ζζζζζζ ζ ζ

µµ δ− + + + +              (20)

We now balance the highest order derivative Gζζζζζ and non-linear 
term G3 to end up with m=2. Since m=2, the proposed technique 
introduces the exact solutions on the form

2
0 1 1 2 2( ) = ( ) ( ) ( ) ( ) ( ),G a a sn b cn a sn b sn cnζ ζ ζ ζ ζ ζ+ + + +          (21)

Where a0, a1, b1, a2, b2 are some constants shown later. From (21) 
we have

1 2 1
2

2 2

= ( ) ( ) 2 ( ) ( ) ( ) ( ) ( )
 ( ) 2 ( ) ( ) ,

G a cn dn a cn dn sn b dn sn
b dn b dn sn

ζ ζ ζ ζ ζ ζ ζ ζ
ζ ζ ζ

+ −
+ −

        (22)

2
2 1 1 1 2

2 2 2 2 2
2 2 2 1

2 2 3 2 3 2 4
1 2 2

= 2 ( ) ( ) ( ) 4 ( ) ( )
( ) ( ) 4 ( ) 4 ( ) 2

( ) ( ) 2 ( ) 6 ( ) ( ) 6 ( ) ,

G a b cn a sn a m sn b cn sn
b m cn sn a sn a m sn b m

cn sn a m sn b m cn sn a m sn

ζζ ζ ζ ζ ζ ζ
ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ

− − − −
− − − +

+ + +

  (23)

2 2
2 2 1 1 1

2 4
1 1 2

2 4 2
2 2

2 2 4 2 2 2
1
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1
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  (24)

Setting µ0=µ1, substituting equations (21)-(24) into Eq. (20) and 
solving the algebraic system obtained by equating the coefficients of 
sn6, cnsn5, sn5, cnsn4, sn4, cnsn3, sn3, cnsn2, sn2, cnsn, sn, cn and sn0 to 
zero, give the following solutions described in some cases. It is worth 
noting that the solutions are shown when m→1, and µ2 is considered 
to be constant.

First case The relevant constants are illustrated as follows:

0 1 1 2 2 1 2
2 2

6 5 6 5= , = = = 0, = , = 16, = 5 ,a a b b a w µ µ
µ µ

−        (25)

and the first family of equation presented by
2

0 2( ) = ( ) .G a a snζ ζ+  				                   (26)

Hence, the corresponding solution to Eq. (26) is degenerated by

2
1 1 2

2 2

6 5 6 5( , ) = ( ) , = 16, = 5 .G x t tanh x wt w µ µ
µ µ

− −                 (27)

Figure 1 shows 2D and 3D graphs for the solution of Eq (27) when 
x0=20, µ2=45, w=16.
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Second case In this case, we determined the constants as follows:

( )
0 1 1 2 2 1 2

2 2

8 3 5 213 5 21 6 5= , = = = 0, = , = , = 5 .
3 5 21

a a b b a w µ µ
µ µ

±
−





  (28)

The second family of equation is given by
2

0 2( ) = ( ) .G a a snζ ζ+  				                   (29)

Thus, the solution of Eq. (29) is expressed by

( )2
2 1 2

2 2

8 3 5 213 5 21 6 5( , ) = ( ) , = , = 5 ,
3 5 21

G x t tanh x wt w µ µ
µ µ

±
− −





  (30)

Figure 2 shows 2D and 3D plots for the solution of Eq. (30) when 
x0=10, µ2=45.

Third case Here, the constants are solved as follows:
9 5 21 3 5 3 5 105 11

0 1 1 2 2 1 284 2 2 2
= , = = 0, = , = , = , = 5 .ia a b a b w

µ µ µ
µ µ− +− −   (31)

Then, the third family of equation is
2

0 2 2( ) = ( ) ( ) ( ).G a a sn b sn cnζ ζ ζ ζ+ +  		                  (32)

Hence, Eq. (32) has the following solution:
29 5 21 3 5 3 5

3 4 2 2 2
( , ) = ( ) ( ) ( ),iG x t tanh x wt tanh x wt sech x wt

µ µ µ
−± ± − ± − −   (33)

where 105 11
1 2 8= 5 , = .wµ µ +±

Figure 3 shows the plot of the real part of Eq. (33) when x0=20, 
µ2=45.
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Figure 4 shows the plot of the imaginary part of Eq. (33) under the 
values x0=20, µ2=45.

Conclusion
This article has been written to apply the extended Jacobian elliptic 

function expansion technique on the GKdV equation. The exact 
travelling wave solutions of Eq. (18) has been surely determined. Some 
complex solutions are also given as can be seen in above figure. The 
2D and 3D figures emphasize the validity of the method. The proposed 
approach, which can be applied to other NPDEs, gives valuable, 
advantageous and successful results.
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