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Abstract

emerged in some natural phenomena.

In the present study, the well-known extended Jacobian elliptic function expansion approach is successfully
employed to reveal the exact travelling wave solutions of the generalized fifth order KdV (GKdV) equation. The
travelling wave solutions are derived in forms rational, hyperbolic and exponential functions. The achieved results
are correctly confirmed by presenting some 2D and 3D figures. The proposed technique is concise and effective,
and simply applicable mathematical concept for constructing the exact solutions of most nonlinear wave equations
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Introduction

A massive number of dynamical problems appeared in
mathematical physics, engineering, biology, nuclear physics, mechanics,
optics and chemistry can be often modelled by using nonlinear partial
differential equations (NPDEs) [1-8]. Thus, it is necessary to construct
the exact or numerical solutions of NPDEs. In recent decades, there has
been an utterly immense interest in establishing theoretical techniques
by which one can find the travelling wave solutions. On other words,
obtaining the exact solutions of NPDEs has become one of the broadest
scientific subjects. Some specialists discovered some methods such as
the Jacobi elliptic function method [9,10], tanh-sech method [11,12],
homogeneous balance method [13,14], exp-function method [15,16],
Hirotad€™s bilinear transformation scheme [17], Riccati-Bernoulli
sub-ODE method [18,19], sine-cosine method. [20-22], F-expansion

method [23,24], extended tanh-method [25], (%)— expansion method

[26,27] and many others. It should be observed that the mentioned
methods are not applicable for some NPDEs.

In this paper, we aim to use the Jacobi elliptic function method
to understand the travelling wave solutions for the following GKdV
equation [28,29] from a theoretical standpoint:

G, + GG, + 4G,G, +*2(G) +G,, =0. 1)
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Where , p1, and p, are arbitrary constants which their values will
modify the GKdV equation characteristics. Eq. (1) is investigated by
some experts. For instance, the authors in a study [30] utilized the
inverse scattering method to present the solution of Eq. (1) when p =-
10, p,=-20 and p,=30 Seadawy et al. [31] expressed the solutions and
stability of Eq. (1) for p,=-15, u,=45 and , was assumed to be constant.
In particular, u, was taken by -15 and 75/2. Various cases of solutions
were presented according to the values of u When p=p, then Eq. (1)
is formed as

XXX

G, + yl(GGXX)X+%(G3)x+G -0. @)

For example, the standard SK equation is given by Eq. (2) when
W, =p,=5. It was solved by using the exp-function method [32]. Ali [33]
employed the generalized exp(-¢(£)) expansion method to extract the

exact wave solutions of the standard SK equation. In a study [34], the
invariant, symmetry and exact solutions of Eq. (2) for p,=15 and p,=45
are developed by using Lie symmetry analysis method.

The extended Jacobian elliptic function expansion method [9,10]
is described and utilized to extract the exact wave solutions of Eq. (1)
and Eq. (2). It is the critical purpose of this analysis to show the validity
and accuracy of the proposed technique in obtaining the solutions. The
considered method played a prominent role in nonlinear evolution
equations is a reliable, accurate, powerful and effective mathematical
tool for finding the exact solutions of several NPDEs.

The outline of this article is given as follows. In Section 2, the
proposed approach is deeply described and suggested some possible
solutions. Section 3 is mainly devoted to analyse the GKdV equation
and extract some relevant exact solutions. The travelling wave solutions
are presented in various cases. Finally, Section 4 concludes this work
and shows the essential results.

Analysis of the Extended Jacobian Elliptic Function
Expansion Method

An extensive description of the extended Jacobian elliptic function
expansion approach [9,10] is illustrated in this section. We present the
proposed mathematical concept in some steps listed as follows.

« Consider a given NPDEs in x,t on the form

L(Ps P> Pes P> Prr+) = 0, (3)

and seek a solution on the form

p=p&), & =k(x—cn). (4)
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Here, k and ¢ represent the wave number and wave speed,
respectively.

« Using Eq. (4), Eq. (3) is simply converted to the following ODE:

O P> P> Pegr ) = 0, (5)
. . d’p
h \ al ,and p. d
SOO}/}\./ ere Q is a polynomial in p(), an P, = dg”pﬂ dg“z’ an
« The considered scheme presents the solutions on the form
PO =a+ 21O af () +bg ()] j=1.23,.  (©)
with
N =sng,  g(5)=eng,
H(E)=sng, g,(¢) =dng,
£(E)=nsg, (&) =es¢, @
Ji(©)=ns¢, g, (¢&)=dsc,
Ss(§)=s¢g,  g5(g) =ncg,
Sf(§)=sdg,  g(&)=ndg,

where the Jacobian elliptic sine, cosine and tan functions are denoted
by sn&, cnl, dnd, respectively. The relationships of these functions are
provided as follows:

nsé’:%,ncg:—g é’——g scé’—%
sng dang sng
sd¢ = T 8
csg = e ds¢ = e ¢= dnt (8)
which obey the laws
s’ +en’e =1, dn*¢ +m’sn’¢ =1, ns’¢ =1+cs°C,
ns’ =m? +ds’¢, s¢’C +1=nc’¢, m*sd* +1=nd*¢. 9)

Here, 0 < m < 1 is a modulus. It is to be noted that the relevant
derivatives of the Jacobi elliptic functions are illustrated as follows:

sn'¢ =cnldnl,en's = —snldnl, dn'¢ = -m’snéend, (10)
ns'¢ =—dsCesC,ds'S =—csénsl,es'¢ =-nsldsl, (11)
sc'é =neldel,nc'¢ =scldel,cd'¢ =cdindl,nd' ¢ =m’sdled . (12)

« The value of N is evaluated by balancing the highest order linear
term with nonlinear term as illustrated in the equations

dk dkp il _
D{dé’} N +k, D{p (dé"‘j} 1o N +1(N +k). (13)

« Substituting N into Eq. (6) leads to periodic solutions. As m—1,
the functions sn¢, cng, and dn(, are renamed by tanh(, sech(, sech(,
respectively. Therefore, the solutions take the forms:

p(&)=a, + }Zz;tanhj’l(é’)[ak/.tanh(é’) +b,sech({) ], (14)
p()=a, + icothj’l(g')[ajcoth(g) +b,coth({) ], (15)
p(&)=a, +étan”‘(;“)[a,mn(g)+b,sec(:>}, (16)
p(&)=a, + gcoﬂ-‘(g)[ajcot(g) +b,cse(£) . (17)

It has been confirmed that the extended Jacobian elliptic function
expansion technique is more dependable and appropriate than the
mentioned schemes in a study [35].

Results and Discussion

In this section, the exact travelling wave solutions of GKdV
equation are discussed and obtained. Eq. (1) can be easily written as

G,+yl(GG_‘_x)x+6(Gf)X+%(G3) +G. =0, (18)

20XXX

where 0 = % The wave transformation
G(xat) = G(;)r g =X- Wta (19)
is used with Eq. (18), where w is the speed of the wave, to arise the
following ODE:
2 3 —
~wG, + 1,(GG,, ): + §(G¢) +?(G ) +Gpppy =0 (20)

We now balance the highest order derivative G, and non-linear

term G® to end up with m=2. Since m=2, the proposed technique
introduces the exact solutions on the form

G($) = ay +asn(§) +ben($) + asn(§)’ +bysn(en(S), (21)
Where a, a, b,
we have

G, = acen($)dn($) + 2a,en(G)dn(S)sn(S) — bdn(S)sn(S)
+bydn(¢) = 2b,dn({)sn({)?,

G = 2a, = ben($) = asn($) — aym®sn(§) = 4b,en(§)sn(S)
—bymPen(&)sn(&) — dasn($)? —4aymisn(E) + 2bm? (23)
cn(§)sn(§)2 + 2a,mzsn(§)3 + 6bzmzcn(§)sn(§)3 + 6azmzsn(§)4,

a,, b, are some constants shown later. From (21)

(22)

Gupr = —8a, — 8a,m” +ben($) + 4bm’en($) + asn($)
+14am’sn($) + am®sn($) +16b,en($)sn(S)
+44b,m*cen($)sn($) + bym*en($)sn() +16a2sn(4)
+10da2m’sn($) +16a2m*sn($)* —20b,m*cn()sn(<)’ (24)
—8hm*en(&)sn($)* —20am*sn($)’ —20a,m*sn(¢)’
—120b,m°cn()sn(&) — 60b,m*en($)sn($)
—120a2m*sn(&)* —120a2m*sn($)* + 24bm*en($)sn(¢)*
+24am*sn($) +120b,m*en($)sn($)’ +120a2m*sn($)°.
Setting p =p,, substituting equations (21)-(24) into Eq. (20) and
solving the algebraic system obtained by equating the coefficients of
sn® cnsn’, sn’, cnsn?, sn* cnsn’, sn? cnsn?, sn? cnsn, sn, cn and sn° to
zero, give the following solutions described in some cases. It is worth
noting that the solutions are shown when m—1, and W, is considered
to be constant.

First case The relevant constants are illustrated as follows:

= _ 65 ,a,=b=b,=0,a,= —ﬂ,wzm,y]:,/Syz, (25)
Jiw’ i

and the first family of equation presented by

G(&) = a, +asn(¢). (26)

a,

Hence, the corresponding solution to Eq. (26) is degenerated by

65 645 h(x—wt)z,w:16,,ul:\/%. (27)

——
Jo e

Figure 1 shows 2D and 3D graphs for the solution of Eq (27) when
x0=20, u2=45, w=16.

G (x,t)=
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Second case In this case, we determined the constants as follows:

C3BEal 65 8(xsEar)
a, = ,a,=b=b=0,0,=———=, W=—Fpm——=", 14 =
N N 35721
The second family of equation is given by

G()=a, +aysn(¢)".

Thus, the solution of Eq. (29) is expressed by

G,(x,1)

_35F21 65

tanh(x — wt)*,w=

8(3v5 ++21)
NN

S, .

(28)

(29)

- 5. (30)

Figure 2 shows 2D and 3D plots for the solution of Eq. (30) when

where 2, =51, , w=

Third case Here, the constants are solved as follows:

— 95421 —7 = __ 3 _ _ 35 _ 105+ _
ao_%ﬂﬁ_bl_O,“z__%J’z__f/isW—%,ﬂl_\jsﬂr (31)

Then, the third family of equation is

G(&) = aq +aysn($)” +bysn($)en(S).
Hence, Eq. (32) has the following solution:

(32)

G, (x,t) = i% + %tanh(x —wi)® + %tanh(x —wt)sech(x —wt), (33)

V105+11
s -

Figure 3 shows the plot of the real part of Eq. (33) when x =20,

xole, p2=45. p,=45.
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Figure 1: 2D and 3D graphs for the solution of Eq (27) when x,=20, p,=45, w=16.
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Figure 2: 2D and 3D plots for the solution of Eq. (30) when x =10, p1,=45.
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Figure 3: The plot of the real part of Eq. (33) when x;=20, p,=45.
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Figure 4: The plot of the imaginary part of Eq. (33) under the values x =20, u,=45.

Figure 4 shows the plot of the imaginary part of Eq. (33) under the

values x,=20, ,=45.

Conclusion

This article has been written to apply the extended Jacobian elliptic

function expansion technique on the GKdV equation. The exact
travelling wave solutions of Eq. (18) has been surely determined. Some
complex solutions are also given as can be seen in above figure. The

2

D and 3D figures emphasize the validity of the method. The proposed

approach, which can be applied to other NPDEs, gives valuable,
advantageous and successful results.
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