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Introduction
Alzheimer’s disease (AD) is a complex progressive 

neurodegenerative disorder of the brain. The complexity of this 
disease has been attributed to several pathogenic factors that initiate 
the processes associated with AD. These pathogenic factors, are still 
elusive, are responsible for processes such as abnormal β amyloid 
(Aβ) production [1], tau pathology and the progressive formation 
of neurofibrillary tangles [2], inflammation, synaptic loss, oxidative 
damage, protein processing or misfolding [3], calcium dyshomeostasis 
[4], aberrant reentry of neurons into cell cycle, cholesterol synthesis 
and effects of hormones, or growth factors. This illusive nature of 
AD has been attributed to three factors, namely (a) the complexity 
of the disease itself, (b) the variability of gene expression resulting 
from the cellular heterogeneity of brain tissues, and (c) from inter-
individual genetic variability [5]. Blalock et al. [6] in conjunction with 
microarray analysis investigated the role of genes in discriminating 
between subjects that had mild cognitive impairment, incipient AD, 
and those with normal aging [6]. They successfully linked patterns of 
gene expression to a cognitive marker, mini-mental status examination 
(MMSE) and a pathological marker neurofibrillary tangle (NFT) of 
AD, independent of AD diagnosis. Furthermore, they reported that 
these markers are negatively correlated and tested this correlation 
with the gene expression patterns of 31 separate microarray samples 
[6]. They identified genes with potentially important implications for 
the early pathogenesis of AD specifically in the incipient stage of the 
disease. This observation of gene expression correlating to the markers 
was further reinforced by Dunckley et al. [5].

In recent times, there is a growing interest in using co-expression 
analysis to identify subsets of co-expressed genes that act as molecular 
signatures for genetic disease. Gene co-expression as defined by Lee 
et al. [7] is an approach in which genes that have similar expression 
patterns across a set of samples are hypothesized to either have a or 
belong to a common functional process [8,9]. As shown by Ray and 
Zhang [10], used gene co-expression analysis to identify the differences 

among regions of the brain to shed light onto the progression of AD. 
Prominent computational techniques used for the identification of 
co-expressed gene subsets include bi-clustering [11]. Bi-clustering 
techniques are aimed at finding co-expressed genes across a set of 
microarray samples. However, bi-clustering techniques rely solely on 
gene expression patterns across samples to establish function similarity. 
More recently, techniques of co-expression gene networks have become 
a popular technique used to identify functional relationships between 
co-expressed genes. Based on the principles of graph theory, these co-
expression gene network techniques uses both gene expression patterns 
and information from prominent markers to identify closely connected 
groups of genes that represent co-expressed genes. According to Ray 
et al. [12], gene co-expression network analysis was successfully used 
to establish the relation between functional clusters of genes and cis-
regulatory elements to identify differentially expressed genes used to 
elucidate the biological processes involved in AD.

Based on the observations derived from Blalock et al. [6], the 
objective of this study is to identify the co-expressed genes in the 
incipient AD hippocampus samples using the cognitive marker MMSE 
and the pathological marker NFT. We hypothesize that co-expressed 
genes from the incipient AD samples are conserved across different 
degrees of AD severity and this conservation is best captured by taking 
into consideration the negative correlation between markers of MMSE 
and NFT. We therefore aim to create a functional map of these incipient 
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Abstract
Alzheimer’s disease (AD) is a complex disease where the analysis of gene expression patterns relies on 

computational techniques to understand the cause and progression of the disease. Evidence postulates that the 
complexity of AD stems from the overlap of early-stage markers with normal aging. Furthermore, there is increasing 
evidence suggesting that gene co-regulation in AD plays a vital role in the progression of the disease. The aim of 
this work is to identify and track co-regulated genes from incipient to severe cases of AD i.e. samples that exhibited 
progression of AD. We hypothesize that co-expressed genes associated with two markers of AD (the cognitive 
marker-mini mental state examination (MMSE) and the pathological marker Neurofibrillary Tangles (NFT)), are 
conserved across AD progression. For our analysis we used the Blalock dataset and the prominent tool weighted 
correlation network analysis (WGCNA). Through our analysis we observed that genes GNA11 and MAP2K2 were 
consistently ranked through the progression of AD. The functional analysis of the identified co-regulated genes at 
the incipient stages of AD includes RNA and cofactor binding. Through this exploratory study we conclude that from 
incipient to severe stages of AD the gamut of co-regulated genes vary rather than being conserved across disease 
severity. 
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co-expressed genes and track their evolution through the progression 
of the disease.

We focus our discussion on the schematic representation of the 
proposed methodology and the steps entailed. In the following sections 
we describe the results obtained and the function interpretation of the 
gene clusters identified using the gene ontology enrichment analysis 
software toolkit (GOEAST)1\ [13] DAVID-EASE2 [14], and the tool for 
pathway analysis known as Pathway Express3 [15]

Materials and Methods
The proposed methodology was developed based on the data 

used by Blalock et al. [6]. The data set consists of expression profiles 
of the brains hippocampi. Obtained from 22 postmortem subjects 
with Alzheimer’s disease (AD) at various stages of severity, the dataset 
consists of seven incipient AD samples, eight moderate AD samples, 
and seven severe AD samples respectively. The dataset also contains 
nine control samples, resulting in a dataset consisting of 31 samples. 
Each sample is scored by both (a) cognitive marker MMSE and (b) the 
pathological marker NFT.

Related studies on AD first select a set of differentially expressed 
genes on which further analysis is performed [10,16,17]. However, 
comparing lists of genes from various AD studies has been shown to be 
computationally inefficient as the resultant computational techniques 
developed become gene specific. Keeping this in mind we propose a 
framework that is aimed at providing a comprehensive view of the co-
expression patterns between genes using the technique of weighted 
co-expression network analysis (WGCNA) [8,17]. Our objective is to, 
organizing co-expressed genes into gene clusters (aka modules) that 
are believed to be of functional significance. The functional significance 
of genes in each module is determined using both (a) similarity 
between gene expression profiles and (b) maximum average negative 
correlation between the cognitive trait MMSE and pathological trait 
NFT respectively. The proposed framework therefore consists of two-
stages (as shown in Figure 6) that encapsulates (a) the identification 
and ranking gene modules/clusters based on significance, and (b) the 
identification of conserved co-expressed genes through the disease 
progression.

Lastly, it will be further interesting to use these types of algorithms 
in the analysis of larger sample sets of incipient, moderate, and severe 
AD to further understand what genetic networks are selectively 
targeted in the early, moderate and late stages of the AD process, and 
what novel therapeutic strategies may be then devised for the clinical 
management of this expanding health care concern.

Identification and ranking of gene clusters / modules

As shown in Figure 6, before describing the process of identification 
and ranking of gene co-expression gene modules/clusters, the gene 
expression data is subjected to data preprocessing strategy employed.

Data preprocessing: As described, the dataset consisted of 31 
samples. Each sample consisted of 22,283 genes. These genes were 
subjected gene filtering, where genes with p-value<0.5 were considered 
to be significant. We further pruned the number of genes to find 
those genes that were common across all thirty one samples in the 
dataset. The resultant gene set consisted of 4,483 genes. The resultant 

1 http://omicslab.genetics.ac.cn/GOEAST/index.php 

2 http://david.abcc.ncifcrf.gov/ 
3 http://vortex.cs.wayne.edu/projects.htm#Pathway-Express 

gene set was standardized using the z-score normalization, where the 
gene expression values were normalized to have a common mean and 
standard deviation.

WGCNA Analysis: The proposed framework consists of a one 
versus one (pair-wise) comparison of sample classes, categorized by 
the degree of Alzheimer’s disease severity. In the case of control versus 
incipient AD (CI) we considered the normalized expression data of nine 
control samples along with the seven incipient samples for analysis.

Identification of co-expressed genes 

To effectively identify clusters of co-expressed genes for each of 
the combination of classes, we used the method weighted gene co-
expression network analysis (WGCNA) [18,19]. WGCNA treats each 
gene (i.e., gene expression profile across a set of samples) as node in a 
network. The ith gene expression profile xi is a vector whose components 
report the gene expression values across m samples. We used the 
co-expression similarity sij as the absolute value of the correlation 
coefficient between their expression profiles between two genes i and j.

( ),ij i js cor x x= ,                                          (1)

As prescribed in WGCNA, we used the concept of soft threshold 
to equate the co-expression similarity sij into a measure of connection 
strength between genes i and j, respectively. This transformation was 
brought about by considering the power of the absolute value of the 
correlation coefficient represented as 

ij ija sb= , where 1.b ≥                                  (2)

The choice of the threshold b controls the sensitivity and specificity 
of the pairwise connection strength independent of the size of the 
network and the significance of correlation between expression profiles 
of a pair of genes. Co-expression networks aim at detecting subsets 
of genes (gene clusters) that are tightly connected to each other. We 
used topological overlap (TO) as measure of dissimilarity to identify 
biologically significant cluster of genes [20]. The TO (ωi) of gene i with 
other genes in a network is represented as 

n
i ijj

ω ω=∑ ,                    (3)

Thus, a gene i with a high ωi  has a high overlap with many other 
genes in the network. The topological overlap of two nodes reflects their 
relative interconnectedness. The topological overlap matrix (TOM) Ω 
= [ωi] provides a similarity measure between multiple genes in the gene 
co-expression network represented as
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k a=∑  is the node connectivity. As ωij  is a 
measure of similarity it was subtracted from one, i.e. to convert it to a 
measure of dissimilarity 

1 .ij ij
ω ωΨ = −                                                          (5)

In this work we used the TOM-based dissimilarity ij
ωΨ  to cluster 

gene expression profiles for module identification. It is believed that 
TOM-based dissimilarity ij

ωΨ leads to more distinct cluster of genes.

Identification of gene clusters/modules

We define a cluster of genes (module) whose expression profiles 
are highly correlated across the samples and with high topological 
overlap. We used the average linkage hierarchical clustering coupled 
with the TOM-based dissimilarity ij

ωΨ , to cluster genes that exhibit 

http://omicslab.genetics.ac.cn/GOEAST/index.php
http://david.abcc.ncifcrf.gov/
http://vortex.cs.wayne.edu/projects.htm#Pathway-Express
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coherent expression profiles. This clustering was implemented using 
the dynamic tree cut library of the WGCNA package [21] to identify 
coherent clusters of genes. 

Cluster ranking and selection

Once the clusters of co-expressed genes were identified, our 
immediate objective was to choose those clusters that are biologically 
significant. In this paper we define the significance (GS) of a cluster of 
genes based on the averaged values of the markers MMSE and NFT 
scores across all genes in the cluster [6].

In determining the GS of a cluster of genes, we assign the non-
negative marker score to each gene (assigned by correlation between 
genes to sample) and averaged across all the genes in that cluster. In 
this work we deal two traits - MMSE and NFT. We therefore carry 
out the ranking of clusters independently for each trait. Based on our 
hypothesis, we believe that clusters of genes that exhibit the higher 
average deviation of the GS between traits MMSE and NFT relate to 
higher functional significance. The average deviation δ for a cluster of 
genes M between the GS scores of MMSE and NFT is captured using 
the following relation.

2

1

1( ) | |,
2 ii

M x xδ
=

= −∑                               (6)

Functional significance and conservation of genes

As previously stated, the above approach is carried out on three (one 
versus one – pair wise) combinations that include severe AD versus 
incipient AD (SI), control versus incipient AD (CI), and moderate 
AD versus incipient AD (MI). For each of the above combinations we 
extract the top four ranked clusters of genes based on average deviation 
of GS (based on equation 6). 

In order to determine the molecular function of a set of genes 
commonly expressed across AD severity, we take into consideration 
the pair wise combinations CI, MI, and SI, to identify subsets of genes 
that are commonly expressed across AD severity (Figure 7). Since these 
combinations share a common sample set (incipient AD), we believe 
that we should observe a set of commonly expressed genes.

Functional annotation of gene clusters

Database for Annotation, Visualization and Integrated Discovery 
(DAVID) is a web-based tool that provides integrated solutions for the 
annotation and analysis of genome-scale datasets derived from high-
throughput technologies such as microarrays. Analyses of results are 
dynamically linked to primary data and external data repositories, to 
provide an in-depth as well as broad-based data coverage. DAVID 
EASE is useful for summarizing the predominant biological “theme” 
of a given gene list. Given a list of genes resulting from our analysis 
is submitted to DAVID and it rapidly calculates over-representation 
statistics for every possible Gene Ontology term with respect to all 
genes represented in the data set.

We used DAVID version 6.7 [14] to identify annotation terms 
significantly enriched in each reference gene set. We used the modified 
Fisher’s exact test, or EASE score, to identify enriched annotation terms 
derived from GNF-U133A- QUARTILE and gene ontology (GO) 
annotation terms, which includes biological process (BP), molecular 
function (MF), and cellular component (CC) categories. We used the 
more specific GO term categories provided by DAVID, called GO 
FAT, to minimize the redundancy of the more general GO terms in the 
analysis to increase the specificity of the terms.

A list of gene symbols was generated for each dataset and used as 
input into DAVID. We used the Functional Annotation Tool, with 
the Human Genome U133A plus 2.0 Array as the gene background, 
to independently analyze each gene set. We used a count threshold of 5 
and the default value of 0.1 for the EASE score settings. We also used the 
Benjamin corrected p-value, with p<0.05 as the significance threshold. 
Significant annotation terms identified in the GNF annotation category 
were further filtered using the inter quartile range of the category size, 
where the 1st and 3rd quartile were removed from the results. Significant 
annotation terms in the remaining GO annotation categories were 
filtered by removing those terms with a category size less than 100 and 
greater than 1000.

Apart for using the tool DAVID EASE for gene enrichment, we 
used the gene enrichment tool Gene Ontology Enrichment Analysis 
Software Toolkit (GOEAST) [13]. This tool is predominantly used to 
identify statistically over-represented GO terms within sets of genes. 
In our analysis, we subject the probe-ID’s of different genes in the gene 
clusters to generate enriched GO terms in graphical format according 
to their relationships in the hierarchical tree of each GO category 
(Biological process, Cellular component, and Molecular function), for 
a visual representation of relationships between genes.

Similarly to identify the pathways associated with genes of interest, 
we used the tool Pathway express [15] that is part of the popular tool 
Onto-express [22].

Results
Co-expressed genes in Incipient Alzheimer’s disease samples 

To extract a candidate set of genes that are co-expressed in the 
incipient samples, we use the R package weighted gene co-expression 
network analysis (WGCNA) [8]. In the experimental setup we consider 
the seven incipient AD samples from the Blalock dataset. To retain an 
effective baseline for gene expression we take into consideration the 
nine control samples throughout this analysis. These samples were 
preprocessed and normalized resulting in a set of 4,483 genes. We then 
apply the procedure of WGCNA to identify those genes that are co-
expressed in the incipient samples.

As part of WGCNA we used soft threshold (β) using Pearsons 
correlation. As shown in Figure 1 the value of the soft threshold β is 
determined be of power equal to eight, where we observe stability in 
both the scale free topology and the mean connectivity respectively. 

Clusters of genes

With the soft threshold determined and fixed at eight, in the 
next step we work towards the identification of clusters of genes. 
Using the cognitive marker MMSE and the pathological marker NFT 
independently, we cluster genes based on their topological overlap (TO) 
using WGCNA. Figure 2 provides the hierarchical clustering of genes 
based on their TO profiles. We used the automatic module detection 
using dynamic tree cutting (DTC) to identify clusters of genes.

With the identification of independent clusters, we rank the 
clusters on the average deviation of MMSE and NFT scores. Based on 
the observation by Blalock et al. that MMSE and NFT are negatively 
correlated, we assign the cluster of genes that has the highest average 
deviation of MMSE and NFT the highest rank (M1). Table 1 shows the 
ranking of gene clusters in the control versus incipient samples.

A visual representation of the normalized expression profiles of the 
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Figure 1: The soft threshold (power) is determined to be of value eight, using 
the scale free topology model using Pearson correlation. Similarly the mean 
connectivity reaches stability when the soft threshold (power) reaches eight.

(B)

(A)

Figure 2: The hierarchical clustering using dynamic tree cutting of the 4,483 
genes performed on (A) cognitive marker MMSE and (B) pathological marker 
NFT based on both control and incipient samples.

genes of the highest ranked gene cluster CI-Purple (M1) is shown in 
Figure 3. The genes of this cluster (Table 2) exhibit maximum average 
deviation considering the cognitive trait MMSE and the pathological 
trait NFT. There were 101 genes selected in gene cluster CI-Purple 
(M1), Figure 3(a) shows the 101 genes expressed in the control samples. 
Similarly Figure 3(b) shows the expression profile of the same 101 
genes in the incipient AD samples. We observe there is a consistency 
in the expression profiles of the control and incipient genes exhibiting 
co-expression across sample types.

Functional profile of selected genes

To ascertain common biological functions associated with 
the 101 genes of cluster CI-Purple (M1), we adopted an integrated 
bioinformatics approach based on structured biological knowledge 
provided by the Gene Ontology (GO) consortium [23]. We applied the 
GO enrichment analysis software toolkit (GOEAST) [13] to the 101 
genes. Briefly, all three branches of GO knowledge structure (biological 
process (BP), molecular function (MF), and cellular component (CC)) 
were utilized for this analysis. To test for GO category enrichment, 
we used the following filtering criteria: (a) p-value cutoff of ≤  0.001, 
(b) limited the GO annotation category size of × ≤ 1000 to minimize 
artificial elevation of p-value, and (c) gene count of >4 in significant 
categories. Applying these filters, a total of nine enriched GO categories 
were identified for the 101 genes in the cluster CI-Purple (M1): five BP 
categories, 10 CC categories, and nine MF categories (Table 3).

For example of enriched categories with the highest gene content per 
GO branch includes cellular process (BP: 72 genes; p-value=5.95×10-6); 
cellular metabolic process (BP: 45; p-value=1.25×10-4), glucose catabolic 
process (BP: 6, p-value=6.68×10-5), ribonucleoprotein complex (CC: 
17, p-value=2.36×10-7), and glyceraldehyde 3 phosphate dehydrogenase 
(NAD+) (phosphorylating) activity (MF: 5, p-value=1.38×10-9).

For additional support, we also performed GO enrichment analysis 

Gene Cluster 
(Rank)

MMSE 
significance

NFT 
significance

Avg. 
Deviation

No.of 
genes

Purple (M1) 0.1371608 0.642366 0.2526026 101

Black (M2) 0.1866539 0.4573602 0.1353532 136

Red (M3) 0.1428014 0.3758707 0.1165347 167

Salmon (M4) 0.1669128 0.3841604 0.1086238 62

White 0.1640657 0.3353733 0.0856538 478

Cyan 0.321479 0.1753377 0.0730707 52

Brown 0.143615 0.244084 0.0502345 369

Grey 0.2274596 0.1396617 0.043899 2

Turquoise 0.2119453 0.148309 0.0318182 1550

Tan 0.2411942 0.1786841 0.031255 67

Pink 0.1497869 0.1975164 0.0238648 350

Green Yellow 0.173846 0.2215524 0.0238532 69

Midnight Blue 0.2792168 0.3082386 0.0145109 32

Dark Red 0.1640868 0.1861055 0.0110094 184

Light green 0.146697 0.1553981 0.0043506 327

Dark Grey 0.1565169 0.1637953 0.0036392 304

Light yellow 0.1936461 0.1890657 0.0022902 233

Table 1: Clusters of genes ranked based on average deviation of MMSE and NFT 
significance when control and incipient samples are analyzed.
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(A)

(B)
Figure 3: The expression profiles of co-expressed genes of the gene cluster CI-Purple (M1), across (A) control samples, and (B) incipient samples.

LOC644101/ CBX3 NME2 / NME1-NME2 / NME1 PGM1 RAB11FIP3 RPL13 / RPL13P12

RALY RER1 RALGPS1 DUT FASN

SMARCC2 LOC407835 / MAP2K2 PCDHGA12 / PCDHGC5 / 
PCDHGC4 / PCDHGC3 PSMC5 SETD2

COPB1 SYF2 LHX2 NOL7 CDC34

USP7 RANBP9 MT1H MT1F LOC100133042 / GAPDH / GAPDHL6

ATP6V1F LEPROTL1 MAEA NUDT3 TAOK3

MT1P2 RPL13 / RPL13P12 KAZ DPP8 GNA11

MAN1A2 MT1F GLTSCR2 / LOC440311 MIR21 ACTB

CTBP1 SFRS11 POLR2E LIN7C CTBP2

SIK3 SLC36A2 CUEDC2 CNOT2 JTB

ZC3H14 RPL13 / RPL13P12 ZSCAN18 SAFB2 ILF2

CEP350 CUX1 NENF AGPAT1 HSPA9

KRT10 FMR1 ZMAT3 DMPK NFE2L1

CHN2 MT1L / MT1E / MT1JP / 
MT1P3 RPL36P14 / RPL36 GNA11 ACTB

MZF1 UBA1 PACSIN2 SFRS8 ZRSR2

EIF1AX AZIN1 SIRPA SPTAN1 MTA1

DCTN1 DDX42

RPS2P17 / RPS2 / RPS2P55 
/ RPS2P8 / RPS2P20 / 
RPS2P11 / RPS2P12 / 
RPS2P5 / RPS2P51

APLP2 CDV3

WDR82 FBXO11 NDUFV1 LSM14A ZRSR2

Table 2: The 101 genes that belong to cluster CI-Purple (M1).
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Category GO ID Term No. of genes in 
Purple (M1)

No. of Gene 
Chips Log-odds-ratio P-value

BP GO:0009987 cellular process 72 23657 0.720328 5.95E-06

 GO:0044237 cellular metabolic process 45 12004 1.021008 0.000125

 GO:0006007 glucose catabolic process 6 131 4.631922 6.68E-05

 GO:0006096 glycolysis 6 98 5.050635 1.33E-05

 GO:0006414 translational elongation 8 267 4.019686 1.62E-05

CC GO:0005623 cell 92 29177 0.7714 2.72E-13

 GO:0044464 cell part 92 29176 0.77145 2.72E-13

 GO:0005622 intracellular 88 25774 0.886185 8.19E-14

 GO:0044424 intracellular part 87 25017 0.912705 7.77E-14

 GO:0043226 organelle 68 21406 0.782117 5.28E-06

 GO:0043229 intracellular organelle 68 21374 0.784276 5.21E-06

 GO:0043228 non-membrane-bounded organelle 34 6767 1.443544 1.02E-05

 GO:0043232 intracellular non-membrane-bounded 
organelle 34 6767 1.443544 1.02E-05

 GO:0030529 ribonucleoprotein complex 17 1294 2.830223 2.36E-07

 GO:0022626 cytosolic ribosome 8 200 4.436526 2.85E-06

MF GO:0004365 glyceraldehyde-3-phosphate dehydrogenase 
(NAD+)(phosphorylating) activity 5 8 8.40231 1.38E-09

 GO:0016620
oxidoreductase activity, acting on the 
aldehyde or oxo group of donors, NAD or 
NADP as acceptor

5 56 5.594955 2.70E-05

 GO:0046870 cadmium ion binding 5 20 7.080382 2.50E-07

 GO:0097159 organic cyclic compound binding 51 12179 1.180699 3.53E-07

 GO:1901363 heterocyclic compound binding 51 12104 1.189611 3.02E-07

 GO:0051287 NAD binding 8 128 5.080382 1.24E-07

 GO:0003723 RNA binding 19 2196 2.227647 9.78E-06

 GO:0005488 binding 83 27702 0.697719 4.82E-08

 GO:0005515 protein binding 64 19718 0.813157 1.02E-05

Table 3: Function profile of the 101 genes of Purple (M1): Enrichment Gene Ontology (GO) categories.

using the DAVID bioinformatics resource, which employs the Fisher’s 
Exact test. With a p-value cut-off of p<0.05, we derived a total of 15 
enriched GO categories using DAVID functional analysis: One BP 
category, 12 CC categories, and two MF categories respectively. While 
all categories from both analyses related to similar terms, the MF 
RNA binding matched in both analyses. Refer Table 4 for the different 
categories derived using DAVID analysis.

We further characterize the functionality of the 101 genes in the CI-
Purple (M1) cluster through pathway analysis using the tool Pathway 
Express [5]. Using the KEGG database, there were 45 pathways that 
correspond to the genes in CI-Purple (M1) (Table 5). The significance of 
each molecular pathway with regards to the 101 genes in CI-Purple (M1) 
is based on the impact factor. We filtered out those molecular pathways 
that were below impact factor <1.75. The resultant were 17 molecular 
pathways, of which the top five were the Chronic myeloid leukemia (3 
genes, impact factor 5.424), Ribosome (3 genes, impact factor 5.243), 
Notch signaling pathway (2 genes, impact factor 4.008), Vibrio cholera 
infection (2 genes, impact factor 3.552), and Huntington’s disease (3 
genes, impact factor 3.228). Of the 17 significant molecular pathways 
we also observe the Parkinson’s disease pathway and the Alzheimer’s 
disease pathways.

To visualize the relationship among enriched GO categories, we 

generated directed acyclic graphs based on GO knowledge base using 
the tool GOEAST. We focus our attention to the MF graph (Figure 4), 
enriched terminal nodes relate to RNA binding and nucleotide binding 
functions of the GO.

We next perform our analysis of conservation of different functional 
categories through the progress of AD. Here we repeat our analysis of 
identifying co-expressed genes using samples of moderate AD with 
incipient AD to extract clusters of genes. Here we observe a cluster 
of 177 genes MI-Black (M1) possessed the highest average deviation 
of 0.226 between the cognitive trait MMSE and the pathological trait 
NFT. Table 6 provides a list of all clusters of genes in this experiment 
while considering both moderate AD samples along with incipient 
AD samples. Gene clusters were ranked based on average deviation of 
gene significance with respect to both traits. In the similar fashion, we 
carry out our analysis of identification of co-expressed genes clusters 
considering samples of severe AD along with samples of incipient 
AD. Table 7 provides a list of gene clusters ranked based on average 
deviation of gene significance with respect to both MMSE and NFT 
traits. The highest ranked gene cluster while considering severe AD and 
incipient AD samples is the SI-Black (M1) containing 171 genes.

In order to identify the conservation of molecular function across 
disease severity, we find the common genes expressed across gene 
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Category GO ID Term % comp P-Value Fold Enrichment Bonferroni FDR

BP GO:0008380 RNA splicing 6.97 0.020137 3.77 0.99 26.0314

CC GO:0043228 non-membrane-bounded organelle 27.90 8.26E-04 1.95 0.15 1.0357

 GO:0043232 intracellular non-membrane-bounded 
organelle 27.90 8.26E-04 1.95 0.15 1.0357

 GO:0031981 nuclear lumen 19.76 0.001064 2.38 0.19 1.3317

 GO:0005829 cytosol 18.60 0.001357 2.43 0.24 1.6952

 GO:0005730 nucleolus 12.79 0.001661 3.21 0.28 2.0721

 GO:0030529 ribonucleoprotein complex 10.46 0.002838 3.61 0.44 3.5161

 GO:0070013 intracellular organelle lumen 20.93 0.0036 2.05 0.52 4.4405

 GO:0043233 organelle lumen 20.93 0.004588 2.00 0.61 5.6268

 GO:0031974 membrane-enclosed lumen 20.93 0.005601 1.96 0.68 6.8299

 GO:0000267 cell fraction 12.79 0.033246 2.06 0.99 34.6775

 GO:0005624 membrane fraction 10.46 0.039223 2.26 0.99 39.5857

 GO:0005626 insoluble fraction 10.46 0.047145 2.18 0.99 45.5686

MF GO:0003723 RNA binding 15.11 6.00E-04 3.17 0.12 0.7669

 GO:0000166 nucleotide binding 24.41 0.020421 1.63 0.99 23.2424

Table 4: Enriched GO categories of the 101 genes of CI-Purple (M1) using DAVID analysis.

Rank Pathway name Impact 
Factor

No. of Input 
Genes in 
Pathway

Rank Pathway name Impact 
Factor

No. of Input 
Genes in Pathway

1 Chronic myeloid leukemia 5.424 3 21 Pathogenic Escherichia coli infection 1.638 1

2 Ribosome 5.243 3 22 Endometrial cancer 1.585 1

3 Notch signaling pathway 4.008 2 23 Non-small cell lung cancer 1.551 1

4 Vibrio cholerae infection 3.552 2 24 Acute myeloid leukemia 1.503 1

5 Huntington's disease 3.228 3 25 Regulation of actin cytoskeleton 1.466 2

6 Long-term depression 3.168 2 26 Glioma 1.389 1

7 Gap junction 2.761 2 27 Epithelial cell signaling in Helicobacter 
pylori infection 1.35 1

8 GnRH signaling pathway 2.652 2 28 p53 signaling pathway 1.35 1

9 Parkinson's disease 2.41 2 29 Renal cell carcinoma 1.337 1

10 Ubiquitin mediated proteolysis 2.191 2 30 Melanoma 1.313 1

11 Tight junction 2.178 2 31 Long-term potentiation 1.313 1

12 RNA polymerase 2.153 1 32 VEGF signaling pathway 1.301 1

13 Thyroid cancer 2.12 1 33 Cardiac muscle contraction 1.278 1

14 Insulin signaling pathway 2.116 2 34 Fc epsilon RI signaling pathway 1.255 1

15 Wnt signaling pathway 1.969 2 35 Adherens junction 1.255 1

16 Alzheimer's disease 1.856 2 36 ErbB signaling pathway 1.143 1

17 Proteasome 1.777 1 37 Prostate cancer 1.124 1

18 Bladder cancer 1.777 1 38 MAPK signaling pathway 1.118 2

19 Pathways in cancer 1.748 3 39 Toll-like receptor signaling pathway 1.03 1

20 Shigellosis 1.638 1 40 Melanogenesis 1.022 1

Table 5: KEGG pathway analysis of 101 genes in the CI-Purple (M1) using the tool Pathway Express.

clusters (CI-Purple (M1), MI-Black (M1), and SI-Black (M1)) that have 
highest ranks.

To find the common functions retained between incipient AD and 
moderate AD samples, we consider those 57 genes that are common 
between gene clusters CI-Purple (M1) and MI-Black (M1). We subject 

these genes to the gene enrichment analysis using the tool DAVID 
EASE (Table 8). We observe two BP categories, nine CC categories, 
and three MF categories. The MF retained was the RNA binding (MF: 
8 genes, p-value=5.4 × 10-3) and nucleotide binding (MF: 13 genes, 
p-value=3.1×10-2), when compared to the MF found in Table 4 of the 
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Figure 4: The functional profile of the 101 genes in CI-Purple (M1) cluster, covering the molecular function categories in the Gene Ontology (GO) where RNA binding 
(19 genes, p-value=9.78×10-6) and nucleotide binding (28 genes, p-value=2.79×10-4) are the most prominent MF in the CI-Purple (M1) cluster.

Gene Cluster (Rank) MMSE significance NFT significance Avg. Dev # genes

Black (M1) 0.1952707 0.6482817 0.2265055 177

Dark Magenta (M2) 0.1581371 0.5549828 0.19842285 63

Cyan (M3) 0.2103996 0.4298741 0.10973725 70

Purple (M4) 0.2061424 0.3619163 0.07788695 150

Dark green 0.3510179 0.2028728 0.07407255 191

Green-Yellow 0.1403241 0.282228 0.07095195 120

Dark Orange 0.2773515 0.160049 0.05865125 200

Orange 0.1869104 0.2888293 0.05095945 180

Orang red4 0.2074065 0.2781194 0.03535645 188

Grey 0.2160465 0.16033646 0.02785502 11

Mid-night blue 0.2286879 0.266835 0.01907355 64

Dark Red 0.1779462 0.215044 0.0185489 2160

Royal blue 0.3608635 0.333594 0.01363475 122

Tan 0.165247 0.1864312 0.0105921 102

Magenta 0.1692694 0.1901007 0.01041565 162

Salmon 0.393322 0.37553556 0.00889322 77

Light cyan 0.2969456 0.3096593 0.00635685 50

Pink 0.176833 0.1724148 0.0022091 163

blue 0.2299296 0.2284175 0.00075605 233

Table 6: Ranked gene clusters while taking into consideration samples of moderate AD along with samples of Incipient AD.

CI-Purple (M1). We then subject these common genes to identify the 
pathways associated with the common 57 genes using the tool pathway 
express. The resultant 41 pathways associated with these genes and 
their corresponding impact scores can be found in Table 9.

To identify those incipient co-expressed genes that are conserved 
through the severe samples; we extend our analysis to find the genes 
common to all three gene clusters CI-Purple (M1), MI-Black (M1), and 
SI-Black (M1). Table 10, contains the GO categories associated with 
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Gene Cluster (Rank) MMSE significance NFT significance Avg. Dev # genes

Black (M1) 0.2217576 0.4483017 0.11327205 171

Green yellow (M2) 0.3875915 0.218123 0.08473425 255

Purple (M3) 0.3251634 0.1886084 0.0682775 81

Turquoise (M4) 0.1960435 0.3198959 0.0619262 2518

Yellow 0.246421 0.1908917 0.02776465 202

Magenta 0.3314159 0.3810918 0.02483795 72

Brown 0.1498229 0.1884388 0.01930795 209

Green 0.3060369 0.3441088 0.01903595 188

Red 0.1859851 0.2000906 0.00705275 169

Grwy 0.2709881 0.2570546 0.00696675 5

Pink 0.2648702 0.2765768 0.0058533 613

Table 7: Ranked gene clusters by taking into consideration samples of severe AD along with samples of incipient AD.

Category GO-ID Term Count P-Value Benjamini FDR

BP GO:0019941 modification-dependent protein catabolic process 5 0.0989 1 76.900

 GO:0043632 modification-dependent macromolecule catabolic process 5 0.0989 1 76.900

CC GO:0043232 intracellular non-membrane-bounded organelle 16 5.74E-04 0.0729 0.6680

 GO:0043228 non-membrane-bounded organelle 16 5.74E-04 0.0729 0.6680

 GO:0005730 nucleolus 8 0.00164 0.1030 1.9065

 GO:0031981 nuclear lumen 10 0.00904 0.3294 10.064

 GO:0005829 cytosol 9 0.01769 0.4451 18.81

 GO:0070013 intracellular organelle lumen 10 0.03220 0.5785 31.764

 GO:0043233 organelle lumen 10 0.03676 0.5613 35.427

 GO:0030529 ribonucleoprotein complex 5 0.03998 0.5367 37.90

 GO:0031974 membrane-enclosed lumen 10 0.04100 0.4988 38.67

MF GO:0000287 magnesium ion binding 5 0.04880 0.92334 45.13

 GO:0003723 RNA binding 8 0.00543 0.56798 6.328

 GO:0000166 nucleotide binding 13 0.03107 0.91204 31.52

Table 8: Enrichment analysis of genes common to gene clusters CI-Purple (M1) and MI-Black (M1) using DAVID EASE.

the 40 common genes using the gene enrichment analysis using the 
tool DAVID EASE. Once again we observe that the MF RNA binding 
(MF: 11 genes, p-value=2.0×10-2) and nucleotide binding (MF: 6 genes, 
p-value=2.0×10-2), were retained across through AD samples from 
incipient, moderate, and severe. We then subject these 40 genes to 
the tool pathway express to identify the associated pathways with the 
genes. Table 11 contains a list of the 38 pathways associated with genes.

Discussion

The overarching question being addressed in this work is what are 
(if any) the gene sets in incipient AD samples that are co-expressed. 
Our objective is to identify these co-expressed genes sets as they 
could be potential disease markers that could be traced through their 
differential expression. We believe that these markers could to some 
extent be responsible for the phenotypic differences through the 
progression of AD.

The identification of AD markers in its incipient stages is a 
challenge considering the complexity of the disease and its close 
association with the normal aging process. In this work we have used 
gene co-expression network analysis (WGCNA) which is used to 

identify networks of co-expressed genes. We believed that functionally 
co-expressed genes can be modeled as a complex network. Sub-
networks (clusters) within this gene network are believed to have a high 
level of connectivity determined by correlated expression profiles. We 
therefore subjected these gene clusters to gene ontology enrichment 
studies to list prominent functional associated with the genes. 

Most of the genes in the incipient stage of AD are associated with 
RNA binding, nucleotide binding, RNA metabolism and processing, 
and cofactor binding. Nucleotide and RNA binding were the most 
prominent molecular functions associated with the co-expressed genes 
in the incipient stage.

Interestingly, much recent independent work has underscored the 
important role of up-regulated small non-coding RNAs (sncRNAs) 
called micro RNAs (miRNAs) in contributing to altered RNA signal 
processing, resulting in an altered transcriptome in AD brain [24,25].

The pathways associated with the co-expressed genes in the incipient 
stage of AD, are the chronic myeloid leukemia, ribosome, Notch 
signaling pathway, and the Vibrio cholera infection pathways. These four 
pathways were ranked the highest based on their impact scores. 
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Rank Pathway Name Impact 
Factor

#Input Genes 
in Pathway Rank Pathway Name Impact 

Factor
#Input Genes 
in Pathway

1 Long-term depression 4.333 2 21 Melanoma 1.87 1

2 Ribosome 4.185 2 22 Long-term potentiation 1.87 1

3 Gap junction 3.902 2 23 VEGF signaling pathway 1.857 1

4 GnRH signaling pathway 3.785 2 24 Cardiac muscle contraction 1.832 1

5 Insulin signaling pathway 3.202 2 25 Chronic myeloid leukemia 1.819 1

6 Alzheimer's disease 2.911 2 26 Fc epsilon RI signaling pathway 1.807 1

7 Huntington's disease 2.793 2 27 Adherens junction 1.807 1

8 Thyroid cancer 2.717 1 28 ErbB signaling pathway 1.684 1

9 Regulation of actin cytoskeleton 2.463 2 29 Prostate cancer 1.664 1

10 Proteasome 2.362 1 30 Toll-like receptor signaling pathway 1.559 1

11 Bladder cancer 2.362 1 31 Melanogenesis 1.551 1

12 Shigellosis 2.216 1 32 T cell receptor signaling pathway 1.5 1

13 Pathogenic Escherichia coli infection 2.216 1 33 Parkinson's disease 1.444 1

14 Endometrial cancer 2.16 1 34 Leukocyte transendothelial migration 1.444 1

15 Non-small cell lung cancer 2.124 1 35 Natural killer cell mediated cytotoxicity 1.35 1

16 Acute myeloid leukemia 2.073 1 36 Ubiquitin mediated proteolysis 1.33 1

17 Vibrio cholerae infection 2.026 1 37 Tight junction 1.324 1

18 Glioma 1.951 1 38 Calcium signaling pathway 1.082 1

19 p53 signaling pathway 1.909 1 39 Focal adhesion 0.979 1

20 Renal cell carcinoma 1.896 1 40 MAPK signaling pathway 0.76 1

21 Melanoma 1.87 1 41 Pathways in cancer 0.616 1

Table 9: KEGG pathway analysis of 57 common genes between gene clusters CI-Purple (M1) and MI-Black (M1) using the tool Pathway Express.

Category GO-ID Term Count P-Value Benjamini FDR

CC GO:0005829 cytosol 8 0.010332 0.6674 11.000

 GO:0043232 intracellular non-membrane-bounded organelle 11 0.011951 0.4712 12.620

 GO:0043228 non-membrane-bounded organelle 11 0.011951 0.4712 12.620

 GO:0005730 nucleolus 5 0.041082 0.7728 37.544

MF GO:0000166 nucleotide binding 11 0.020211 0.9204 21.004

 GO:0003723 RNA binding 6 0.0205 0.7231 21.272

Table 10: Enrichment analysis of the genes common to gene clusters CI-Purple (M1), MI-Black (M1), and SI-Black (M1) using DAVID EASE.

Genes that are conserved through the progression of AD from 
incipient to moderate, include ACTB gene, the MAP2K2, NDUFV1, 
and GNA11 respectively. The pathways associated with gene ACTB 
include, regulation of atin cytoskeleton, shigellois, pathogenic 
Escherichia coli infection, Vibrio cholera infection, cardiac muscle 
contraction, aderens junction, leukocyte trans-endothelial migration, 
tight junction, and focal adhesion.

The gene NDUFV1, is associated with the following pathways: 
Alzheimer’s disease, Huntington’s disease, and Parkinson’s disease.

The gene MAP2K2 is associated with a range of pathways 
that include, long term depression, gap junction, GnRH signaling 
pathway, insulin signaling pathway, thyroid cancer, regulation of actin 
cytoskeleton, bladder cancer, endometrial cancer, non-small cell lung 
cancer, acute myeloid cancer, glioma, renal cell carcinoma, melanoma, 
long-term potential, VEGF signaling pathway, chronic myeloid 
leukemia, Fc epsilon RI signaling pathway, ErbB signaling pathway, 

prostate cancer, toll-like receptor signaling pathway, melanogenesis, 
t-cell receptor signaling pathway, natural killer cell mediated 
cytotoxicity, MAPK signaling pathway, and pathways in cancer.

The most important is the gene GNA11 and its associated pathways 
relate to long term depression, gap junction, the calcium signaling 
pathway, and the GnRH signaling pathway (Figure 5).

Similarly, genes that are functionally significant and at the same 
time conserved throughout the progression of AD from incipient 
through severe include: RPL12, RPL13, FASN, GAPDH, CDC34, 
DCTN1, GNA11, ACTB, and MAP2K2. The corresponding pathways 
that gene RPL12 and RPL13 belong to Ribosome. Similarly, gene FASN 
belongs to the Insulin signaling pathway, gene GAPDH belongs to the 
Alzheimer’s disease pathway, CDC34 belongs to the Ubiquitin mediated 
proteolysis pathway, and gene DCTN1 belongs to the Huntington’s 
disease pathway. The gene GNA11 belongs to four pathways that 
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Rank Pathway Name Impact Factor #Input Genes 
in Pathway Rank Pathway Name Impact 

Factor
#Input Genes 
in Pathway

1 Long-term depression 5.035 2 20 Chronic myeloid leukemia 2.156 1

2 Gap junction 4.594 2 21 Fc epsilon RI signaling pathway 2.144 1

3 GnRH signaling pathway 4.475 2 22 Adherens junction 2.144 1

4 Insulin signaling pathway 3.874 2 23 Ribosome 2.096 1

5 Regulation of actin cytoskeleton 3.103 2 24 ErbB signaling pathway 2.017 1

6 Thyroid cancer 3.07 1 25 Prostate cancer 1.996 1

7 Bladder cancer 2.71 1 26 Toll-like receptor signaling 
pathway 1.888 1

8 Shigellosis 2.562 1 27 Melanogenesis 1.879 1

9 Pathogenic Escherichia coli infection 2.562 1 28 T cell receptor signaling pathway 1.826 1

10 Endometrial cancer 2.505 1 29 Leukocyte transendothelial 
migration 1.768 1

11 Non-small cell lung cancer 2.468 1 30 Natural killer cell mediated 
cytotoxicity 1.67 1

12 Acute myeloid leukemia 2.417 1 31 Ubiquitin mediated proteolysis 1.649 1

13 Vibrio cholerae infection 2.368 1 32 Tight junction 1.642 1

14 Glioma 2.292 1 33 Alzheimer's disease 1.464 1

15 Renal cell carcinoma 2.235 1 34 Huntington's disease 1.406 1

16 Melanoma 2.208 1 35 Calcium signaling pathway 1.386 1

17 Long-term potentiation 2.208 1 36 Focal adhesion 1.276 1

18 VEGF signaling pathway 2.195 1 37 MAPK signaling pathway 1.036 1

19 Cardiac muscle contraction 2.169 1 38 Pathways in cancer 0.874 1

Table 11: KEGG pathway analysis of 40 common genes between gene clusters CI-Purple (M1), MI-Black (M1), and SI-Black (M1) using the tool Pathway Express.

Figure 5: The KEGG-GnRN Signaling pathway [20] that is prominently expressed through the co-expressed genes from incipient AD to moderate AD to sever AD.
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Figure 6: Proposed framework for the identification of genes of significance across disease severity..

Figure 7: The intersection between co-expressed gene clusters.

include long-term depression, gap junction, GnRH signaling pathway, 
and calcium signaling pathway. 

The gene MAP2K2 is associated with 25 known pathways that 
include: long-term depression, gap junction, GnRH signaling pathway, 
insulin signaling pathway, regulation of actin cytoskeleton, thyroid 
cancer, bladder cancer, endometrial cancer, non-small cell lung cancer, 
acute myeloid leukemia, glioma, renal cell carcinoma, melanoma, long 
term potentiation, VEGF signaling pathway, chronic myeloid leukemia, 
Fc epsilon RI signaling pathway, ErbB signaling pathway, prostate 
cancer, toll-like receptor signaling pathway, melanogenesis, t-cell 
receptor signaling pathway, natural killer cell mediated cytotoxicity, 
MAPK signaling pathway, and pathways in cancer.

Of all the associated genes and pathways, the genes GNA11 and 
MAP2K2 are prominently ranked in an ascending order as the disease 
progresses and are closely related to Alzheimer’s disease.
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